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Abstract

Children appear to be sensitive to a variety of partially infor-
mative “cues” during language acquisition, but little attention
has been paid to how these cues may be integrated to aid learn-
ing. Borrowing the notion of learning with “hints” from the
engineering literature, we employ neural networks to explore
the notion that such cues may serve as hints for each other. A
first set of simulations shows that when two equally complex,
but related, functions are learned simultaneously rather than in-
dividually, they can help bootstrap one another (as hints), re-
sulting in faster and more uniform learning. In a second set
of simulations we apply the same principles to the problem of
word segmentation, integrating two types of information hy-
pothesized to be relevant to this task. The integration of cues
in a single network leads to a sharing of resources that permits
those cues to serve as hints for each other. Our simulation re-
sults show that such sharing of computational resources allows
each of the tasks to facilitate the learning (i.e., bootstrapping)
of the other, even when the cues are not sufficient on their own.

Introduction
A theory language of acquisition requires an explanation for
how and why children learn the complexities of their native
languages so quickly, effortlessly and uniformly. Most tradi-
tional answers to this question have taken the form of claims
that children are born with language specific constraints, in
part because of a gap between the input to which the child is
exposed and the competence later exhibited by the adult. The
problem, as traditionally characterized, is that the data alone
are insufficient to determine the nature of the underlying sys-
tem, and that therefore additional sources of information are
necessary for successful acquisition to occur. Interestingly, a
very similar problem has been faced by the engineering ori-
ented branch of the neural network community, in which the
problem is construed as learning a function from a limited set
of examples. From these investigations have emerged a num-
ber of alternative methods for incorporating information not
present in the example set into the learning process. These ad-
ditional sources of information, many based on non-intuitive
properties of neural networks, have come to be referred to as
“hints”. In this paper, we present a novel way of looking at
learning with hints within the setting of connectionist model-
ing of language.

Hints facilitate learning by reducing the number of candi-
date solutions for a given task (Abu-Mostafa, 1990) and have

been shown to result in better generalization (Al-Mashouq &
Reed, 1991; Suddarth & Kergosien, 1991) as well as faster
learning (Abu-Mostafa, 1990; Al-Mashouq & Reed, 1991;
Gällmo & Carlström, 1995; Omlin & Giles, 1992; Suddarth
& Kergosien, 1991). The introduction of hints into neu-
ral networks has taken various forms, ranging from explicit
rule insertion via the pre-setting of weights (Omlin & Giles,
1992), to task specific changes in the learning algorithm (Al-
Mashouq & Reed, 1991), to perhaps the most interesting kind
of hint: the addition of extra “catalyst” output units. Catalyst
units are used to represent additional target values expressing
a function correlated with, but simpler than, the original tar-
get function. The use of catalyst units forces the network to
find an internal representation which approximates both the
target and the related catalyst function. Suddarth & Kergosien
(1991) list a number of simulation experiments in which this
approach resulted in faster learning and better generalization.
The use of catalyst units has also found its way into engi-
neering applications—e.g., controlling link admissions ATM
telecommunication networks (Gällmo & Carlström, 1995).

The idea of inserting information into a network before
training has received some attention within cognitive science
(albeit not understood in terms of hints). For instance, Harm,
Altmann & Seidenberg (1994) demonstrated how pretrain-
ing a network on phonology can facilitate the subsequent ac-
quisition of a mapping from orthography to phonology (thus
capturing the fact that children normally have acquired the
phonology of their native language—that is, they can talk—
before they start learning to read). However, catalyst hints
have not been explored as a means of improving connection-
ist models of language. In particular, there is the possibility
(not investigated in the engineering hint literature) that such
hints could become more than just a catalyst; that is, there may
be cases where the learning of two or more functions by the
same system may be superior to trying to learn each function
individually. Children appear to integrate information from a
variety of sources—i.e., from multiple “cues”—during lan-
guage acquisition (Morgan, Shi & Allopenna, 1996), but little
attention has been paid to potential mechanisms for such in-
tegration. We suggest that cues may serve as “hints” for each
other, in that each task constrains the set of solutions available
for the other task(s).

In what follows, we show that when two related functions



are learned together each is learned faster and more uniformly.
We first provide a simple illustration of the advantage of the
integrated learning of two simple functions, XOR and EVEN

PARITY, over learning each of them separately. Next, the
same idea is applied to a more language-like task: the inte-
grated learning of word boundaries and sequential regularities
given a small vocabulary of trisyllabic nonsense words. Fi-
nally, in the conclusion, we discuss possible implications for
models of language acquisition.

The integrated learning of XOR and EVEN

PARITY

In order to provide a simple example of the advantage of al-
lowing two functions to interact during learning, we carried
out a series of simulations involving the two simple non-linear
functions: XOR and EVEN PARITY. The XOR function has
been used before to demonstrate how learning with an ex-
tra catalyst unit can decrease convergence time significantly
(Gällmo & Carlström, 1995; Suddarth & Kergosien, 1991),
but these studies used simpler linear functions (such as, AND)
to provide hints about the more complex function. In contrast,
we use two functions of equal computational complexity.

input XOR(1) EP(1) XOR-EP XOR(2) EP(2)
0 0 0 1 1 0 0 0 1 0
1 1 0 1 1 0 0 0 1 0
1 0 1 0 0 1 0 1 0 0
0 1 1 0 0 1 0 1 0 0

Table 1: The input and required output for the five training condi-
tions.

Given two inputs,
���

and
���

, XOR is true (i.e., 1) when� �����	�
��������������
. EVEN PARITY is the logical negation

of XOR and is true when
� � � ��� � ������������

(in fact, XOR

is also known as ODD PARITY). The output of the XOR and
EVEN PARITY functions given the four possible binary input
combinations is displayed in Table 1 as XOR(1) and EP(1),
respectively. These two functions can be learned by a 2-2-1
multi-layer feedforward network. Learning XOR and EVEN

PARITY simultaneously requires two output units (i.e., a 2-2-2
net), and the required output is shown as XOR-EP in Table 1.
For comparison, two additional 2-2-2 nets were also trained
on the individual functions from which the output is labeled
XOR(2) and EP(2).

A total of 100 networks (with different initial weight ran-
domizations) were trained for each of the five input/output
combinations

�
. Figure 1 illustrates the Root Mean Square

(RMS) error history as a function of the number of iterations
for nets trained on the XOR-EP, XOR(1), and EP(1) training
conditions. Given the assumption that a net has converged

�
Identical learning parameters were applied in all training condi-

tions: learning rate = .1; momentum = .95; initial weight randomiza-
tion = [-.1;.1]; number of training iterations = 2000.
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Figure 1: RMS error for 100 sessions of learning a) XOR and
EVEN PARITY in a 2-2-2 net, b) XOR in a 2-2-1 net, and c)
EVEN PARITY in a 2-2-1 net.



when the average RMS error for the four input/output com-
bination is .15 or below, we can provide a quantitative anal-
ysis of the performance of the nets in the different training
conditions. The results in Table 2 clearly show that the net-
works trained simultaneously on both XOR and EVEN PAR-
ITY (see Figure 1a) reach convergence significantly faster
than either the 2-2-1 XOR nets (see Figure 1b):

� � ����� � �
�����	�
�
�������� � � � �

; or the 2-2-1 EVEN PARITY nets (see Fig-
ure 1c):

� � ������� � � ��� �
�������� � � � � �
. This is also the

case in comparison with the 2-2-2 nets trained on XOR alone:� � ���
� � �������	�
�������� � � � � �
; and EVEN PARITY alone:� � ���
� � ���
���	�
�
�������� � � � �

. Thus, the decrease in conver-
gence time for the XOR-EP trained networks is not a conse-
quence of having additional weights due to the extra output
unit. As was to be expected, there was no significant differ-
ence between the mean number of iterations to convergence
for the single function trained 2-2-1 nets:

� � �����������	� ������ �
�	�����

; and between the likewise trained 2-2-2 nets:
� � ������� �

�
�	��� �
�� � � � ���
. Notice also that the nets trained simulta-

neously on XOR and EVEN PARITY exhibited a more uniform
pattern of learning (i.e., less variation) that any of the other
training conditions.

Training Convergence Mean no. of Standard
Condition Rate Iterations Deviation

XOR ! EP 93% 710.96 99.47
XOR (2-2-1) 93% 1063.87 165.95
EP (2-2-1) 93% 1077.84 145.69
XOR (2-2-2) 98% 1519.69 154.32
EP (2-2-2) 98% 1483.57 165.33

Table 2: Convergence rate, mean number of iterations to con-
vergence, and the standard deviation of this mean for each of
the five training conditions (only data from nets converging
within 2000 iterations are included in the table).

The results from the above simulation experiments confirm
that there are cases where the integrated learning of two func-
tions of equal complexity is better than seeking to learn each
of the functions individually. A possible explanation can be
found in Suddarth & Kergosien (1991) who analyzed weight
changes during the learning of XOR with and without hints.
They found that hints allow networks to escape local minima
positioned at the origin of weight space. What we have shown
here is that a hint need not be a simpler function than the
original target function. The results indicate that if two func-
tions are equally complex, but sufficiently correlated, then it
may be advantageous to have a single network learn them to-
gether. Even though XOR and EVEN PARITY are negations of
each other, they are similar in that successful learning of either
function requires partitioning the state space in the same way
(with the input “1 0” and “0 1” being treated different from
“1 1” and “0 0”). The two functions may thus help “boot-
strap” each other by forcing their shared resources (in this
case the hidden units) toward a common organization of the

input. A mechanism which allows two or more functions to
bootstrap each other is of potential relevance to the study of
language acquisition since children appear to be sensitive to
multiple speech cues which by themselves do not appear to
be sufficient to bootstrap language. Of course, learning XOR

and EVEN PARITY is a far cry from the task facing children
acquiring their native language. We therefore turn to a more
language-like application of the idea of bootstrapping via the
integrated learning of multiple functions.

Integrating Cues in Word Segmentation
In order to understand an utterance a child must first be able
to segment the speech stream into words. While it is likely
that adult word level speech segmentation occurs partly as a
byproduct of word recognition, infants lack the lexical knowl-
edge which is a pre-requisite to this procedure. A number
of proposals regarding bottom up exploitation of sub-lexical
cues have been put forward to explain the onset of this ca-
pacity (e.g., Jusczyk, 1993). These proposals would require
infants to integrate distributional, phonotactic, prosodic and
rhythmic information in the segmentation process. In this
connection, Brent & Cartwright (in press) have shown that
a statistically based algorithm utilizing distributional regu-
larities (including utterance boundary information) is better
able to segment words when provided with phonotactic rules.
Whereas the process of identifyingand verifying the existence
and potential of various cues is receiving considerable effort,
there has been little attention paid to psychologically plausi-
ble mechanisms potentially responsible for integrating these
cues. An understanding of possible integrating mechanisms
is important for evaluating claims about the potential value of
cues. Each of the cues to basic grammatical category mea-
sured by Morgan, Shi & Allopenna (1995), for example, had
low validity with respect to distinguishing between the cate-
gories they considered, but taken together the set of cues was
shown to be sufficient in principle to allow a naive learner to
assign words to rudimentary grammatical categories with very
high accuracy.

Previous connectionist explorations of word segmentation
have mainly focused on single cues. Thus, Aslin, Wood-
ward, LaMendola & Bever (1996) demonstrated that utter-
ance final patterns (or boundaries) could be used by a back-
propagation network to identify word boundaries with a high
degree of accuracy. Cairns, Shillcock, Chater & Levy (1994),
on the other hand, showed that sequential phonotactic struc-
ture could serve as a cue to the boundaries of words. In con-
trast, our investigationconcentrates on the integrationof these
two cues to word segmentation. The purpose of our simu-
lations is to demonstrate how distributional information re-
flecting phonotactic regularities in the language may interact
with information regarding the ends of utterances to inform
the word segmentation task in language acquisition. In partic-
ular, we apply the principle of catalyst learning to ask whether
learning distributional regularities will assist in the discovery
of word boundaries, and whether the learning of word bound-
aries facilitates the discovery of word internal distributional



regularities. As an initial hypothesis, we propose that as a
property of the integrating mechanism, the language acquisi-
tion system makes use of the efficiency provided by the shar-
ing of resources demonstrated in the XOR-EVEN PARITY sim-
ulations above to facilitate the task of segmenting the speech
stream prior to lexical acquisition.

Saffran, Newport & Aslin (in press) show that adults are ca-
pable of acquiring sequential information about syllable com-
binations in an artificial language such that they can reliably
distinguish words that conform to the distributional regulari-
ties of such a language from those that do not. For our sim-
ulations we constructed a language whose basic constituents
were four consonants (“p”, “t”, “b”, “d”) and three vow-
els (“a”, “i”, “u”). These were used to create two vocabu-
lary sets. The first consisted of fifteen trisyllabic words (e.g.,
“tibupa”). Because we hypothesize (like Saffran et al.) that
variability in the word internal transitional probabilities be-
tween syllables

�
serves as an information source regarding

the structure of the input language, some syllables occurred in
more words, and in more locations within words, than others.
Built into this vocabulary were a set of additional restrictions.
For example, there are no words that begin with “b”, and no
words ending in “u”. We will refer to this vocabulary set as
“vtp” (for variable transitional probability). A “flat” vocab-
ulary set, consisting of 12 items, was made up of words with
no “peaks” in the word internal syllabic probability distribu-
tion; that is, the probability of a given consonant following a
vowel was the same for all consonants (and vice versa for the
vowels)

�
. The flat vocabulary set did not contain any addi-

tional restrictions.
Training corpora were created by randomly concatenating

120 instances of each of the words (in a particular vocabulary
set) into utterances ranging between two and six words. An
additional symbol marking the utterance boundary was added
to the end of each utterance, but word boundaries were not
marked. The utterances were concatenated into a single large
input string. Simple recurrent networks

�
(Elman, 1990) were

trained on these corpora by presenting letters one at a time.
The task of the networks was to predict the next item in the
string. For the testing phase, versions of the input corpora
without utterance boundary markers were presented once to

�
The transitional probability between syllables is defined as num-

ber of occurrences of syllable
�

before syllable � in proportion to
the number of occurrences of syllable

�
; i.e.,

���	�	
�� ���������	�	
�� ���� .�
For the vtp vocabulary set, transitional probabilities between

syllables word internally ranged from .3 to .7. The transitional proba-
bilities between syllables across word boundaries were lower, rang-
ing between .1 and .3. For the flat vocabulary set, the word inter-
nal transitional probabilities between syllables was .667, and did not
differ from one another. The transitional probabilities across word
boundaries in the full corpus ranged between .007 and .18.�

The network architecture consisted of 8 input/output units, (each
representing a single letter, plus one representing the boundary
marker), 30 hidden units and 30 context units. Identical learning
parameters were applied in all training conditions: learning rate .1;
momentum .95; initial weight randomization [-.25; .25]; number of
training iterations = 7.
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Figure 2: Average activation of the boundary unit from each letter
position for a) nets trained, respectively, on the flat and the vtp vo-
cabularies, and b) the net trained on the vtp vocabulary and tested on
non-words (nw) and pseudo-words (pw).

the networks.
A comparison between the networks trained respectively on

the vtp and flat vocabularies is given in Figure 2(a), which
shows the average activation of the boundary unit from each
position

�
in a word across the two test corpora. The vtp

trained network predicts a boundary with significantly higher
confidence at word boundaries than at non word boundaries
(
� � � ���
��� � � �
��� ���
���� � � � � � �

). For the vtp trained
net, average activation of the boundary unit from the ends of
words was .204, while average activation of the boundary unit
from positions within words was .04. The network trained on
the flat vocabulary, on the other hand, shows almost no dis-
crimination between end-of-word and non-end-of-word posi-
tions. Thus the net trained on both the vocabulary with much
variation in the syllabic distributional regularities (vtp) and
utterance boundary information differentiates ends of words
from other parts of words, whereas a network trained only on
boundary markers (and the flat vocabulary with little variation

�
Since each network is faced with a prediction task, activation

from a position in Figure 2 correspondsto the network’s prediction as
to the next item in the string; e.g., the network’s prediction for letter
position 2 is plotted above letter position 1.



in syllabic probability distribution) fails to do so.

In order to assess generalization, we tested the vtp trained
network on pseudo-words and non-words. For our pseudo-
word trials, we presented the vtp trained network with a set of
novel words that were legal in our language (e.g., “tubipa”).
For our non-word trials, we created a set of words violating
the built-in constraints of our language. In this case, we used
words ending in “u” (e.g., “tudadu”). Figure 2(b) shows the
average activation level of the boundary unit from each po-
sition in the non-word and pseudo-word trials. The activa-
tion of the boundary unit stays low for all positions for both
types of words except from the final position of the pseudo-
words, where the activation level jumps. The average activa-
tion of the boundary unit from the end of pseudo-words was
.26, whereas it only reached .006 from the end of non-words.
Thus, the vtp trained net is able to discriminate between (im-
possible) non-words and (possible) pseudo-words—as did hu-
mans when trained on the similar nonsense language of Saf-
fran et al. (in press).

The suggestion that the vtp trained net is treating sequences
at the ends of words differently from those at the beginning
of words is supported by additional simulations that manipu-
lated the locus of the violation in non-words. When the viola-
tion occurred at the beginning of words (e.g., a word starting
with “b”, which was not a part of the vtp language) the differ-
ence in activation patterns between words and non-words was
not as readily apparent as when the violation occurred at the
ends of words. This result may correspond to the fact that hu-
man subjects in the Saffran et al. experiments confused legal
words with non-words more often when the non-words were
made up of the ends of (legal) words than when the non-words
were made up of the beginnings of (legal) words.

The results presented above show that if a network learn-
ing a simple language with strong variation in the transitional
probabilities between syllables has access to the additional in-
formation provided by the silences at the ends of utterances,
it can use those probabilities to make better hypotheses about
the locations of likely word boundaries than a network trained
on a language with flat transitional probabilities between syl-
lables. This suggests that the variability in transitional prob-
abilities between syllables may play an important role in al-
lowing learners to identify probable points at which to posit
word boundaries. In other words, a network with access to
both transitional probabilities and utterance boundary infor-
mation performs better on a measure of identifying likely
word boundaries than a network with access to only utterance
boundary information. We can also measure the reverse, i.e.,
the extent to which utterance boundary information is helpful
to learning distributional regularities. In order to do so, we
now turn to a simulation that compares the vtp net trained with
and without utterance boundary information.

The two nets were tested on a string consisting of the origi-
nal 15 words in the vocabulary set (with no word or utterance
boundaries marked). The test revealed only minor differences
between the two networks, in all likelihood because the built-

in distributional regularities are so strong in the small lan-
guage as to create a ceiling effect. This interpretation is cor-
roborated by a repetition of the experiment using the flat vo-
cabulary: the network trained with boundary markers showed
significantly better performance (measured in terms of RMS
error) than that trained without boundary markers (

� � � ��� � �
��� � � ���� � ��� �
�

). The presence of boundarymarkers in the in-
put significantly altered the outcome of learning, such that the
net trained with boundary markers was better able to learn the
sequential regularities which were present in the flat corpus

�

.
That is, the integrated learning of two functions again results
in better performance. If a network has access to sequential in-
formation and utterance markers, it learns the sequential reg-
ularities better than a network with access only to sequential
information. This result is consistent with the hypothesis that
the silences at the ends of utterances may play an important
role in the discovery of language specific phonotactic regular-
ities.

Discussion
In the series of simulations reported here we adapted the cat-
alyst hint mechanism previously employed in the engineer-
ing literature to the learning of two sufficiently related func-
tions. We demonstrated that the integrated learning of two
such functions may result in faster and better learning by com-
bining the well known XOR and EVEN PARITY functions into
a single 2-2-2 network. The same idea was then applied to
two of the forms of information hypothesized to be relevant
to the word segmentation problem by combiningstronglycon-
strained distributional information with information about the
locations of utterance boundaries in a corpus of utterances
generated from an artificial vocabulary of trisyllabic nonsense
words. Results suggest that the simultaneous presence of both
types of information in the same system may allow them to
interact in such a way as to facilitate the acquisition of both
phonotactic knowledge and the ability to segment speech into
words.

There are several apparent differences between the XOR

and EVEN PARITY simulations in section 2 and the simula-
tions presented in section 3. First, the former simulations are
of independent functions, both of which can be learned on
their own without the presence of the other. The prediction
of boundary markers reported in section 3, on the other hand,
is not independent of the letter sequences in which they were
embedded. That is, although the XOR and EVEN PARITY tasks
may be learned separately, learning which of the letter se-
quences predicts a boundary cannot be learned independently
from learning the letter sequences themselves. However, al-
though as observers we can see XOR and EVEN PARITY as in-
dependent problems, the network, of course, does not do so.
It is treating both (sub)tasks as a part of the larger task to be

�

Although the flat vocabulary did not differ with respect to the
transitional probabilities between syllables, the transitional probabil-
ities between letters (and sequences longer than the syllable) did dif-
fer. We take these to be the source of regularity used by the networks
in learning the structure of the flat vocabulary set.



solved. In the XOR-EP simulations, the requirements of each
task constrain the solution for the other. A similar claim holds
for the simulations presented in section 3. As the simulations
themselves verify, these two information sources can be seen
as distinct, and can be manipulated independently. But the
network is treating both parts of the problem together, and
shows an advantage for each task under these conditions.

Although the two sets of simulations differ in important
ways, we suggest that the same mechanism is responsible for
the results in both section 2 and 3. Just as XOR and EVEN PAR-
ITY can be viewed as independent problems, we can see the
prediction of word boundaries as a separate task from that of
predicting the next letter in the sequence. Because the tasks
are learned together, the presence of a secondary task alters
the solution applied to the primary task. Specifically, suc-
cessfully predicting boundaries requires the network to rely
on longer sequences than a network required only to predict
the next letter. For example, even though consonants can be
predicted largely on the basis of the preceeding letter (“a” im-
plies “b”, “d”, “t” and “p” roughly equally), the end of an
utterance is not predictable unless larger sequences are taken
into account (e.g., “a” predicts an utterance boundary only
when preceeded by “ub”, etc). The architecture of the net-
work allows it to discover the particular distributionalwindow
by which it can perform the entire task optimally. The pres-
ence of the word boundary prediction task encourages the net
to find an overall solution based on longer letter sequences,
just as the presence of the XOR problem encourages the XOR-
EP net to find a solution to the EVEN PARITY problem com-
patible with that which will solve XOR.

Although we have concentrated here on only a few sources
of information relevant to the initial word segmentation prob-
lem, many additional cues to this task have been proposed
(Jusczyk 1993). Our model is not, of course, meant as a com-
plete account of the acquisition of these skills. Admittedly,
prior connectionist investigations of the word segmentation
problem by Aslin et al. (1996) and Cairns et al. (1994) used
more realistic training samples than our artificial language.
However, we have concentrated here on the advantages pro-
vided by a connectionist integration mechanism, and have
successfully extended our approach to a corpus of phoneti-
cally transcribed child directed speech (Christiansen, Allen &
Seidenberg, in submission). In this connection, a fundamen-
tal question for language acquisition theory is why language
development is so fast, and so uniform, across children. Al-
though most traditional answers to this question have been
based on the idea that children are born with language specific
constraints, the speed and uniformity provided by simultane-
ous learning of related functions may also provide constraints
on the development of complex linguistic skills.
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