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Generalization and Connectionist Language

Learning

Morten H. Christiansen and Nick Chater

The performance of any learning system may be assessed by its ability to gener-

alize from past experience to novel stimuli. Hadley (this issue) points out that

in much connectionist research, this ability has not been viewed in a sophis-

ticated way. Typically, the \test-set" consists of items which do not occur in

the training set; but no attention is paid to the degree of novelty of test items

relative to training items. Hadley's arguments challenge connectionists to go

beyond using training and test sets which are chosen according to convenience,

and to carefully construct materials which allow the degree of generalization to

be investigated in more detail. We hope that this challenge will encourage more

sophisticated connectionist approaches to generalization and language learning.

Hadley de�nes di�erent degrees to which a language learning system can

generalize from experience, what he calls di�erent degrees of systematicity. In

this paper we discuss and attempt to build on Hadley's account, providing more

formal and precise de�nitions of these varieties of generalization. These gener-

alizations aim to capture the cases that Hadley discusses, but also extend to

other examples. We then report some connectionist simulations using simple

recurrent neural networks which we assess in the light of the revised de�nitions.
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Finally, we discuss the prospects for connectionist and other approaches to lan-

guage learning for meeting these criteria, and consider implications for future

research.

1 Systematicity and Generalization

1.1 Varieties of systematicity

Hadley de�nes several levels of systematicity, which are increasingly di�cult for

a learning system to meet. Following Hadley and emphasizing the learning of

syntactic structure, we focus on the �rst three, weak, quasi- and strong sys-

tematicity, as benchmarks for current connectionist models (\c-net" in Hadley's

terminology).

According to Hadley \a c-net exhibits at least weak systematicity if it is ca-

pable of successfully processing (by recognizing or interpreting) novel test sen-

tences, once the c-net has been trained on a corpus of sentences which are repre-

sentative" (p.6). A training corpus is `representative' if \every word (noun, verb,

etc.) that occurs in some sentence of the corpus also occurs (at some point) in

every permissible syntactic position" (p.6). Quasi-systematicity can be ascribed

to a system if \(a) the system can exhibit at least weak systematicity, (b) the

system successfully processes novel sentences containing embedded sentences,

such that both the larger containing sentence and the embedded sentence are

(respectively) structurally isomorphic to various sentences in the training cor-

pus, (c) for each successfully processed novel sentence containing a word in an

embedded sentence (e.g., `Bob knows that Mary saw Tom') there exists some

simple sentence in the training corpus which contains that same word in the

same syntactic position as it occurs within the embedded sentence (e.g., `Jane

saw Tom')" (p.6{7). Finally, a system will exhibit strong systematicity if \(i)

it can exhibit weak systematicity, (ii) it can correctly process a variety of novel

simple sentences and novel embedded sentences containing previously learned

words in positions where they do not appear in the training corpus (i.e. the

word within the novel sentence does not appear in that same syntactic position

within any simple or embedded sentence in the training corpus)" (p.7).

Central to each de�nition is the notion of \syntactic position", which may or

may not be shared between items in the training and test sets. Since syntactic

position is not a standard term in linguistics, and since it is not discussed in
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the paper, we must examine Hadley's examples to discover what meaning is

intended. These are concerned with the relationship between verbs and their

arguments. The various argument positions of a verb (subject, direct object

and indirect object) are taken to count as distinct syntactic positions. Also,

the active and passive forms of a verb are taken to occupy di�erent syntactic

positions.

If these examples are taken at face value, di�culties emerge. For example,

a lexical item is the subject with respect to some verb whether or not it occurs

within an embedded sentence, a simple sentence, or the main clause of a sentence

which contains an embedded sentence (and similarly with the other examples).

This means that, for Hadley, `John' has the same syntactic position in `John

loves Mary' as in `Bill thinks that John loves Mary'|indeed, this is explicit in

point (c) of the de�nition of quasi-systematicity. Nonetheless, it would appear

that, according to Hadley, a learning system which generalizes from either of

these sentence to the other only requires weak systematicity (since no item oc-

curs in a novel syntactic position). Yet, this seems to be exactly the kind of case

which is supposed to distinguish quasi-systematicity from weak systematicity in

Hadley's de�nitions. But, as we see, it appears that weak systematicity already

deals with such cases, if syntactic position is de�ned in terms of grammatical

role, since grammatical role abstracts away from embedding. Quasi- and weak

systematicity therefore appear to be equivalent.

Presumably, either weak or quasi-systematicity is intended to have an ad-

ditional condition, which is not explicit in Hadley's de�nition. We suggest one

possible condition below, that quasi-systematicity is only exhibited when the

test and training sets contain embedded sentences. An alternative interpreta-

tion would be that Hadley is implicitly making use of a more global notion

of syntactic context, which distinguishes the syntactic position of a subject

in a sentence which contains an embedded clause, and one that does not, for

example1.

In order to extend the account beyond the cases of subject and object, we

1Hadley (personal communication) seems to lean towards the latter interpretation in a
recent revision of his de�nition of weak systematicity: \the training corpus used to establish
weak systematicity must present every word in every syntactic position and must do so at
all levels of embedding found in the training and test corpus. In contrast, a quasi-systematic
system does not have to meet the condition in the second conjunct, but does satisfy the
�rst conjunct". Notice that this revision suggests that Elman's (1989, 1991a) net might be
quasi-systematic after all (pace Hadley, this issue, p.17).
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need some more general account of syntactic position. We suggest a possible

de�nition below, and use it to de�ne what we call three levels of generalization,

which we intend to be close to the spirit of the original de�nitions of system-

aticity.

1.2 Syntactic context

The syntactic position of a word is de�ned in terms of the phrase structure tree

assigned to the sentence in which it occurs. We use phrase structure trees since

they are linguistically standard and can be used in a precise and general way.

We intend no theoretical commitment to phrase structure based approaches

to linguistic theory. Our account could be given equally well in alternative

linguistic frameworks.

John loves Mary

NPN

N

S

NP VP

V

N

Bill thinks John loves Mary

NPN

N

S

NP VP

V

S

NP VP

V

(a) (b)

Figure 1: Phrase structure trees for (a) the simple sentence `John loves Mary' and

(b) the complex sentence `Bill thinks John loves Mary'.

We de�ne the syntactic position of a word to be the tree subtended by the

immediately dominating S or VP node, annotated by the position of the target

word within that tree. This tree will be bounded below either by terminal nodes
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(Det, Proper Noun etc), or another S or VP-node (i.e. we do not expand the

syntactic structure of embedded sentences or verb phrases).

For example, consider the phrase structure trees for the simple sentence

`John loves Mary' and the complex sentence `Bill thinks John loves Mary' as

shown in Figure 1. In a simple sentence like 1(a), the subject is de�ned by

its relation to the dominating S-node. The object and the verb are de�ned in

relation to the verb phrase. This captures the distinction between subject and

object noun positions. Figure 2(a) and (b) depict this distinction, illustrating,

respectively, the syntactic positions of `John' and `Mary'.

NP

N

VP

V

N

S

NP VP

(a) (b)

Figure 2: The syntactic position of (a) the subject noun and (b) the object noun in

the sentence `John loves Mary'.

Also according to this de�nition, verbs with di�erent argument structure

are considered to have di�erent syntactic contexts. For example, intransitive,

transitive and ditransitive occurrences of verbs will be viewed as inhabiting

di�erent contexts. Furthermore, verb argument structure is relevant to the

syntactic context of the object(s) of that verb, but not of its subject.

S

VP

V NP

VP

V

(a) (b)

Figure 3: The syntactic position of (a) the main verb and (b) the subordinate verb

in the sentence `Bill thinks John loves Mary'.

In a complex sentence like 1(b), there will be di�erent local trees for items in

the main clause or in any embedded clauses. For example, `thinks', which occurs

in the main clause of 1(b), has a syntactic position de�ned with respect to the
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verb phrase pictured in Figure 3(a), whereas for `loves' in the embedded clause,

the syntactic position is de�ned with respect to the structure of the embedded

sentence shown in 3(b). The two trees in Figure 3 are thus examples of how the

verb argument structure a�ects syntactic position.

Notice that this means that the syntactic position within an embedded clause

is a�ected only by its local context, and not by the rest of the sentence. Thus

the notion of syntactic position applies independently of the depth of embedding

at which a sentence is located. Furthermore, according to this de�nition, the

syntactic context of a word in a particular clause in not a�ected by the structure

of a subordinate clause; and the syntactic context of a word in an subordinate

clause is not a�ected by the structure of the main clause.

1.3 Varieties of generalization

Using this de�nition of syntactic position, we can now recast Hadley's de�nitions

to give three levels of generalization for language learning systems.

1. Weak Generalization: A learning mechanism weakly generalizes if it can

generalize to novel sentences in which no word occurs in a novel syntac-

tic position (i.e., a syntactic position in which it does not occur during

training)2.

2. Quasi-Generalization: A learning mechanism is capable of quasi-generalization

if it can generalize to novel sentences as in 1), with the additional con-

straint that embedding occurs in the grammar.

3. Strong Generalization: A learning mechanism strongly generalizes if it

can generalize to novel sentences, that is, to sentences in which some

(su�ciently many) words occur in novel syntactic positions.

This de�nition of strong generalization, implies that for the two test sen-

tences:

John thinks Bill loves Mary.

Bill loves Mary.

2Note that Hadley's revised de�nition of weak systematicity (as mentioned in the previous
footnote) di�ers from this notion of weak generalization.
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if `Mary' had never occurred in the object position in the training set (in either

embedded or main clauses), the syntactic position of `Mary' in both these sen-

tences would be novel. If `Mary' had occurred in object position at all in the

training set, then in neither sentence is the syntactic position novel.

These de�nitions aim to capture the spirit of Hadley's proposals in a rea-

sonably precise and general way. We now turn to some simulations which aim

to test how readily these de�nitions can be met by a simple recurrent network.

2 Simulations

As a �rst step towards meeting the strong generalization criterion described

above, we present results from simulations involving a simple recurrent network.

The research presented here (and elsewhere, e.g., Chater, 1989; Chater & Con-

key, 1992; Christiansen, 1992, in preparation; Christiansen & Chater, in prepa-

ration) builds on and extends Elman's (1988, 1989, 1990, 1991a, 1991b) work

on training simple recurrent networks to learn grammatical structure. Hadley

(this issue, Section 4.2) rightly notes that the training regime adopted by Elman

(1988, 1989, 1990) does not a�ord strong systematicity (nor does it support our

notion of strong generalization) since the net by the end of training will have

seen all words in all possible syntactic positions. We therefore designed a series

of simulations aimed at testing how well these nets can capture strong general-

ization.

-

-

-

-

-

-

S

NP

VP

rel

PP

gen

NP VP \."

who NP VP j who VP

prep NP

PropN j N j N rel j N PP j gen N j N and NP

V (NP) j V that S

N \s" j gen N \s"+ +

Figure 4: The phrase structure grammar used in the simulations.

In our simulations, we trained a simple recurrent network to derive gram-

matical categories given sentences generated by the grammar shown in Figure

4. This grammar is signi�cantly more complex than the one used by Elman

(1988, 1991a). The latter involved subject noun/verb number agreement, verbs
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which di�ered with respect to their argument structure (transitive, intransitive,

and optionally transitive verbs), and relative clauses (allowing for multiple em-

beddings with complex agreement structures). We have extended this grammar

by adding prepositional modi�cations of noun phrases (e.g., `boy from town'),

left recursive genitives (e.g., `Mary's boy's cats'), conjunction of noun phrases

(e.g., `John and Mary'), and sentential complements (e.g., `John says that Mary

runs'). Our training sets consist of 10,000 sentences generated using this gram-

mar and a small vocabulary containing two proper nouns, three singular nouns,

�ve plural nouns, eight verbs in both plural and singular form, a singular and

a plural genitive marker, three prepositions, and three (`locative') nouns to be

used with the prepositions. A few sample sentences are in order:

girl who men chase loves cats.

Mary knows that John's boys' cats eat mice.

boy loves girl from city near lake.

man who girls in town love thinks that Mary jumps.

John says that cats and mice run.

Mary who loves John thinks that men say that girls chase boys.

To address the issue of generalization, we imposed an extra constraint on

two of the nouns (in both their singular and plural form). Thus, we ensured that

`girl' and `girls' never occurred in a genitive context (e.g., neither `girl's cats'

nor `Mary's girls' were allowed in the training set), and that `boy' and `boys'

never occurred in the context of a noun phrase conjunction (e.g., both `boys and

men' and `John and boy' were disallowed in the training corpus). Given these

constraints we can test the net on known words in novel syntactic positions as

required by our de�nition of strong generalization and Hadley's notion of strong

systematicity3.

The simple recurrent network employed in our simulations is a standard

feedforward network equipped with an extra layer of so-called context units to

which the activation of the hidden unit layer at time t is copied over and used as

additional input at t+1 (Elman, 1988, 1989, 1990, 1991a). We trained this net

using incremental memory learning as proposed by Elman (1991b), providing

the net with a memory window which \grows" as training progresses (see Elman,

3Hadley (personal communication) has acknowledged both test cases as possible single

instances of strong systematicity; though these instances might not be su�cient to warrant
the general ascription of strong systematicity to the net as a whole.
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1993, for a discussion of the cognitive plausibility of this training regime). First,

the net was trained for 12 epochs, resetting the context units randomly after

every three or four words. The training set was then discarded, and the net

trained for three consecutive periods of 5 epochs on separate training sets and

with the memory window growing from 4{5 words to 6{7 words. Finally, the net

was trained for 5 epochs on a �fth training set, this time without any memory

limitations4.

In the remaining part of this section we will report the network's failure

to exhibit strong generalization in genitive context and its success in obtaining

strong generalization in the context of noun phrase conjunctions.

2.1 Limited generalization in genitive context

Recall that neither `girl' nor `girls' has occurred in a genitive context in any of

the training sets. Figure 5 illustrates the behavior of the net when processing

the sentence `Mary's girls run' in which the known word `girls' occupies the

novel syntactic position constituted by the genitive context (and the control

sentence ` Mary's cats run')5.

In (a) having received `Mary : : : ' as input, the net correctly predicts that the

next word will either be a singular verb, a preposition, `who', `and', or a singular

genitive marker. Next, the net expects a noun when given the singular genitive

marker `Mary's : : : ' in (b). However, as can be seen from (e), which shows

the activation of all the words in the noun category, the net neither predicts

`girl' nor `girls' following a genitive marker. A similar pattern is found in (c)

where the net expects a plural verb after `Mary's girls : : : ', but only provides

the plural genitive marker with a small amount of activation (compared with

the control sentence). The lack of generalization observed in both (c) and (e)

indicates that the net is not able to strongly generalize in genitive contexts.

Notice that the net nonetheless is able to continue making correct predictions

as shown by the high activation of the end of sentence marker after `Mary's

girls run : : : ' in (d). Moreover, the fact that the net does activate the plural

4For more details about the grammar, the training regime, and additional simulation re-
sults, see Christiansen (in preparation).

5In Figure 5(a)-(d) and 6(a)-(j), s-N refers to proper/singular nouns, p-N to plural nouns,
s-V to singular verbs, p-V to plural verbs, prep to prepositions, wh to who, conj to and, s-g
to singular genitive marker, p-g to plural genitive marker, eos to end of sentence marker, and
misc to that and the nouns used in the prepositions.
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Figure 5: Network predictions after each word in the test sentence `Mary's girls run.'

(boxes) and in the control sentence `Mary's cats run.' (small squares).
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genitive marker in (c)|albeit by a very small amount|suggests that the net

might be able to learn to strongly generalize in genitive contexts if a di�erent

kind of representation is used or the details of the training are altered (we are

currently pursuing both suggestions).

2.2 Strong generalization in noun phrase conjunctions

In contrast to the net's failure to strongly generalize in a genitive context, we

shall now report the net's successful generalizations with respect to noun phrase

conjunctions. Figure 6 illustrates network behavior during the processing of the

sentence `Mary says that John and boy from town eat' in which `boy' occurs in

the novel syntactic context of a noun phrase conjunction (contrasted with the

control sentence `Mary says that John and man from town eat').

At the beginning of a sentence the net expects to get either a singular or a

plural noun (a). Given `Mary : : : ' as in (b), the net predicts the next word to be

either a singular verb, a preposition, `who', `and', or a singular genitive marker.

In (c) the net has correctly categorized `says' as a clausal verb, expecting `that'

to follow. A plural or a singular noun is rightly predicted in (d) given that the

input so far is `Mary says that : : : '. `John' becomes a possible subject of the

sentential clause, cueing the net to predict a singular verb, or a modi�cation of

`John' starting with a preposition, `who', `and', or a singular genitive marker as

the next input. Having received `and' in (f), the net knows that a noun must

follow (though the activations for both `boy' and `boys' are minimal compared

with the other nouns). As we can see from (g), the net is able to correctly predict

a plural verb following `boy' in `Mary says that John and boy : : : '. Despite

only having seen a singular verb following `boy', the net is able to produce the

strong generalization that a noun phrase conjunction always takes a plural verb.

Admittedly, the activation of the plural verbs are not as high as in the control

sentence, but it is still signi�cant and thus a�ord strong generalization (also

in spite of the lack of activation of `and' compared with the control sentence).

Notice also that the net predicts that a singular genitive marker might occur

to modify `boy' (as well as a preposition or `who'). Since the next input is

a preposition, the net predicts that the following word must be one of the

nouns used with the prepositions (h). In (i) it is possible to detect two minor

errors (singular verbs and end of sentence marker), but they are quite small

(< 0:1). More importantly, the net gets the plural agreement right across the
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Figure 6: Network predictions after each word in the test sentence `Mary says that

John and boy from town eat.' (boxes) and in the control sentence `Mary says that

John and man from town eat.' (small squares).
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Figure 6: continued.
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prepositional phrase. This is a considerable feat since it implies that the net is

able to strongly generalize across several words. In particular, it shows that the

net is not simply predicting plural verbs on the basis of having seen an `and'

two items before, but has learned the grammatical regularities subserving noun

phrase conjunctions6. Lastly, (j) demonstrates that not only is the net able to

predict a correct end of sentence after `Mary says that John and boy from town

eat : : : ', but it is also capable of predicting that `eat' might take an optional

direct object (and the erroneous activations of both singular and plural verbs

are very small).

Following the net's failure to strongly generalize in genitive contexts, we

have shown that the net nevertheless is able to exhibit a quite robust strong

generalization when faced with noun phrase conjunctions. Whether this instance

of strong generalization is su�cient to endow the system with Hadley's notion

of strong systematicity depends on whether two nouns out of a total number of

ten nouns will count as a \signi�cant fraction of the vocabulary" (Hadley, this

issue, p.7). Independent of the answer to this question, we agree with Hadley

that human language learners presumably are able to strongly generalize in a

number of di�erent syntactic contexts. The genitive example illustrates that our

net was not able to learn this more widespread (strong) generalization ability|

yet such an ability might not be beyond simple recurrent networks as indicated

by the net's successful (strong) generalization on noun phrase conjunctions.

3 Discussion

With our simulations we have taken a �rst step towards testing whether simple

recurrent networks can meet our criterion of strong generalization. Our results

show that this criterion is indeed di�cult to meet, but suggest the possibility of

future progress. We now turn to implications for the likely value of connectionist

approaches to syntax acquisition.

A general objection to connectionist models of language learning is that

they use bottom-up statistical information about the training set, and that ar-

guments from the poverty of the stimulus appear to rule out the feasibility of

6Hadley (personal communication) has suggested that a context in which neither conjunct
has previouslyoccurred in a conjunctionwould constitutea better test of strong generalization.
We followed this suggestion using the example of `boy and boy' and found the same pattern
of results as mentioned above.
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this approach. Whatever the merits of the such arguments in general, in this

context there is some evidence that simple statistical analysis of linguistic input

may be su�cient to achieve strong generalization. Finch & Chater (1992, 1993;

see also Maratsos, 1988) have shown that distributional statistics can be used

to cluster lexical items into categories which have distinct primary syntactic

classes, using a corpus consisting of, for example, forty million words from In-

ternet newsgroups. In an attempt to study the learning task facing the child

more closely, Redington, Chater & Finch (1993) applied this method to parent's

child-directed speech from the CHILDES corpus (MacWhinney & Snow, 1985),

again achieving good results. Redington et al also studied how the syntactic

category of a nonsense word could be derived from a single occurrence of that

word in the training corpus. This corresponds to the set-up in the developmen-

tal studies that Hadley discusses (e.g., Gropen, Pinker, Hollander, Goldberg &

Wilson, 1989; Pinker, Lebeaux & Frost, 1987). By comparing the single training

context with the mean contexts associated with other items (which had been

categorized by distributional analysis), Redington et al found that classi�ca-

tions of syntactic categories could be made signi�cantly above chance, at least

for nouns and verbs. For example, given the sentence `this is a wug', the novel

word `wug' is successfully classi�ed as a noun. These results imply that, for

instance, a word which has only been encountered in object position can be

recognized as a noun, and thus used in any legal noun position. This distribu-

tional analysis does not solve the whole problem that a connectionist system

faces|learning not just lexical categories, but also the underlying regularities

governing how those categories can be combined. Nonetheless, these results sug-

gest that learning abstract syntactic categories from scratch, which is the key

to strong generalization, may be possible using purely bottom-up information.

It should be noted that achieving strong generalization is not only a problem

for connectionist approaches to syntax acquisition. For example, most symbolic

approaches to language acquisition do not achieve strong generalization. For

example, consider the model of language acquisition developed by Berwick &

Weinberg (1984). In this model, the architecture of a Marcus-style parser (Mar-

cus, 1980) is built in and provided with certain grammatical information, con-

cerning, for example, X-bar theory (Jackendo�, 1977). However, the initial state

contains no grammatical rules. Learning proceeds by attempting to parse input

sentences; when parsing fails a new rule is added to the grammar so that parsing
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is made possible. Aside from the range of di�culties that this kind of model

faces (for example, performance is catastrophically impaired if some input is

ungrammatical), it does not begin to address strong generalization. This is be-

cause it does not learn the categories of new words from experience|instead, it

is provided with information about the syntactic category of each word, includ-

ing the argument structure of verbs, how these words �t into larger syntactic

structures, and so on. This means, for example, that when it encounters a new

word, say, `cat', in a subject position, it is told that `cat' is a noun, making it

trivial to process `cat' in an object position. Only when symbolic models are

able to learn from unlabeled sequences of words will it be possible to assess the

degree to which such models can exhibit strong generalization. The question of

strong generalization is therefore just as pressing for symbolic approaches as for

connectionist approaches to learning language.

In conclusion, Hadley has posed an important challenge to advocates of

connectionist models of language. We have attempted to build on this work

in order to set a clear objective for connectionist research on acquisition of

linguistic structure. Our simulations indicate that this goal is not easily met,

but nonetheless suggest that progress is possible. Only by properly addressing

the issue of generalization can connectionist|and symbolic|models provide

compelling accounts of human language acquisition.
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