Coping with Variation in Speech Segmentation

Morten H. Christiansen & Joseph Allen

Program in Neural, Informational and Behavioral Sciences
University of Southern California
Los Angeles, CA 90089-2520, U.S.A.

morten@gizmo.usc.edu, joeallen@gizmo.usc.edu

Abstract

This paper presents results from word segmentation
simulations in which a Simple Recurrent Network
(SRN) was exposed to speech input incorporating high
degrees of variation. In Experiment 1, a network
trained on a speech corpus transcribed to include vari-
ation in terms of coarticulation was compared with a
network trained on a citation form version of the same
corpus. The results show that the network accommo-
dates this variation without significant impairment to
its performance on the segmentation task. Experiment
2 involved a novel approach to the modeling of seg-
mental variation in which feature values were system-
atically varied according to a predetermined probabil-
ity schedule. Results demonstrate that following train-
ing the networks were able to withstand a very high
degree of segmental variation within words and still
able to locate word boundaries in the input. Together
the experiments indicate that the SRN provides a ro-
bust mechanism for the modeling of early speech seg-
mentation.

1. Introduction
One of the first tasks that a child is faced with in lan-
guage acquisition is the segmentation of the speech
stream into words. The lack of the acoustic equiv-
alents of white spaces in written text makes this
a nontrivial task. Recent computational models of
early speech segmentation have utilized the integra-
tion of multiple probabilistic cues to address this prob-
lem. Models by Aslin, Woodward, LaMendola &
Bever (1996) and Brent & Cartwright (1996) achieved
a good level of performance using a combination
of phonology and utterance boundary information.
Christiansen, Allen & Seidenberg (in press) showed
that combining these two cues with information about
lexical stress resulted in improved performance. How-
ever, the input to these models abstracted away from
many important aspects of real language. The ques-
tion remains as to how such computational models
will fare when exposed to input more closely approx-
imating the variation characteristic of actual speech.
Working from the insight that much of this variation
is systematic, we present an investigation of the effects
of variation on a connectionist model of infant speech
segmentation. One type of variation is coarticulation,
where segments vary on the basis of surrounding ma-

terial. Previous computational models have used cor-
pora in which every instance of a particular word al-
ways had the same phonological form. In contrast, we
employ a phonetically transcribed corpus in which the
phonological form of a word varies with its context.

Another way which the input signal varies is in the
fact that individual segments of what is transcribed as
the same phoneme actually vary considerably in their
acoustic realization. Earlier models, such as Cairns,
Shillcock, Chater & Levy (1997), modeled this varia-
tion by flipping random features with a certain proba-
bility. However, the variation in acoustic realization
is not random; rather, for any segment certain fea-
tures are more susceptible to change than others. Tak-
ing these ideas into account, we introduce a novel ap-
proach to modeling such segmental variation.

In the remainder of this paper, we present results
from simulations involving SRNs trained on input
consisting of segmental features, utterance boundary
information, and lexical stress. First, we describe the
model as well as the training and test materials em-
ployed in the simulations. In the following section,
we present results from a simulation experiment in
which performance is compared between nets trained
on coarticulation and citation form versions of the
same corpus. In the second experiment we test the
same two networks under conditions of high degrees
of segmental variation. Together the results show that
our model performs well on the segmentation task—
despite being faced with input characterized by con-
siderable variation. This outcome is important be-
cause it shows that SRNs provide a robust mechanism
for the integration of multiple cues even under less
idealized conditions, and how such integration may
form the basis of early speech segmentation. The con-
clusion considers further implications of these experi-
ments for the modeling of speech segmentation.

2. Modeling Speech Segmentation

Previous work (Allen & Christiansen 1996, Chris-
tiansen 1997, Christiansen et al. in press) has estab-
lished that SRNs constitute viable models of early
speech segmentation. These models, like most other
recent computational models of speech segmentation
(Aslin et al. 1996, Brent & Cartwright 1996), were
provided with input which abstracted away from many
important aspects of real speech. This is in part due
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Figure 1: The architecture of the SRN used in the simulations. Arrows with solid lines denote trainable weights,
whereas the arrow with the dashed line denotes copy-back connections. The SRN had 20 input/output units and

80 hidden/context units.

to the use of corpora in which every instance of a
word always has the same form. To more closely ap-
proximate the variability of the way words are phono-
logically realized in natural speech, we used a cor-
pus that was phonetically transcribed such that the
phonological form of a word varied with its context.
More specifically, we gleaned the adult utterances
from the Carterette & Jones (1974) corpus—a part of
the CHILDES database (MacWhinney 1991). These
utterances consist of informal speech among Ameri-
can college-aged adults.®

The SRN model employed in the current simula-
tions experiments is illustrated in Figure 1. The SRN
(Elman 1990) is feed-forward network with a crucial
addition, the context units, to which the hidden unit
activations from time step ¢ is copied back to be paired
with the next input at time ¢+ 1. This feedback loop al-
lows information about previous hidden unit states to
influence the processing of subsequent input, provid-
ing the SRN with limited ability to encode information
spanning temporal sequences.

The network was provided with three probabilis-
tic cues for possible integration in the segmentation
task: (a) phonology represented in terms of an 18
value feature geometry, (b) lexical stress represented
as a separate feature indicating the presence of pri-
mary vowel stress, and (c) utterance boundary infor-
mation represented as a separate feature (UBM) which
was only activated when pauses occurred in the in-
put. In the simulations, the SRN was trained on the
immediate task of predicting the next phonological
feature set along with appropriate activations of the
stress unit and the utterance boundary unit. In learn-
ing to perform this task it was expected that the net-
work would also learn to integrate the cues such that
it could carry out the derived task of segmenting the
input into words.

Ultimately, any model of speech segmentation must

11t would, of course, have been desirable to use child directed
speech as in Christiansen et al. (in press), but it was not possible to
find a corpus of phonetically transcribed child directed speech.

be able to deal with the high degree of variation which
characterizes natural fluent speech. The purpose of
our simulations was therefore to investigate whether
the success of the SRN model of early word segmen-
tation (Allen & Christiansen 1996, Christiansen et al.
in press) was dependent on the use of the simplified
citation form input. Comparisons were made between
networks exposed to a corpus incorporating coarticu-
lation and networks exposed to a citation form version
of the same corpus. In addition, the networks were
tested on corpora involving high degrees of segmen-
tal variation. If the SRN is to remain a viable model
of word segmentation, no significant difference in per-
formance should arise from these comparisons.

The simulations involved two training conditions,
depending on the nature of the training corpus. In
the coarticulation condition the SRN was trained on
the phonetically transcribed UNIBET version of the
Carterette & Jones corpus. This transcription did not
include lexical stress—a cue which contributed signif-
icantly to successful SRN segmentation performance
in Christiansen et al. (in press). However, lexical
stress was indirectly encoded by the use of the re-
duced vowel schwa (/6/ in UNIBET), so we chose to
encode all vowels save the schwa as bearing primary
stress.? Utterance boundaries were encoded whenever
a pause was indicated in the transcript. In the cita-
tion form condition, the SRN was trained on a corpus
generated by replacing each word in an orthographic
version of the Carterette & Jones corpus with a phono-
logical citation form derived via the Carnegie Mellon
Pronouncing Dictionary (cmudict.0.4)—a machine-
readable pronunciation dictionary for North Ameri-
can English which includes lexical stress information.
This procedure was similar to the one used to gener-

2This idealization seems reasonable because most monosyllabic
words are stressed and because most of the weak syllables in the
multisyllabic words from the corpus involved a schwa. Further
support for this idealization comes from the fact that the addition
of vowel stress implemented in this manner significantly improved
performance compared to a training condition in which no stress
information was provided.
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Figure 2: Boundary unit activation for the first 45 tokens in the coarticulation test corpus. A gloss of the input
utterances is found beneath the input phoneme tokens (# = utterance boundary).

ate training corpora for the models reported in Chris-
tiansen et al. (in press). These pronunciations were
subsequently translated into UNIBET format. Four
vowels which were weakly stressed according to the
dictionary were replaced with the UNIBET schwa and
encoded as stressless, whereas the other vowels were
encoded as stressed. Because the orthographic ver-
sion of the Carterette & Jones corpus did not include
indications of the pauses that occurred within a single
turn in the phonetically transcribed version, the num-
ber of pauses that occurred on each of the phonologi-
cally transcribed lines were randomly inserted into the
citation form version of the corpus. 3

The overall corpus consisted of 1,597 utterances
comprising 11,518 words. Test corpora were con-
structed by setting aside 10% of the utterances (the
same utterances in both training conditions). Thus, the
training corpora consisted of 1,438 utterances (10,371
words) and the test corpora to 159 utterances (1,147
words). In order to provide for more accurate test
comparisons between the SRNs trained under the two
conditions, utterance boundaries was inserted by hand
in the citation form test corpus in the exact same
places as found in the coarticulation test corpus. The
networks in both training conditions were trained on
two passes through their respective training corpora,
corresponding to 74,746 sets of weight updates. Iden-
tical learning parameters were used in the two training
conditions (learning rate: .1; momentum: .95) and the

3Note that the random insertion of utterance boundaries may
lead to the occurrence of utterance boundaries were they often do
not occur normally (not even as pauses), e.g., after determiners. Be-
cause the presence of pauses in the input is what leads the network
to postulate boundaries between words, this random approach is
more likely to improve rather than impair overall performance, and
thus will not bias the results in the direction of the coarticulation
training condition.

two nets were given the same initial weight random-
ization within the interval [-.2,.2].

Next in the first simulation experiment, we inves-
tigate whether the SRN model of early segmentation
can perform as well in the coarticulation condition as
in the citation form condition.

3. Experiment 1: Coping With Coarticu-
lation

With respect to the networks, the logic behind the de-
rived word segmentation task is that the end of an ut-
terance is also the end of a word. If the network is
able to integrate the provided cues in order to activate
the boundary unit at the ends of words occurring at
the end of an utterance, it should also be able to gen-
eralize this knowledge so as to activate the boundary
unit at the ends of words which occur inside an utter-
ance (Aslin et al. 1996). Figure 2 provides a shapshot
of the segmentation performance of the coarticulation
SRN on the first 45 phoneme tokens in the test cor-
pus. Activation of the boundary unit at a particular
position corresponds to the network’s hypothesis that
a boundary follows this phoneme. Black bars indicate
the activation at lexical boundaries, whereas the grey
bars correspond to activation at word internal posi-
tions. Activations above the mean (horizontal line) are
interpreted as the postulation of a word boundary. As
can be seen from the figure, the SRN performed well.
It correctly activated the boundary unit before and af-
ter nine of the 14 words (i.e., oh, my, gosh, maybe,
I, ought, it's, and, far), only missegmenting 5 words
(i.e., to, stay, here, because, close).

In order to compare the performance of the two net-
works, the accuracy and completeness of their word
predictions (Brent & Cartwright 1996) were calcu-
lated for the test corpora using:
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Figure 3: Word accuracy and completeness for the
coarticulation net (black bars) and the citation form
net (grey bars).

N Hits
iy =
U= Hits + False Alarms
Hits
Completeness = ——————
p Hits + Misses

Accuracy provides a measure of how many of the
words that the network postulated were actual words,
whereas completeness provides a measure of how
many words, of those which were there to be found,
the net actually discovered. A hit requires that the net-
work correctly predicts both the beginning and the end
of a word (without any false positives). A miss occurs
if the net does not segment a word at its appropriate
boundaries, and a false alarm stems from segmenting
a word incorrectly. Consider the following hypotheti-
cal example:

#the#dog#s#chase#thec#at#

where # corresponds to the postulation of a word
boundary. Here the hypothetical learner correctly seg-
mented out two words, the and chase, but also falsely
segmented out dog, s, thec, and at, thus missing the
words dogs, the, and cat. This results in an accuracy
of 32 = 33.3% and a completeness of 3= = 40.0%.

With these measures in hand, we can compare the
performance of the SRNs trained in the coarticula-
tion and citation form conditions. Figure 3 shows
the accuracy and completeness scores for the two net-
works. The coarticulation SRN obtained an accuracy
of 25.27% and a completeness of 37.05%. The cita-
tion form SRN reached an accuracy of 24.33% and
a completeness of 40.24%. There were no signifi-
cant differences between the accuracy scores (x? =
0.42,p > .9) or the completeness scores (x2 =
2.46,p > .19). The SRN model of word segmentation
thus was able to cope successfully with variation in
the form of coarticulation, suggesting that it provides
a good basis for discovering word boundaries in input
that is closer to natural speech than the input used in

previous computational models . The next simulation
experiment investigates how the model fares when ex-
posed to additional segmental variation.

4. Experiment 2: Coping With Segmental
Variation

Individual segments of what is transcribed as the same
phoneme in reality vary considerably in their acoustic
realization. Earlier models have attempted to model
such segmental variation by flipping random features
with a certain probability (Cairns et al. 1997). How-
ever, the variation in acoustic realization does not oc-
cur randomly; rather, for any segment certain features
are more susceptible to change than others.

Taking this observation into account, we divided the
features for each phoneme into a set of core features
and a set of peripheral features. Whereas peripheral
features are prone to change, core features tend to be
more resistant because a change to the these would al-
ter the basic nature of the phoneme. For example, in
our feature encoding scheme, changing the voiced fea-
ture of a /p/ phoneme would result in a /b/ phoneme,
however, changing the continuant feature would only
result in unorthodox instance of /p/, rather than an-
other phoneme altogether. The peripheral features for
each phoneme were chosen such that a change to these
features for a given phoneme would not dramatically
impair its recognition in the dialect of American En-
glish transcribed in the Carterette & Jones (1974) cor-
pus. To capture segmental variation we created test
sets in which the peripheral features would be sub-
ject to change given a certain probability. Results
are presented from three sets of simulations in which
the probability of peripheral feature change was .01,
05, and .1, respectively. A phoneme on average has
1.9 peripheral features. Thus the chances for a given
phoneme to undergo segmental change is higher than
indicated by the above probabilities. The same is
true with respect to the chance of getting a segmen-
tal change in a particular word. Thus, in the three test
sets approximately 6%, 26% and 41% of the words
underwent segmental change.*

Figure 4 displays the results from testing the coar-
ticulation net and the citation form net on versions of
their respective test corpora with increasing degrees of
segmental variation. Both networks performed well
when exposed to these test corpora, only experienc-
ing nonsignificant decrements in performance as the
degree of variation increased. For the coarticulation
network accuracy scores decreased from 25.27% to
23.99 (x2 = .73,p = 1) and completeness scores
from 37.07% to 34.48% (x> = 1.62,p = 1); and

4The probability of segmental change in a word was calculated
as: 1 — (1 — p)N where p is the (independent) probability of
a phoneme undergoing a feature change (calculated by counting
the actual number of changed phonemes) and N is the number of
phonemes in a word (given an average of 3.22 phonemes per word
we used N = 3).
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Figure 4: Accuracy (left panel) and completeness (right panel) obtained by the coarticulation net (black bars)
and the citation form net (grey bars) under conditions of increasing segmental variation.

for the citation form network accuracy decreased from
24.33% to 23.25% (x2 = .60,p = 1), and complete-
ness from 40.24% to 37.72% (x? = 1.54,p = 1).
There was no significant difference at any point be-
tween the accuracy (p's > .9) or the completeness
(p's > .1) of the two networks. The coarticulation net
was able to cope successfully with a high degree of
segmental variation—even when as many as 41% of
the words underwent segmental change. These results
suggest that the model of speech segmentation intro-
duced in Christiansen et al. (in press) is not only able
to deal with coarticulation, but also with a high degree
of subsequent segmental variation.

5. Conclusion

The results from the two simulation experiments show
that our model performs well on the segmentation
task—despite being faced with input characterized by
considerable variation. This outcome is important be-
cause it demonstrates that the model provides a ro-
bust mechanism for the integration of multiple cues,
whereas previous models have not been shown to be
able to cope satisfactorily with coarticulation and seg-
mental variation. For example, although the connec-
tionist model by Cairns et al. (1997) was trained on
a corpus of conversational speech in which assimi-
lation and vowel reduction had been introduced into
the citation forms using a set of rewrite rules, it per-
formed poorly in comparison with the present model
(e.g., when pauses were included, their model discov-
ered 32% of the lexical boundaries whereas our model
discovered 79% of the lexical boundaries). Both sets
of results suggest that connectionist networks provide
a useful framework for investigating speech segmen-
tation under less than ideal circumstances. In con-
trast, it is not clear that other computational frame-
works can readily provide the basis for such investiga-
tions. For example, a statistical model such as Brent &

Cartwright (1996), which uses stored representations
of familiar lexical items to discover novel items for
subsequent memorization, would as a consequence of
coarticulation include several different phonological
versions of the same word into the lexicon. Given that
such statistical models tend to use phonemes as the
basic representational unit it is not clear how to inves-
tigate segmental variation save by a probabilistic pro-
cess of phoneme replacement. This would, however,
exacerbate the problem of creating multiple phonolog-
ical forms for the same underlying word.

Of course, there is much more to the variation in
the speech stream than we have addressed here. For
example, the input to our coarticulation nets varied in
terms of the individual phonemes making up a word
in different contexts, but in real speech coarticulation
also often results in featural changes across several
segments (e.g., the nasalization of the vowel segment
in can). Similarly, segmental variation also includes
combined changes among clusters of segments in ad-
dition to the independent changes in individual seg-
ments implemented in Experiment 2. Future work
must seek to bring the input to segmentation models
closer to the actual variations found in fluent speech,
and we have sought to take the first steps here.

Together, the results from the two experiments show
that after a initial period of exposure to input with
moderate variation (coarticulation), the SRN model
is subsequently able to cope with additional high de-
grees of segmental variation. The ability of the net-
work trained under relatively noisy conditions to per-
form under increasingly noisy conditions after train-
ing is not only an important demonstration of fault
tolerance. Developmental data also indicates that
early motherese is characterized by less variation than
speech directed to adults (Morgan, Shi & Allopenna
1996, Ratner 1996). Our model shows how relatively
careful (but far from perfect) speech characteristic of



motherese may provide a bootstrap to a more robust
segmentation mechanism which is then able to deal
with higher degrees of variation in subsequent devel-
opment.

The model upon which these experiments were
based also demonstrates how the language specific,
rule-like knowledge which we believe underlies both
the capacity to segment continuous speech and, in the
adult, to detect the naturalness of novel lexical items
(phonotactics) might emerge as a consequence of the
integration of multiple probabilistic sources of infor-
mation. The idea that such knowledge consists of in-
tegrated low level probability distributions is consis-
tent with a view of linguistic cognition in which repre-
sentations are a consequence of the interaction among
the mechanism in which they are instantiated and the
statistics of the language signal to which the speaker is
exposed (Seidenberg, Allen & Christiansen, this vol-
ume). The model’s ability to make predictions based
on novel sequences, for example, is a reflection of the
similarity metric among such novel sequences and the
set of sequences on which the model was trained. The
model’s sensitivity to these similarity metrics, and ex-
actly how they are constituted are of course a conse-
quence of the architecture used in the simulations.
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