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Abstract
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through semantic interpretation based on correlation, connectionism is prone to a number
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representations.

keywords: Connectionism, computation, semantics, learning, representation, composition-

ality, nativism.

running heading: Connectionism and Meaning.
∗The order of authorship is arbitrary. Requests for reprints should be send to the first author (phone no.

+44 (0)31 650 4420). Morten Christiansen is supported by award No. V910048 from the Danish Research
Academy. Nick Chater is partially supported by grant No. MRC FPG 9024590 from the Joint Councils
Initiative in Cognitive Science/HCI.

1



1 Introduction

The surge of interest in neural networks has created an impact across a remarkably broad range

of disciplines—from electrical engineering (Graf, Jackel & Hubbard, 1988), physics (Hopfield,

1982) and mathematics (Cybenko, 1989) to the biological and cognitive sciences (McClelland

& Rumelhart, 1986; Rumelhart & McClelland, 1986), artificial intelligence (Derthick, 1987)

and computer science (Fahlman, 1988). What may appear incongruous is that this remarkable

influence has been widely considered to have significant philosophical implications too (Bechtel

& Abrahamsen, 1991; Clark, 1989; Churchland, 1986; Churchland, 1989; Horgan & Tienson,

1987; Ramsey, Stich & Rumelhart, 1991). Indeed, it has been argued that neural networks

have important ramifications for one of the most abstract areas of philosophy—the theory of

meaning (Cussins, 1990; Cottrell, 1987; Harnad, 1990b, in press).

At first blush, this state of affairs is surprising since, after all, neural networks are fun-

damentally a technology—a set of tools and methods which can be applied to a wide variety

of practical and modelling tasks. Across the spread of disciplines caught up in the study of

neural networks most either apply formal methods well-suited to describing and analyzing the

behaviour of neural networks or are domains to which neural network modelling techniques

can usefully be applied. Yet philosophy in general, and theory of meaning in particular, ap-

pear to stand in neither of these relations to neural networks—philosophical methods do not

appear obviously helpful in elucidating network behaviour, and it seems almost incoherent

that neural networks could in some sense model or solve some philosophical problem.

In this paper, we argue that the purported philosophical implications of connectionism

for the theory of meaning are, at least in many cases, illusory. Before doing so let us dwell

briefly on why, despite this apparent poor fit, neural networks have been taken to have far

reaching philosophical implications? The answer, of course, is that neural networks in their

connectionist guise have been seen as providing a new metaphor for the mind. Of particular

interest is the suggestion that connectionism is seen as providing a new account of the nature

of mental representation, which is held to have a wide variety of philosophical ramifications.

It is not always entirely clear which aspects of neural network computation are philosophically

significant, although the fact that connectionist representations are typically distributed as

well as superpositional and are usually learnt appears to be particularly important, as we

shall see below. In any case, whatever the precise characteristics that do the philosophical

work in connectionist modelling might be, connectionist models are interesting because they

are different: different from the classical, symbolic view of cognitive processing which has

dominated cognitive psychology and cognitive science since their inception (Fodor, 1975,

1987; Pylyshyn, 1984).1

1Since only fully distributed, superpositional networks, trained through some kind of learning procedure,
are fundamentally different from the classical symbolic models (e.g., cf. Sharkey, 1991; van Gelder, 1991; in
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However, it is still a controversial issue whether or not neural networks should be viewed

as displacing symbolic accounts of mind or as a medium in which symbolic processes can

be run (e.g., Clark, 1989; Fodor & Pylyshyn, 1988; Smolensky, 1988). Pinker & Prince

(1988) have dubbed the these positions eliminativist connectionism and implementational

connectionism, respectively. At first sight, at least, it seems that neural networks will be

of philosophical significance only for eliminative connectionists. It is hard to imagine how

a new implementation could have any great philosophical implications at all. But full scale

eliminativism is a very radical position indeed and few in cognitive science would embrace it.

There are, though, intermediate positions which allow symbolic representations and opera-

tions, but which still accord a connectionist substrate considerable importance in explaning

cognition (e.g., Chater & Oaksford, 1990a; Clark, 1989; Harnad, 1990a). The arguments we

consider for the philosophical significance of connectionism typically embrace both symbolic

and connectionist explanations of cognition.

In discussions of symbolic and connectionist approaches to cognitive science, the historical

predominance of the symbolic view has meant that, to some extent at least, the ground

rules concerning what key cognitive phenomena must be explained and what counts as a

good explanation, have been set in largely symbolic terms (van Gelder, in press). Thus, if

connectionism amounts to a genuinely new paradigm for the understanding of mind, there

is a very real danger of falling into what we will call the “incommensurability trap”. That

is, connectionist models may be unfairly judged either because they fail to fit the classical

standards or because when they are made to fit the resulting explanation looks forced and

unattractive. The danger is analogous to that of judging vegetarian food by the standards of

the butcher. After all, connectionism—construed as a new paradigm (e.g., Schneider, 1987)—

may involve a revolutionary reconstruction of the field from new fundamentals, leading to

changes in methodology and basic theoretical assumptions. Since rival paradigms prescribe

different sets of standards and principles, connectionist and classical approaches to cognitive

science may also differ on what constitute meaningful and legitimate scientific questions. Due

to this incommensurability, discussions between proponents of different paradigms on the

issue of paradigm choice often become circular. Each group will tend to praise their own and

criticize the others part’s paradigm with arguments based on their own paradigm. In other

words, when comparing and assessing the individual explanatory power of rival paradigms,

the incommensurability trap constitutes a nontrivial methodological obstacle to negotiate

since it involves engaging in the process of radical translation (Quine, 1960). Or so, much

philosophy of science would have us to believe (e.g., Kuhn, 1970). In any case, there are

signs that communication is becoming difficult, and hence it is imperative that the merits of

connectionism are judged from “within”—i.e., on its own terms—not through the looking glass

press), we will only address the potential philosophical implications of this kind of connectionist models.
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of the classical paradigm.2 On the other hand, the opposite danger is equally real—symbolic

models can look unattractive from a connectionist perspective. This raises the danger of

ignoring all that has been learnt from the symbolic approach, and simply starting the project

of understanding the mind afresh.

In particular, it is not possible to discuss the relationship between connectionism and the

theory of meaning without flirting with these dangers, since traditional theory of meaning

is concerned with symbolic, linguistic representations. So, for example,we shall break our

discussion below into two parts—first discussing the semantics of primitive terms and then

the issue of compositional semantics. This very distinction comes out of the theory of meaning

for languages, and need not necessarily be appropriate for other types of representation (if

there are any). However, theories of meaning for languages are the only theories of meaning

that we have—there is no alternative to which the connectionist can turn. In the main, this

has meant that philosophical implications of connectionism have been viewed as fitting into

a standard semantics framework: as either concerning fixing the meaning of primitives, or

compositional semantics.

So far, we have considered the possible importance of connectionism for semantics. Equally

interesting is the significance of semantic issues for connectionism itself. Ascribing meaning

to connectionist networks involves implicitly making assumptions about what it is for a state

of a network to represent. Without a theory of meaning, whether explicit or implicit, it is

impossible to view networks as possessing or developing representations at all. More generally,

seeing a connectionist network, or any other system, as a computer at all, is dependent on

being able to ascribe meaning to the states of the system. Otherwise its internal states are not

appropriately viewed as processing information at all, but simply as passing through sequence

of states; the network will be viewed simply as an informational “black box”, where only

inputs and outputs are interpreted, and those by fiat. Hence, the semantics of connectionist

networks which we will discuss extensively below is of both practical as well as philosophical

interest.

The structure of the paper is as follows: In section 2, we give a brief exposition of the

classical approach to cognitive processing in which the main object of a theory of meaning

is to elucidate the semantic content of the internal language of thought. One of the largest

problems facing this approach is the problem of establishing the right referential links between
2For example, much of the criticism of connectionism launched by Fodor & McLaughlin (1990) as well as

Fodor & Pylyshyn (1988) does not stem from inconsistencies or incoherence within the theoretical framework of
connectionism. Instead, it stems from the failure on behalf of Fodor and collaborators to couch connectionism
in the terminology of the classical processing paradigm (also cf. van Gelder, in press). Similarly, another non-
classical approach to cognition—situation theory—has also been victim of the same kind of terminologically
based criticism: “Fodor thinks that computation is formal. So when I argue that thought is not formal, he
annoyingly charges me with claiming that thought are not computational. I suppose Fodor is so caught up
in his own identification of formal with computational as to be unable to maintain the distinction” (Barwise,
1989: p. 156–7).
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internal representations and the external world. Much optimism has been invested in con-

nectionism as providing the means for referential grounding of semantic primitives through

learning. We therefore address some of the philosophical problems standing in the way of this

project in section 3; specifically the fact that connectionist representations, at least presently,

are no more grounded than their symbolic counterpart (basically because they are developed

from pre-processed input); and, more generally, that obtaining the correct correlations be-

tween internal representations and external objects is a non-trivial matter (i.e., it involves

problems concerning error, underdetermination, non-existing entities and the difference be-

tween properties and propositions). Whether or not connectionism will be able to ground

semantic primitives, it does need to develop some kind of compositional semantics, if it is to

be a true rival to the symbolic paradigm. Consequently, section 4 discusses the issue of learn-

ing complex semantic representations in connectionist models. In particular, we outline what

kind of compositionality we should envisage and point to initial steps taken in the direction

of truly structure sensitive manipulations of connectionist representations. Since learning is

one of the leading motivations behind connectionist modelling, we devote the last section

to a discussion of issue of nativism in relation to symbolic as well as connectionist models.

Specifically, we find that connectionism may provide the prospect of a better explanation of

cognitive development.

2 The Classical View of Computation and Cognition

The classical view, baldly stated, is that cognitive processes are defined over sentences of an

internal language in virtue of their form (Fodor, 1981). In particular, the classical model

of cognition rests on two major claims. Firstly, psychological explanation is best carried

out in terms of an internal language of thought. Second, this internal language involves

a machine-implementable physical symbol system (Newell & Simon, 1976) with structure

sensitive transformations of symbolic expressions on the level of syntax; that is, classical

representation of mental states can be implemented on computers. The classical paradigm

consists of the synthesis of these two claims.

If, in principle, syntactic relations can be made to parallel semantic relations,

and if, in principle, you can have a mechanism whose operations on formulas are

sensitive to their syntax, then it may be possible to construct a syntactically driven

machine whose state transitions satisfy semantical criteria of coherence. Such a

machine would be just what’s required for a mechanical model of the semantical

coherence of thought; correspondingly, the idea that the brain is such a machine

is the foundational hypothesis of classical cognitive science. (Fodor & Pylyshyn,

1988: p. 30)
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They sum up this position in the slogan that cognition is mechanized proof theory. Actually,

this position is rather stronger than the view that cognition is symbol manipulation, since it

is by no means always appropriate to view symbol manipulation as a theorem proving.

Like natural and logical languages, the internal language is assumed to consist of a finite

stock of atomic primitives, and a finite set of ways of combining these primitives. These modes

of combination can be applied arbitrarily often, to give an infinite set of possible internal

formulae. Specifying a semantics for such a language involves specifying (i) the meanings of

the primitives of the language; and (ii) a compositional semantics for that language, which

specifies how the meanings of the parts of a complex expression contribute to the meaning of

the whole, given each possible mode of combination. Below we shall see that connectionism

has been viewed as potentially impacting on both of these aspects of semantics.

What have been taken as the philosophical implications of the classical position? The

most direct impact has been that the classical view allows (although it by no means requires)

that the contents of internal formulae may be identified with the contents of mental states:

propositional attitudes usually viewed as computational relations to mental representations

(Fodor, 1975; Field, 1978). So, for example, the belief, desire or hope that P, for a proposition

P, amounts to standing in the appropriate relation to an internal formula which expresses P.

Where mental states are explained in terms of propositions represented by internal sentences,

concepts are explained in terms of the properties represented by internal predicates. So, to

have the concept DOG, DOG-WITH-ONE-LEG, or whatever, is to possess an internal formula

which expresses the properties of being a dog, or being a one-legged dog. This position is

attractively parsimonious in ontological terms: while there appear prima facie to be two sorts

of entities with semantic properties, languages and mental states, there are, at root, only one,

since the semantic properties of the latter are derivative on the former.

According to this picture, an important concern of the theory of meaning is to explain

the basis for the semantic properties of internal languages. The project has a rather dif-

ferent character to the project of explaining the basis of the semantics of external natural

language. It must be conducted in the absense of any detailed understanding of the nature of

this language, and the social and conventional aspects of meaning in natural language appear

to be irrelevant to the semantics of an internal language. Within philosophy there has been

extensive debate concerning whether the meaning of external languages is derivative on the

meaning of mental states (Grice, 1957) or whether, as behaviourists and others have advo-

cated, that the meaning of mental states is derivative on language behaviour (e.g., Quine,

1960). For those who believe the former, as has become orthodox in the foundations of cog-

nitive science (e.g., Fodor, 1975), an account of meaning for internal languages is a necessary

prerequisite for providing an account of meaning for external languages too. Thus, elucidat-

ing the meaning of internal states may be viewed as the fundamental issue in the theory of
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meaning. The question of what a theory of meaning for internal languages could look like, or

whether such a project is feasible at all, has been extensively discussed (Churchland, 1986;

Dretske, 1981, 1988; Fodor, 1987, 1990; McGinn, 1989; Schiffer, 1987; Stich, 1983).

Although the classical account of cognition finds the semantics of the external natural

language to be individuated by the semantics of the internal language of thought, the argu-

ment behind the postulation of the latter goes in the opposite direction; viz., from external

language to internal representation. The argument is based on the observation that natu-

ral language is describable in symbolic terms where the symbols correspond to words that

can be composed systematically into meaningful complex expressions, sentences, according

to a recursively specified syntax.3 The important link to the internal language of thought

is that we use the external language to verbalize (and communicate to others) the contents

of our thoughts—or, rather, we use natural language constructs to express the content of

our mental representations. However, we can only think (and say) what our mental repre-

sentations allow us to represent. So, the argument goes, the syntactic as well as semantic

systematicity and productivity of the external language must therefore mirror the underlying

nature of the internal language of thought by copying its combinatorial syntax and semantics

(e.g, cf. Fodor & Pylyshyn, 1988). The upshot of this argument with respect to connection-

ism is that the systematicity of cognitive competences requires mental representations with

constituent structure. While Classical models are defined over structured representations,

Fodor & Pylyshyn (1988) and Fodor & McLaughlin (1990) argue that connectionist models

do not have constituent structure and can therefore not have any compositional semantics.

As a result, they conclude that connectionism ipso facto does not provide the representational

substrate required by a theory of cognition; specifically, it cannot support the systematicity

of cognitive capacities. We shall consider this issue further below—but first we turn our

attention to the ascription of semantic content to connectionist representations.

3 Connectionism and the Semantics of Primitives

One of the problems facing theories of meaning relying on the classical account of cognitive

processing is that the relation between the primitives of a symbolic system and their semantic

content is essentially arbitrary. The meaning of the most basic constituents are projected onto

them by the observer through semantic interpretation. That is, the meaning of a symbolic

system is external to the system itself since it is fundamentally parasitic on the meanings

in the head of the observer; or, in more philosophical terms, the atomic symbols have no

intrinsic meaning. It is therefore always possible to re-interpret the basic symbols, to ascribe

them a different content, and in this way change the semantic significance of the overall
3For a connectionist-inspired criticism of the alleged necessity of recursion in accounts of natural language

behaviour, see Christiansen (1992c).
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behaviour of the system. The possibility of an externally imposed arbitrary re-interpretation

of the representational primitives—originally a cornerstone in Searle’s (1980) Chinese room

parable (for a discussion, see Boden, 1990; Chalmers, in press; Churchland & Churchland,

1990; Dyer, 1990a, 1990b; Harnad, 1989, 1990a; Searle, 1990—for a critical review of these,

see Christiansen, 1992a), more recently glossed the “symbol grounding problem” (Harnad,

1990b)—has plagued the classical paradigm for a long time.

The advent of connectionism has given rise to optimistic expectations regarding a solu-

tion to the problem of grounding the semantic primitives of computational systems; be that

within a hybrid symbolic/connectionist architecture (e.g., Harnad, 1989, 1990a, 1990b, in

press; Harnad, Hanson & Lubin, 1991) or an entirely connectionsist system (e.g., Cottrell

1987; Smolensky, 1988). These expectations have manifested themselves in statements such

as, for example, “nets are one possible candidate for the mechanism that learns the senso-

rimotor invariants that connect arbitrary names (elementary symbols?) to the nonarbitrary

shapes of objects” (Harnad, Hanson & Lubin, 1991: p. 1; their brackets); “networks are

self-organizing systems that learn to represent the important features of their environment”

(Cottrell, 1987: p. 68); and, “connectionism offers significant resources for explaining how

representations are about other phenomena and so possess intentionality” (Bechtel, 1989: p.

553). In other words, connectionism allegedly promises a way of providing a computational

system with a perceptual “hook-up” to the external world such that the semantics of its

internal representations becomes grounded.

The argument behind this (at least presently) undue optimism with respect to a con-

nectionist grounding of semantic primitives can be expounded as follows (this exposition is

a summary of van Gelder’s (in press) discussions). The basic observation is that, through

learning, connectionist models (with hidden units) are able to develop internal distributed

representations that structurally mirror the structure inherent in the externally given input.

More specifically, the vectors that correspond to the individual patterns of activation over the

hidden units are often conceived as points in a multidimensional state space. The exact loca-

tion of a given vector is determined by the specific values of its constituents; i.e., by its internal

configuration. As a result, similar vectors are mapped into similar locations in space. The de-

gree of similarity between vectors—the “distance” between them in space—can be measured

using a variety of standard vector comparison methods (e.g., cluster analysis or trajectory

analysis). Due to the superpositional and highly distributed nature of the networks in ques-

tion, representations that are structurally similar—i.e., that have similar internal structure

or, more precisely, have similar vector configurations—end up as “neighbouring” positions in

state space. Thus, structurally related input representations will invoke relatively “adjacent”

representations in hidden unit state space.

It is important to notice from a computational perspective that these similarities have
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causal significance. The behaviour of a network, being a complex dynamical system, is

causally dependent on the current pattern of activation over the hidden units; that is, on

the current representation’s particular location in space. In other words, the specific location

in space of a given representation will causally effect how it is processed. Since the internal

structure of such distributed representations corresponds systematically and in an essentially

non-arbitrarily way to the structural configuration of the input representations, allowing us

to project any semantic interpretation we might assign the input onto the appropriate posi-

tions in vector space, and since variations of position in state space are causally efficacious,

the processing of a network can be seen as being determined systematically according to the

semantic content of the distributed representations.

Judging from this exposition it would seem to be the case that connectionist representa-

tions can be assigned content in an essentially non-arbitrary way, since their internal structure

(given successful training) will correlate with structural contingencies in the input and pro-

duce a non-arbitrary representation; that is, connectionist representations appear to be able

to possess at least some bona fide intrinsic content. However, the internal states of present day

connectionist networks appear to be no more “grounded” than their symbolic counterparts

(also cf. Bechtel, 1989; Cliff, 1990; Sharkey, 1991). Crucially, the distributed representations

in question are only non-arbitrary in relation to the structure of the given input represen-

tations, not in relation to what the latter are representations of ; i.e., the entities they refer

to in the outside world. Consequently, similarity is defined as a relation between input rep-

resentations, and not as a relation to the appropriate external objects they are to represent.

Furthermore, since the input representations provided by the programmer are typically pre-

structured and of a highly abstract nature, it is always possible to give a network’s input

representations a different interpretation, thus changing the projected content of the inter-

nal distributed representations. This has been mirrored empirically by the fact that only a

few experiments have been carried out with “real” sensory-type data (in sense of not having

been pre-processed by the programmer), and then, as we shall see exemplified below, with a

mostly unsuccessfull outcome. So, whatever semantic content we might want to ascribe to a

particular network, it will always be parasitic on our interpretation of that network; that is,

parasitic on the meanings in the head of the observer.

There is, however, a sense in which connectionist representations are non-arbitrary; that is,

the inter-representational relations in a network are essentially non-arbitrary. In contrast to

symbolic systems in which the atomic symbols have no relation to each other (albeit, complex

symbols have non-arbitrary inter-relations), distributed representations are non-arbitrarily re-

lated to each other in state space. Whereas atomic symbols designating similar objects have

no (non-coincidental) relation to each other, connectionist representations of similar object

representations in the input will end up as neighbouring points in state space. Thus, connec-
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tionist networks provides us with a kind of non-arbitrary representational “shape” that allows

a notion of inter-representational similarity. The important ability of connectionist networks

to generalize derives from these similarity relations between representations corresponding

to structurally similar input. Despite the non-arbitrariness of these inter-relations and their

grounding of a robust notion of representational similarity, the extra-representational links

are still fundamentally arbitrary and therefore ungrounded.

3.1 Correlational Semantics

So far, we have pursued the possibility that learnt connectionist representations may be of

significance for the theory of meaning as if the meaning of such representations were well

understood. In fact, as we shall see, this is not at all the case—meaning in connectionist

networks presents a philsophical problem rather than offering philosophical solutions.

Fundamentally, connectionists attach meaning to the states of a network on the basis of

what those states correlate with. For example, in Hinton’s (1986) model of learning family

trees, a unit is said to represent nationality or generation in a family if it correlates with

these properties in the input. More generally, connectionist units or patterns of activation are

viewed as picking out categories, with which they correlate, and which specify their meaning.

Thus the network is viewed as acquiring the corresponding concept (of, say, nationality or

generation).

For concreteness we shall focus on connectionist models which can be plausibly viewed

as involving concept or category learning. In such cases, the learning process can be viewed

as learning to correlate the activity of a unit or a pattern of activation over a set of units

with some significant aspect of the input (also cf. e.g., Goschke & Koppelberg, 1991; Hatfield,

1991).4 Examples include unsupervised category learning of all sorts (Carpenter & Grossberg,

1988; Finch & Chater, 1992; Linsker, 1988) and supervised approaches (e.g., Kruschke, 1990)

and incidental learning (Hinton, 1986; Elman, 1990, 1991a). This follows tradition in pattern

recognition and statistical classification (Duda & Hart, 1973). A similar “correlational” style

of semantics is presupposed with the “animal concepts” literature (e.g., Cerella, 1982; Chater

& Heyes, in submission; D’Amato & Van Sant, 1988; Herrnstein, Loveland & Cable, 1976)

and in the interpretation of the activity of real neurons (e.g., Schurg-Pfeiffer & Ewert, 1981).

For example, Lea (1984) suggests that to have a concept is to have “. . . some unique mental

structure which is active when and only when an instance of that concept is present in

the external, physical environment or when associated concepts are active in the mental

environment” (p. 270). According to this view, having the X concept is simply a matter of
4Although we recognize the importance of superposition in connectionist models (e.g., Sharkey, 1992; van

Gelder, 1991, in press), this particular issue is orthogonal to the following discussions of the philosophical
problems facing a connectionist semantics based on correlational content. Superposition is essentially about
inter-representational relations, not about the relationship between representations and the external world.
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being able to perceptually discriminate Xs from non-Xs; and such discrimination abilities are

just what paradigmatic animal concept experiments aim to test. This correlational account

of what it is to have a concept has a counterpart in philosophy as what Jerry Fodor calls the

“crude causal theory” of meaning (1987, 1990). A similar correlational account is also closely

related to Dretske’s (1981) proposal that conceptual structures carry the information that is

their content in digital form.

However, there are serious philosophical problems concerning not only a connectionst

semantics based on causal correlation but also, in general, the adequacy of correlational se-

mantics as the basis of any theory of meaning. These problems concern the matter of misrep-

resentation, underdetermination, representing non-existing things, and capturing propositions

rather than properties. We will address these problems in turn in the following sections and

emphasize their impact on a connectionist semantics.

3.1.1 The Problem of Error

The fundamental challenge to the correlational view is allowing for the possibility of categori-

sation error. People routinely make both false positive and false negative errors. Mistaking

a pattern of shadows for a face at the window is an instance of the former; failing to see a

dark figure in the bushes is a case of the latter. Yet the correlational view without some

added machinery is unable to countenance the possibility that we have the concept PERSON

and that we make such mistakes. For the content of the concept (equally, the meaning of

the corresponding state, or for Harnad (1990b, in press) what the internal state “names”) is

determined by what it correlates with—and the fact of error shows that it does not correlate

with instances of people.

As Fodor (1987) points out, the programme of informational semantics within philoso-

phy is concerned with attempting to patch up such problems with correlational accounts.

A number of proposals have been made (for example, Chater, 1989a; Christiansen, 1992b;

Dretske, 1986, 1988; Fodor, 1987, 1990; Millikan, 1984; Stampe, 1977)—although none are

widely considered to be satisfactory. Rather than attempting to survey the range of possible

responses, we shall consider just two suggestions about how this problem can be met (Fodor,

1984a; Stampe, 1977), which may particularly appeal to connectionists. We contend that

other approaches are no more successful.

The first suggestion is that content is fixed during the learning of the concept, rather

than determined by subsequent performance, outside the learning period, when mistakes may

occur (Dretske, 1981). The idea is that the correlation holds within the learning period (fixing

the content correctly), but not necessarily afterwards (allowing for the possibility of error).

This position is particularly interesting in the present context, in view of the importance

of learning in connectionist systems. However, Fodor (1984b) points out that this view is
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quite unworkable, since all the difficulties for a correlational view recur within the learning

period. Let us put aside the difficulty that a single error in the data to be learned (a parent

accidently calling a donkey a horse, perhaps) would leave the learner forever blighted with

a non-standard concept, by disrupting the correlation. The real difficulty stems from the

fact that the relevant property can never be determined by the training set alone; even if

the learner is given perfect feedback about which of a set of things are people and which

are not, forming the concept PERSON involves an inductive generalization from a finite

set of instances. Which concept has been formed cannot therefore be determined from the

correlation observed in the training set alone, since all manner of different properties will fit

that training set, but differ elsewhere, such as the pathological PERSON-OR-FACE-LIKE-

SHADOWS or PERSON-NOT-IN-CAMOUFLAGE. Which of these concepts has been formed

is determined by how the system has generalized from the training set—that is, how it would

respond to stimuli outside the training set. Subsequent errors, after the learning period

has been completed (assuming that some such boundary can be enforced), demonstrate that

generalization has been imperfect; the correlation is violated and the concept has not been

learned after all. Thus, appeal to learning fails to reconcile the possibility of learning a concept

with proneness to occasional mis-classification.

The second suggestion is that while errors may occur on difficult cases (perhaps when the

stimulus is degraded in some way), the correlation that fixes content need only hold in clear

cases. As with appeal to the learning period, the idea is to partition performance into two

classes, one in which correlation determines the concept in play (and which is necessarily error-

free) and a second class in which the correlation need not be maintained, thus allowing for

errors. Unfortunately, however, as Fodor (1990) forcefully argues, what counts as a clear case

cannot be specified independent of the concept being learnt. Chater & Heyes (in submission)

consider the example of the confusion that commonly occurs at night between a star and the

lights of a plane, leading to spurious plane identification. According to appeal to clear cases,

it appears legitimate to explain away, since planes are only confused in this way when they

are viewed from a considerable distance and in the dark. In good viewing conditions, perhaps

an internal structure does correlate perfectly with the presence of planes. But while daytime

is optimal, and nighttime suboptimal, for detecting planes, nighttime is optimal for detecting

planes or stars (since you can see instances of both at night), and daytime is suboptimal (since

only some instances—planes—are visible). So optimality could equally be invoked to argue

that the internal mental structure is a PLANE-OR-STAR concept, which correlates properly

at night, but imperfectly during the day. The general moral is that the distinction between a

class of “good” cases, where the correlation is supposed to hold, and “poor” cases, in which

error is possible is unconstrained, without some independent notion of good and bad case;

and such a notion does not appear to be forthcoming.
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Thus, according to the correlational position, concepts are defined in such a way that there

can be no such thing as “getting it wrong”. Since the content of the concept is whatever the

activity of the mental structure correlates with, misclassification is impossible. The “learning”

and “optimality” responses are just two of a number of responses which attempt to allow for

error by attempting to distinguish two kinds of situations: one kind in which performance

determines what content the representation has, and hence what concept it corresponds to;

and one kind which is “non-optimal” (Fodor, 1984a; Stampe, 1977), not “Normal” (in a

teleological, non-statistical sense) (Millikan, 1984 ), or outside the learning period (Dretske,

1981). However, as in the case of optimality it is extremely difficult to see how to define the

distinction between the two classes in a non-circular way.

It may be, of course, that a satisfactory solution to these difficulties can be found—indeed

the project of informational semantics is wedded to the hope that it can. While the correla-

tional view, in its least elaborated state, directly ties up with intuition ascription of content to

hidden units in connectionist networks, there is, of course, no way of knowing whether a more

sophisticated and satisfactory theory of content will tie up in an equally attractive way. In-

deed, Fodor’s (1987) most recent and ingenious suggestion, which relies on the “asymmetrical

dependence” of counterfactuals underwriting categorization in “errorless” vs. “error-tolerant”

situations, and Millikan’s (1984, 1986) advertence to evolutionary considerations (discussed

below), do not seem applicable to connectionist networks in any straightforward way.5

3.1.2 The Problem of Underdetermination

In the discussion of error, we noted incidentally that learning a concept from a set of exemplars

involves inductive inference: inferring a general rule from a set of examples. In neural network

terms, this amounts to curve fitting, with the exemplars as the data points and the network

architecture specifying the family of curves (e.g., Broomhead & Lowe, 1988; Mackay, 1991).

We noted that which inductive rule (i.e. which curve) has been chosen cannot be determined

by the training set alone, but is revealed in how the system would behave given arbitrary test

items. It is, of course, notorious that networks trained on a given training set will generalise

in unexpected ways. This is particularly true if the network has too many degrees of freedom

(i.e., too many weights and biases) relative to the size of the data set, and hence does not need

to find interesting regularities in the data set (Moody, 1992); networks which show extreme

versions of this problem are said to solve their tasks by “table look-up”.

An early example of the problem of underdetermination with respect to the application

of neural networks to “real”, un-processed data is the (now legendary) failure of the optical

perceptron.6 This network was developed in the mid-sixties at the Stanford Research Institute
5However, connections between networks and evolution (Bechtel, 1989; Goschke & Koppelberg, 1991) or

biological function (Hatfield, 1991) may be relevant here.
6Thanks to Marvin Minsky (personal communication) for providing the details of this piece of early neural
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with the purpose of detecting tanks hidden amongst bushes. It consisted of a large number of

optical masks with photodetectors that produced weigthed sums of photographic input. The

network was trained successfully to differentiate between photos of bushes and photos with

tanks amongst the bushes. It was also able to generalize to photos that had not been presented

to it previously during the learning phase. To be certain that the network had really learned

to recognize tanks, a new set of photos was taken and presented to the network. However,

this time the network failed completely to categorize the photos. Apparently, the network had

not learned to recognize tanks but to differentiate between photos of different light intensity.

A closer examination of the photos used to train the network indicated that there was a large

difference in the density between the batch of photos which had tanks in them and the batch

of photos with bushes only.

Yet the problem of underdetermination is deeper than these examples suggest—it cannot

be resolved by generalization tests, however ingenious. Consider, for example, a network

succesfully trained on the above “tank discrimination” task. Suppose that we discover exactly

which complex structural properties of the photos the network has learned to respond to. The

network might respond positively when presented with any stimulus containing one of a set of

contour relationships, hues and so on. Let us assume that stimuli which have these properties

usually look, to the human eye, like a tank. Indeed, we may label, after Fodor (1990)—who

calls this the “disjunction problem”—the relevant complex constellation of properties of the

stimulus “that-tanky-look”. It is likely that such findings would prompt the announcement

that we now know the perceptual basis upon which this kind of network distinguishes tanks

from non-tanks, categorises tanks, or applies the concept TANK.

This portrayal of the data certainly seems to be legitimate, but unfortunately, there

appear to be equally legitimate alternatives. On the one hand, it might be argued that such

research really shows that the network does not have the concept TANK at all, but merely

the concept of THAT-TANKY-LOOK. Indeed, the latter interpretation might hypothetically

be supported by data indicating that the net can be foxed by camouflaged tanks or theatre

mock-up tanks. So, although in everyday life tanks and instances of “that-tanky-look” are

perfectly correlated, it is clear from the cases in which they are not correlated that it is the

latter, rather than the former, to which the net is responding. The prima facie viability of

this option, then presents a dilemma. Either sensitivity to mere correlates of this property

(such as “that-tanky-look”), rather than to the property itself, is sufficient for the possession

of the corresponding concept (TANK) or it is not.

If sensitivity to mere correlates of the relevant property is not sufficient, then there is

both good news and bad news. The good news is that an investigation of the bases of

network discrimination (filling out what “that-tanky-look” amounts to) automatically spec-

network research.
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ifies what concept or category the network is using. The bad news is that the network

must be ascribed a concept the referent of which is ultimately a state of its input “sen-

sors” (for example, THAT-AN-INPUT-WITH-THAT-TANKY-LOOK-IS-PROJECTED-ON-

THE-SENSORS). In the light of these sceptical considerations, it seems that however the

data turned out, networks could only be expected to learn concepts of THAT-TANKY-

LOOK/BUSH-LIKE/TREEISH variety, rather than bona fide concepts.

Suppose, on the other hand, that one assumes that in order to possess a concept, it is

sufficient to be sensitive to perceptual correlates of the corresponding property. That is, to

have a concept of TANK, it is necessary only to be sensitive to some correlated complex

perceptual property. We will continue to call any such hypothetical property “that-tanky-

look”. Again, there is both good news and bad news. The good news is that this more

lenient view allows the possibility of networks learning everyday concepts, since this requires

detecting, say, tanks reliably most of the time. So what is the bad news? While we can

ascribe concepts of the kind TANK, BUSH or TREE to a network, we can only do so relative

to some characterization of the environment. Consequently, very different concepts may be

ascribed depending on which characterization of the environment is chosen. Since, according

to this view, concept ascription is a matter of correlation, and correlation is fundamentally

relative to a specification of the domains of values being correlated, concept ascription must

also be domain-relative.

This may be illustrated by visuo-motor coordination in frog and toad. Much is known

about the frog’s visual system, the frog’s range of motor outputs, and how the two are related

(Ingle, 1983; Lettvin, Maturana, McCullough & Pitts, 1959; Schurg-Pfeiffer & Ewert, 1981).

As an idealisation, let us assume that we know precisely which visual stimuli will elicit the

predatory movement “snapping”. In particular, suppose that it is triggered by the projection

of any dark, round, moving blobs within a certain range of sizes, projected onto the frog’s

retina. So, if the frog were sitting in a Scottish stream and the projection of moving black

blobs correlated with the presence or passage of flies across the stream, then, according to this

“lenient” approach to concept ascription, the frog might legitimately be described as having

the concept FLY. However, in this situation, the frog may also be ascribed more specific or

more general concepts. After all, since, by hypothesis, the only passing flies will be natives of

Scotland, the blobs would correlate just as well with “Scottish flies” as with “flies”. Similarly,

again by hypothesis, the only passing flies would also be the only passing flying insects,

and hence the frog might be described as having the concept FLYING-INSECT. The range

of possible concept ascriptions can be extended at will and hence appear to be completely

unconstrained (see Chater & Heyes, in submission, for discussion of these issues in the context

of animal concepts).
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3.1.3 The Problem of Non-Existing Entities

A further problem for causal/correlational accounts of meaning is explaining the origin of

the meaning of terms such as UNICORN or EPICYCLE which have no instances and hence

cannot be either causally implicated in producing, or correlated with, internal states (see,

for example, Fodor, 1987). These symbols cannot be “grounded” by some state of a network

which comes to correlate the presence of unicorns or epicycles in the environment; for these are

never present in the environment—they don’t exist. Problems with non-existent universals

has plagued philosophy since Hume. The only proposed solution for a causal/correlational

view is that the meaning of non-existents is composed out of the meaning of more primitive

terms, which do exist. So, the story goes, unicorn means horse with a central horn, and since

horses, central things and horns all exist, then unicorn inherits its meaning from them.

This view presupposes that terms for things which do not exist can be defined in terms of

things that do. This position appears to have the rather radical consequence that every term

must have a definition. For suppose that a term X does not have a definition; then it must

refer to something real; hence Xs must exist. Thus a semantic fact (concerning definability)

appears to be revealing about a metaphysical fact (whether there are Xs). On the face of it,

this means that we could learn what there is in the world, simply by examining language,

which seems to be absurd (although arguments from semantics to metaphysics have been

attempted (e.g. Kripke, 1972) and rebutted (Salmon, 1982)). So it seems that we must

conclude that every term must be definable in terms of other terms. The thesis that some

terms have good definitions is highly controversial; the thesis that all terms do is so radical

that it has not, to our knowledge, ever been advanced.

3.1.4 Propositions and Properties

Whether or not it is possible to patch up the informational view to get around the preceding

difficulties, the correlational account, construed as a method of fixing the meaning of concepts

is in any case victim to a much more fundamental problem (Chater, 1989a)7. The problem is

that while the correlational approach at least promise to provide an account of how internal

states (e.g. internal states of a network) can represent propositions, it provides no account at

all concerning how they can represent properties. And since concepts are mental representa-

tions which stand for properties, this means that the correlational view provides no account

of what it is for an internal state to correspond to a concept.

So far, we have been relying on the intuition that a state will come to represent the

property of, say, being red, if that state is active in the presence of redness and not otherwise.

Speaking roughly, the state is supposed to correlate with the property of being red. But,

as stated, this is simply incoherent—how can a state, which is located in space and time,
7Thanks are due to Jerry Seligman for extensive discussion of this point
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correlate with a property, which is an abstract object, independent of space and time? The

answer appears to be obvious—the state of the system correlates not with the property itself,

but with tokens of that property.

This however, is not good enough. Sensitivity to tokens of properties presupposes the

ability to recognize the relevant tokens. What it is to recognise a token, and that a token is

an instance of a property is a matter concerning which the correlational theory is silent. Let

us elucidate this using the example of detecting redness. The red-detecting unit responds each

time red is in view—that is, the state of the cell correlates with a state of the world—that

red is present (and in the visual field, and not too distant to be seen, and not occluded by

another object—let us put these complications to one side). But is the cell sensitive to tokens

of redness (for example, that this pen, or that cup is red, but that that jumper is not)? It is

not—it does not signify that any particular token is red. If anything the state of the detector

has existential force: it represents the fact that some token or other is red. It certainly does

not ascribe the property of redness to any particular token.

This isn’t just a quibble—the difference between being able to represent the unanalyzed

(in philosophical terminology holophrastic) proposition that red is present, and being able to

segregate parts of the world, and selectively ascribe properties to them is enormous. The

representations licensed by the correlational view amount to a set of binary features, which

specify red/not-red, fly/not-fly, person/not-person, with, of course, all the problems noto-

riously inherent in such a primitive representation. There is, for example, no way, even in

principle, of binding these features together (there is no way of representing that it is the

person who has a red face, and that the fly sits on the end of their nose), representing which

tokens share particular properties, how many red things there are in a particular scene, and

so on. To achieve this, we require a language in which to couch structured descriptions of

the world, segregrating the world into a complex set of tokens, each of which can individu-

ally be ascribed properties. The advantages of a structured description over simple binary

feature representations are too well known in the literature on computational approaches

to perception, and other areas of cognition, to bear repetition (see e.g., Marr, 1982). The

important point is it is only for systems with such structured representations that we can

talk of properties, rather than whole, unanalyzed propositions, being represented at all. And

that correlational accounts are equipped only to fix the meaning of whole propositions. In

particular, then, the correlational account (and mutatis mutandis causal accounts of related

sorts) cannot fix the meaning of primitives of an internal system of (structured) representa-

tion. So, for example, the hope that a neural network could effect so-called symbol grounding

by learning appropriate correlations between states of the network and aspects of the world

appears to be illusory.

The upshot of this discussion should not, perhaps, be surprising. Unless a system embodies
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a structured internal language with an associated set of primitives, it is difficult to see how

it could possibly throw light on the semantics of those primitives. And the networks that

we have considered so far are not concerned with structured representation. In short, no

internal language and no symbol system, no symbols to ground. The conclusion is, then,

not that network computation is necessarily irrelevant to the theory of meaning for semantic

primitives; rather, it is that connectionism can be relevant only if structured representations

are somehow embodied in a network. It is therefore to this issue that we now turn.

4 Learning Complex Representations in Connectionist Sys-
tems

One way of approaching the problem of dealing with structured representation in connection-

ist models is to “hardwire” symbolic structures directly into the architecture or the network.

Much early work in, for example, connectionist knowledge representation (e.g., Hinton, 1981;

Touretzky & Hinton, 1985; Rumelhart et al., 1986; Derthick, 1987) and natural language

processing (e.g., McClelland & Kawamoto, 1986) adopted this implementational approach.

Although such connectionist re-implementations of symbolic systems might have interesting

computational properties and even be illuminating regarding the appropriateness of a partic-

ular style of symbolic model for distributed computation (Chater & Oaksford, 1990a), they

do not appear to have much philosophical significance (if any). On the other hand, there is

the promise that connectionism may be able to do more than simply implement symbolic rep-

resentations and processes; in particular, that networks may be able to learn to form and use

structured representations. The most interesting models of this sort typically focus on learn-

ing quite constrained aspects of natural language syntax. These models can be divided into

two classes, depending on whether preprocessed sentence structures or simply bare sentences

are presented.

The less radical class (e.g., Hanson & Kegl, 1987; Pollack, 1988, 1990; Sopena, 1991;

Stolke, 1991) presupposes that the syntactic structure of each sentence to be learnt is given.

The task of the network is to find the grammar which fits these example structures. This

means that the structured aspects of language are not themselves learned by observation, but

are built in. These models are related to statistical models approaches to language learning

such as stochastic context free grammars (Brill et al., 1990; Jelinek, Lafferty, & Mercer, 1990)

in which learning sets the probabilities of each grammar rule in a prespecified context-free

grammar, from a corpus of parsed sentences.

The more radical models have taken on a much harder task, that of learning syntactic

structure from strings of words, with no prior assumption of a particular syntactic structure

to the grammar. The most influential approach is to train Simple Recurrent Networks (SRNs)

developed by Jordan (1986) and Elman (1988). These networks provide a powerful tool with
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which to model the learning of many aspects of linguistic structure (for example, Cottrell &

Plunkett, 1991; Elman, 1990, 1991a; Norris, 1990; Shillcock, Levy & Chater, 1991); there has

also been some exploration of their computational properties (Chater, 1989b; Chater & Con-

key, 1992; Cleermans, Servan-Schreiber & McClelland, 1989; Servan-Schreiber, Cleeremans

& McClelland, 1989, 1991). The presence of recurrent connections allows past activation to

influence current output, which means that output can respond to sequential structure in

the input. The extent to which such networks can be taught to learn interesting sequential

structure depends on the learning algorithm employed. A natural approach is to apply the

back-propagation training algorithm which has proved so successful in training non-recurrent

feedforward networks to learn interesting static input-output patterns.

It is fair to say that these radical models have so far reached only a modest level of

performance. In general, it seems to be possible to learn simple finite state grammars, but

more complex grammars, such as phrase structure grammars have not been learnt (although

Elman (1991a) claims to be able to train a SRN to learn a limited instance of recursion). The

gulf between finite state and phrase structure grammars is a vast one—and it is not clear

whether current network models will be able to cross it. It may be that only by pursuing the

less radical line, by building in more structure into the network itself, that complex linguistic

structures will be learnable. Given the negative results of standard language learning theory

(e.g., Gold, 1967; Pinker, 1979, 1984; Osherson, Stob & Weinstein, 1986), which show that

even finite state language cannot be reliably learned from (positive) examples alone, there is

reason for scepticism regarding the possibility of a connectionist breakthrough (although see

Elman, 1991b, for the opposite view). It is, however, simply too early to tell.

Having pondered the difficulty of connectionist modelling of structured representation in

natural language, we may suspect that connectionism leaves the general issues of structured

representation and the associated compositional semantics unresolved. As we shall see now,

there are indeed indications that this might be the case.

4.1 Connectionism and Compositionality

We noted above that the allegedly most revolutionary consequences of connectionism con-

cerns the nature of connectionist representation (also cf., e.g., Bechtel, 1989; Haugeland,

1991; Niklasson & Sharkey, 1992; Sharkey, 1991, 1992; van Gelder, 1991—but see Hanson &

Burr, 1990; Cummins, 1991 for different views). Typically the focus has been on devising

connectionist networks which are able to deal with problems for which the symbolic approach

invokes syntactically structured representations. This is clearly exhibited in the debate initi-

ated by Fodor’s & Pylyshyn’s (1988) attack on connectionism (for example, Chalmers, 1990b;

Chater & Oaksford 1990a; Fodor & McLaughlin, 1990; Oaksford, Chater & Stenning, 1990;

Smolensky 1987, 1988; van Gelder, 1990, in press). In contrast to the intensive studies
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of structural combination of constituents in connectionist models not much have been said

about semantic composition in connectionist networks—unless in rather vague terms (e.g.,

Goschke & Koppelberg, 1991). Of course, as we noted above, without some kind of semantic

interpretation, we cannot view a system, whether symbolic or connectionist, as processing

information or computing at all; in the present context, this might involve a compositional

semantics for the structured representation, to show how the meaning of complex structures

is related to the meaning of their parts. We shall briefly return to the question of semantic

interpretation below.

It has been suggested that the classical notion of compositionality may be unnecessarily

restrictive from the point of view of connectionist systems (that is, the classical understanding

of compositionality may induce an instance of the incommensurability trap—forcing connec-

tionist systems into an inappropriate framework). This classical notion is labelled as con-

catenative (or “syntactic”) compositionality, which “must preserve tokens of an expression’s

constituents (and the sequential relations among tokens) in the expression itself” (van Gelder

1990: p. 360).

A broader notion, functional compositionality, does not demand the preservation of con-

stituents in compound expressions. What is needed is a general and reliable mechanism

that can produce composite expressions from arbitrary constituents and later decompose

them back into their original constituents. As an example of functional compositionality, van

Gelder (1990) points to Gödel numbering, which is a one-to-one correspondence between logi-

cal formulae and the natural numbers. For instance, on a given scheme the proposition P will

be assigned the Gödel number 32, whereas a logical expression involving P as a constituent,

say, (P&Q) would be assigned the Gödel number 51342984000. It is clear that the Gödel

number for (P&Q) does not directly (or syntactically) contain the Gödel number for P. Still,

by applying the prime decomposition theorem we can easily determine the Gödel numbers

for its primitive constituents. Thus, we have constituency relations without concatenative

compositionality. Since distributed networks using superimposed representation effectively

“destroys” the constituents of composite input tokens, they do not qualify as having concate-

native compositionality. However, this is not irreversible because the original constituents

can be recreated in the output.8

There is a danger that this would leave connectionist representations with the same status

as, for example, data-compressed, or otherwise encrypted, files on a standard computer—as
8The idea is that representations can have functional compositionality in virtue of standing in an appropriate

one-to-one correspondance with representations which have concatenative compositionality. The general form
of this usage is: given any two sets X (say, the set of logical formulae) and Y (say, the Gödel numbers for these
formulae) which stand in one-to-one correspondence, any property P (say, being compositional) of X could be
said to licence Y’s having the property functional P (say, being functionally compositional). That is, given any
two sets in one-to-one correspondence, the properties of one will be the “functional” properties of the other,
and vice versa. So, for example, given a one-to-one mapping between the set of even numbers and the set of
odd numbers, the latter could be said to be functionally divisible by 2.
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being useful only as storage but not for processing. For a genuinely connectionist account

of representing and processing with structured representations, it is necessary to be able to

manipulate the functionally compositional representations directly as van Gelder stresses. In

the case of Gödel numbering, operations which are sensitive to compositional structure (e.g.,

inferences) will not correspond to a (readily specifiable) function at the arithemetic level.

Hence, performing logical inference over Gödel numbers is a rather hopeless endeavour. Notice

too, the compositional semantics which can be easily defined over logical representations will

have no (readily specifiable) analog at the level of Gödel numbers.

What is important, from the present point of view, is whether or not connectionist net-

works can handle (and, in particular, learn to handle) problems which are standardly viewed

as requiring structured representations. That is, can connectionist representations attain

what we shall call “apparent” compositionality. If apparent compositionality can be learnt,

then there are two possibilities concerning the nature of the representations that the network

employs. It could be that, on close analysis, the net is found to have devised a standard,

concatenative compositional representation. Alternatively, the network might behave as if

it used structured representations, without using structured representations at all. In the

former case, it would seem appropriate to say that the network representations are compo-

sitional (in the standard sense); in the latter, that the network is not using a compositional

representation (also in the standard sense). What is required, it appears, is not a new notion

of compositionality, but the attempt to devise networks which can behave as if they had struc-

tured representations, followed by an analysis of their workings. Of course, there is a third

possibility: that representations within networks do, implement compositionality, but in some

heretofore unknown way, unlike that used by classical systems (with appropriate operations

over it, and an appropriate semantics). This possibility would cause us to revise the notion of

compositionality, much as the discovery of non-Euclidean geometry enlarged and changed the

notion of straight lines, parallel and so on. It will only be possible to develop a specifically

connectionist notion of compositionality, or even know if this possibility is coherent at all,

post hoc—that is, by analysing networks that exhibit apparent compositionality.9 In other

words, what kind of compositionality we should ascribe connectionist representations is an

empirical question, which can only be answered by empirical investigation.

Recently, research efforts have therefore been made towards defining operations that work

directly on the encoded distributed representations themselves, instead of their decomposed

constitutents. Chalmers (1990a) devised a method by which a simple feed-forward, back-

propagation network—dubbed a transformation network (TN)—was able to manipulate com-

pact distributed representations of active and passive sentences according to their syntac-
9Of course, it is likely that any such notion would be included as a subclass of functional compositionality

(as it is the case with concatenative compositionality)—but functional compositionality per se does not put us
any further forward to finding such a notion.
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tical structure. First, a Recursive Auto-Associative Memory (RAAM) network (Pollack,

1988) was trained to encode distributed representations of the sentence structures. Chalmers

then trained the TN to transform compact representations of active sentences into com-

pact representations of passive sentences; that is, he trained the network to associate the

RAAM-encoded distributed representations of active sentences with their distributed passive

counterpart. In similar vein, Niklasson & Sharkey (1992) successfully applied the same com-

bination of RAAM10 and TN to (a subpart of) the domain of logical axioms. These empirical

investigations have shown that it is possible to devise models, such as the TN, that can ma-

nipulate the compact distributed representations in a structure sensitive way. However, with

respect to the semantics of these encoded representations, we still have to decompose them

into their symbolic parts before we can perform any semantic interpretation of them. What

connectionism is in need of is some kind of compositional semantics devised at the level of

the compact distributed representations and the operations defined directly over them; that

is, a bona fide connectionist semantics that does not have to revert to semantic interpretation

of the decoded constituents on the symbolic level.

In closing this section, it is worth mentioning that when addressing the issue of connection-

ist compositionality there is a potential danger of falling into the incommensurability trap. As

pointed out by Sharkey (1991), the division between semantics and structural considerations

might be somewhat artificial, since such a division seems to be collapsed in much connec-

tionist research. The situation could be seen to parallel that of the classical/connectionist

debate concerning implicit vs. explicit rules. When a connectionist model behaves as if it

has rules, although no rules have been programmed into it, does that warrant saying that

the model has “implicit” (or “fuzzy”) rules? Such talk about implicit rules is in danger of

forcing connectionism into a symbolic mold by trying to apply a particular concept—i.e., the

classical notion of a computationally efficacious rule—to connectionism. On this view, even

our own notion of apparent compositonality could get us trapped in the claws of incommen-

surability. Nevertheless, bearing this in mind, re-interpretion of old terminology seems to be

the only productive way forward for a research programme still in its infancy. Furthermore,

whereas the ability of nets to deal with structured representations is equivocal, their aptness

for learning seems to be more clearcut; so perhaps, as we shall see next, it is with respect to

questions of learning and nativism that their principal philosophical significance resides.
10Actually, they applied a slightly modified version of the RAAM which in addition to the encoding and de-

coding of distributed representations also was trained to distinguish whether the input/output representations
were atomic (i.e., not distributed) or complex (i.e., distributed).
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5 Learning and Nativism

Symbolic models of cognition appear to offer relatively little scope for learning. For example,

for Fodor & Pylyshyn (1988) cognition is mechanized proof theory over a data-base of facts

couched in a language of thought. Such a system can learn by adding facts to its data-base,

but it is not clear how to learn a more elaborate internal language in which facts can be

expressed. Thus, according to the symbolic view of the mind, the set of possible mental

states and concepts appears to be fixed. This line of radical nativism has been pressed by

Fodor (1975, 1981; and the various contributions to Piatelli-Palmarini, 1980), who argues that

concept learning is, in a certain sense, impossible, and that a nativist conclusion with respect

to the language of thought is therefore inevitable. The argument is simply that learning is

a matter of generating and testing hypotheses and hence that any hypothesis that can be

framed must already be representable by the system. Consider, for example, a child learning

the meaning of the word “dog”. To be able to generate the correct hypothesis at all, the child

must be able to internally represent some predicate which means dog. But, the argument

goes, this requires that the child already has the concept DOG. This leads to the conclusion

that learning the meaning of a new word does not involve concept learning at all, but simply

involves learning to associate internal and external languages appropriately. The expressive

power of the internal language is fixed; and thus must be specified innnately.

Do the nativist arguments apply equally to connectionist models as well? Certainly con-

nectionist learning can be viewed as a kind of hypothesis generation and test—the hypotheses

are embedded in the weights of the network, the test is the measure of network performance

(such as sum-squared error), and the procedure for generating new hypotheses, given the

successes or failures of past hypotheses, is given by the learning algorithm. Hence, the above

argument applies, just as before: anything that a network can represent after learning, must

have been generated as a hypothesis; hence it must have been possible to represent it prior to

learning; hence the representational power of a connectionist system cannot change through

learning. An obvious objection is that the representation genuinely has been learnt during

training, and was not present to start with—after all, the initial weight values are typically

set randomly. While this is correct, it does not contradict Fodor’s argument, which concerns

not what a network happens to represent, but what it is able to represent. Fodor is arguing

that any hypothesis and test procedure cannot increase what is potentially representable. For

example, a simple perceptron (i.e., a network with only one layer of adjustable weights and

a single output unit which is on if the input exceeds a certain threshold, and off otherwise)

is able to represent only linearly separable categories (Minsky & Papert, 1969). This is a

limitation of the architecture—it specifies what the network is able to learn in principle, and

cannot be altered by learning. According to this line of thinking, neural network and symbolic

systems are both equally trapped at a fixed level of representational power, which cannot be
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increased by learning. The problems that Fodor raises appear to apply equally to both cases.

There is a sense in which Fodor’s argument, when considered at the most general level,

becomes entirely trivial. Fodor notes that what can, in principle, be represented by a system

cannot increase. But in the same uninteresting sense, potential of any sort cannot increase.

In particular, for a system to learn or do anything, it must necessarily have had the potential

to learn or do in the first place; i.e., a system can only fulfill its potential, not exceed it. For

example, if Fred has the potential to jump 6 feet high, then he must have had that potential

(in the relevant, vacuous sense) when he was a child; or, to give another example, learning

geography or physics does not change the potential for learning geography or physics—for

anything that is actually learned must have been potentially learnable beforehand. It is

in this trivial sense that the representational potential of a network or symbolic system is

fixed (strictly, representational potential, like all potential need not be static, but can only

decrease). In addition, Fodor’s argument, couched in general terms so as to apply to any

learning system (specifically any system which learns by hypothesis generation and test,

although it is not at all clear that there are learning methods which do not conform to this

stricture) is thus analogous to an even more general argument that learning anything is in a

certain sense impossible.

The real issue, then, is not whether representational potential can increase, but how a

system can learn to represent new things. That is, we want to be able to say that a sys-

tem which has learnt to distinguish Xs from non-Xs after a long period of training, is now

able to represent a distinction that it could not previously represent. This intuition applies

equally well to symbolic and connectionist systems. So, for example, Winston’s (1975) classic

model of learning the structure of arches from instances and non-instances involves a system

composing representational primitives in a new way (see also Lenat, 1982). Or in a connec-

tionist context, a system which learns to divide words into syntactically interesting categories

from raw data (Elman, 1990; Finch & Chater, 1992) involves complex weight adjustment to

represent these distinctions. Symbolic models, by presupposing an entire system of represen-

tation, appear to involve stronger nativist assumptions than connectionist networks (which

only presuppose a particular network architecture and a choice of input and output repre-

sentation). But as Fodor (1981) points out, the fact that there appear to be no or almost no

good definitions of terms (of non-mathematical domains, at least) means that the advocate of

a symbolic approach to learning is forced into a more nativist position still: if a term has no

good definition, it cannot be constructed by composing a set of primitives according to the

methods of symbolic learning, and hence it must be innate. Thus, while a trivial argument

for representational nativism applies to symbolic and connectionist systems alike, the real

nativist considerations apply only to the former. Given the flexibility of human cognition

and development, such nativism is extremely difficult to accept. In learning music, physics
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or sailing we seem to learn entirely new sets of concepts which are at once not definable in

terms of previous understanding, and which it seems highly implausible to view as innate.

Together, the discussion of learning in this section and the discussion of structured rep-

resentation in the previous section leads to the conclusion that symbolic models are good at

structured representation and poor at learning; whereas connectionist networks are good at

learning but (at least presently) poor at structured representation. This suggests that the

connectionist project of attempting to learn structured representations may provide a bridge

between the two approaches—providing an account of how networks can embody structured

representations, and providing an account of how the representational power of a symbolic sys-

tem can genuinely increase (in the most optimistic scenario, increase from nothing). Whether

or not it will be possible to, in this way, vindicate the represenational power of neural nets and

disolve the symbolic theorists’ enforced nativism cannot be known a priori. As we saw in the

last section, early signs are at best equivocal. However, what is clear is that the challenge of

learning complex structured representations is fundamental to elucidating the philosophical

implications of connectionism.

6 Conclusion

We began this paper by noting the prima facie anomaly of the philosophical excitement

surrounding connectionism, particularly in regard to the theory of meaning. Instead, we have

put forward what we believe to be a more realistic characterisation of the present stage of the

connectionist research programme, arguing that much of this excitement is indeed unfounded.

In the light of our comments, a natural reaction might be to suggest that the theory of

meaning should ignore connectionism. As we have seen, connectionism have so far not solved

the problem of how primitive representations can be grounded—in fact, the interpretation of

states of connectionist networks has usually presupposed a familiar correlational approach to

fixing the content of semantic primitives, a view with a range of serious difficulties. Equally,

networks have not yet given a fresh perspective on how complex representations can be built

out of simpler components—either traditional compositional mechanisms are built into a

connectionist system, or, if learning is used, the resulting system rarely appears to be a

genuine substitute for the symbolic alternative.

Nonetheless, we suspect that it would be a mistake for the theory of meaning to neglect

future connectionist developments. Connectionism is still in its infancy, and the representa-

tions that can be developed may become increasingly philosophically interesting, particularly

in regard to connectionist models of tasks usually viewed as involving structured symbolic

representations. In this connection, it is important to notice that there is a growing bulk of evi-

dence from research into concepts and categorisation which argues against the straightforward

mode of semantic concatenative compositionality of the symbolic approach (e.g., Barsalou,
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1987; Brooks, 1987; Chater, Lyon & Myers, 1990; Hampton, 1988; Lakoff, 1987; McCauley,

1987; Medin & Shoben, 1988; Medin & Wattenmaker, 1987; Murphy & Medin, 1985—for

an overview, see Christiansen, in preparation). An increasing number of connectionists (e.g.,

Bechtel, 1989; Goschke & Koppelberg, 1991; Hofstadter, 1985) argue that connectionism

might be able to accommodate these results by devising a different, essentially non-classical,

way of composing complex meanings from more primitive parts.

Still, although it may be a mistake to expect connectionism to solve philosophical problems,

it may pose important philosophical challenges. For example, providing a representational

account of the operation of a connectionist system which has self-organized into a system

using complex, structured representations, and the way in which it developed, would provide

an extremely interesting and important test-bed for accounts of meaning. On the other hand,

it should be noticed that there are problems with the theory of meaning per se—not only

with respect to classical and connectionist models—and it could be the case that no such

theory is possible at all (cf. Schiffer, 1987). In any case, connectionism might, at least,

provide a way out of the representational nativism into which classical symbolic theorists are

forced, and perhaps open the way for a more acceptable account of cognitive development.

Of course, which philosophical challenges connectionism will generate, as well as its potential

significance as a new metaphor for the mind, cannot be decided a priori through philosophical

investigation. Rather, it is an empirical issue—only time, and the vigorous development of

connectionist research techniques, will tell.
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