
Improving Learning and Generalization
in Neural Networks through the
Acquisition of Multiple Related

Functions

Morten H. Christiansen

Program in Neural, Informational and Behavioral Sciences

University of Southern California

Los Angeles, CA 90089-2520, U.S.A.

Abstract

This paper presents evidence from connectionist simulations providing
support for the idea that forcing neural networks to learn several related
functions together results in both improved learning and better gener-
alization. More speci�cally, if a neural network employing gradient de-
scent learning is forced to capture the regularities of many semi-correlated
sources of information within the same representational substrate, it then
becomes necessary for it to only represent hypotheses that are consistent
with all the cues provided. When the di�erent sources of information are
su�ciently correlated the number of candidate solutions will be reduced
through the development of more e�cient representations. To illustrate
this, the paper draws briey on research in the neural network engineering
literature, while focusing on recent work on the segmentation of speech
using connectionist networks. Finally, some implications for language
acquisition of the present approach are discussed.

1 Introduction

Systems that learn from examples are likely to run into the problem of induction
|that is, given any �nite set of examples, there will always be a considerable
number of di�erent hypotheses consistent with the example set. However, many
of these hypotheses may not lead to correct generalization. The problem of in-
duction is pervasive in the domain of cognitive behavior|especially within the
�eld of language acquisition where it has promoted the inuential idea that
a child must bring a substantial amount of innate linguistic knowledge to the
acquisition process in order to avoid false generalizations (e.g., [7]). However,
this conclusion may be premature because it is based on a simplistic view of
computational mechanisms. Recent developments within connectionist mod-
eling have revealed that neural networks embody a number of computational
properties that may help constrain learning processes in appropriate ways.

This paper focuses on one such property, presenting evidence from con-
nectionist simulations that provides support for the idea that forcing neural
networks to learn several related functions together results in better learning
and generalization. First, learning with hints as applied in the neural network



engineering literature will be discussed. The following section addresses the
problem of learning multiple related functions within cognitive domains, using
word segmentation as an example. Next, an analysis of how learning multiple
functions may help constrain the hypothesis space that a learning system has
to negotiate. The conclusion suggests that the integration of multiple partially
informative cues may help develop the kind of representations necessary to ac-
count for acquisition data which have previously formed the basis for poverty
of stimulus arguments against connectionist and other learning-based models
of language acquisition.

2 Learning using hints

One way in which the problem of induction may be reduced for a system learn-
ing from examples is if it is possible to furnish the learning mechanism with
additional information which can constrain the learning process. In the neural
network engineering literature, this has come to be known as learning with
hints. Hints are ways in which additional information not present in the exam-
ple set may be incorporated into the learning process [1, 21], thus potentially
helping the learning mechanism overcome the problem of induction.

There are numerous ways in which hints may be implemented, two of which
are relevant for the purposes of the present paper: (a) The insertion of explicit
rules into networks via the pre-setting of weights [16]; and (b) the addition of
extra \catalyst" units encoding additional related functions [20, 21]. The idea
behind providing hints in the form of rule insertion is to place the network
in a certain part of weight space deemed by prior analysis to be the locus
of the most optimal solutions to the training task. The rules used for this
purpose typically encode information estimated by prior analysis to capture
important aspects of the target function. If the right rules are inserted, it will
reduce the number of possible weight con�gurations that the network has to
search through during learning. Catalyst hints are also introduced to reduce
the overall weight con�guration space that a network has to negotiate, but
this reduction is accomplished by forcing the network to acquire one or more
additional related functions encoded over extra output units. These units are
often ignored after they have served their purpose during training (hence the
name \catalyst" hint). The learning process is facilitated by catalyst hints
because fewer weight con�gurations can accommodate both the original target
function as well as the additional catalyst function(s) (as will be explained in
more detail below). As a consequence of reducing the weight space, both types
of hints have been shown to constrain the induction problem, promoting faster
learning and better generalization.

Mathematical analyses in terms of the Vapnik-Chervonenkis (VC) dimen-
sion [2] and vector �eld analysis [21] have shown that learning with hints may
reduce the number of hypotheses a learning system has to entertain. The VC
dimension establishes an upper bound for the number of examples needed by
a learning process that starts with a set of hypotheses about the task solu-



tion. A hint may lead to a reduction in the VC dimension by weeding out
bad hypotheses and reduce the number of examples needed to learn the solu-
tion. Vector �eld analysis uses a measure of \functional" entropy to estimate
the overall probability for correct rule extraction from a trained network. The
introduction of a hint may reduce the functional entropy, improving the proba-
bility of rule extraction. The results from this approach demonstrate that hints
may constrain the number of possible hypotheses to entertain, and thus lead
to faster convergence.

In sum, these mathematical analyses have revealed that the potential ad-
vantage of using hints in neural network training is twofold: First, hints may
reduce learning time by reducing the number of steps necessary to �nd an ap-
propriate implementation of the target function. Second, hints may reduce the
number of candidate functions for the target function being learned, thus poten-
tially ensuring better generalization. As mentioned above, in neural networks
this amounts to reducing the number of possible weight con�gurations that the
learning algorithm has to choose between1. However, it should be noted that
there is no guarantee that a particular hint will improve performance. Never-
theless, in practice this does not appear to pose a major problem because hints
are typically carefully chosen to reect important and informative aspects of
the original target function.

From the perspective of language acquisition we can construe rule-insertion
hints as analogous to the kind of innate knowledge prescribed by theories of
Universal Grammar (e.g., [7]). Although this way of implementing a Universal
Grammar is an interesting topic in itself (see [17] for a discussion) and may
potentially provide insights into whether this approach could be implemented
in the brain, the remainder of this paper will focus on learning with catalyst
hints because this approach may provide learning-based solutions to certain
language acquisition puzzles. In particular, this conception of learning allows
for the possibility that the simultaneous learning of related functions may pose
signi�cant constraints on the acquisition process by reducing the number of
possible candidate solutions.

Having thus established the potential advantages of learning with hints in
neural networks, we can now apply the idea of learning using catalyst units
to the domain of language acquisition|exempli�ed by the task of learning to
segment the speech stream.

3 Learning multiple related functions in
language acquisition

The input to the language acquisition process|often referred to as motherese|
comprises a complex combination of multiple sources of information. Clusters
of such information sources appear to inform the learning of various linguistic

1It should be noted that the results of the mathematical analyses apply independently of
whether the extra catalyst units are discarded after training (as is typical in the engineering
literature) or remain a part of the network as in the simulations presented below.



tasks (see contributions in [15]). Individually, each source of information, which
will be referred to as a cue, is only partially reliable with respect to the task in
question. Consider the task of locating words in uent speech.

Speech segmentation is a di�cult problem because there are no direct cues
to word boundaries comparable to the white spaces between words in written
text. Instead the speech input contains numerous sources of information, each
of which is probabilistic in nature. Here I discuss three such cues which have
been hypothesized to provide useful information with respect to locating word
boundaries: (a) phonotactics in the form of phonological regularities [18], (b)
utterance boundary information [4, 5], and (c) lexical stress [11]. As an example
consider the two unsegmented utterances:

Therearenospacesbetweenwordsinuentspeech#

Yeteachchildseemstograspthebasicsquickly#

(a) The sequential regularities found in the phonology (here represented
as orthography) can be used to determine where words may begin or end.
For example, the consonant cluster sp can be found both at word beginnings
(spaces and speech) and at word endings (grasp). However, a language learner
cannot rely solely on such information to detect possible word boundaries, as
evident when considering that the sp consonant cluster also can straddle a word
boundary, as in catspajamas, and occur word internally as in respect.

(b) The pauses at the end of utterances (indicated above by #) also provide
useful information for the segmentation task. If children realize that sound se-
quences occurring at the end of an utterance must also be the end of a word,
then they can use information about utterance �nal phonological sequences to
postulate word boundaries whenever these sequences occur inside an utterance.
Thus, in the example above knowledge of the rhyme eech# from the �rst ut-
terance can be used to postulate a word boundary after the similar sounding
sequence each in the second utterance. As with phonology, utterance bound-
ary information cannot be used as the only source of information about word
boundaries because some words, such as the determiner the, rarely, if ever,
occur at the end of an utterance.

(c) Lexical stress is another useful cue to word boundaries. Among the di-
syllabic words in English, most take a trochaic stress pattern with a strongly
stressed syllable followed by a weakly stressed syllable. The two utterances
above include four such words: spaces, uent, basics, and quickly. Word bound-
aries can thus be postulated following a weak syllable, but, once again, this
source of segmentation information is only partially reliable because in the
above example there is also a disyllabic word with the opposite iambic stress
pattern: between.

Returning to the notion of learning with hints, we can usefully construe
word segmentation in terms of two simultaneous learning tasks [9]. For chil-
dren acquiring their native language, the goal is presumably to comprehend
the utterances to which they are exposed for the purpose of achieving speci�c
outcomes. In the service of this goal the child pays attention to the linguistic
input. Recent studies [18, 19] have shown that adults, children and 9-month old
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(which are always 1). The SRN had 14 input units, 36 output units and 80 hid-
den/context units.

infants cannot help but incidentally encode the statistical regularities in the in-
put. This task of encoding statistical regularities governing the individual cues
will be referred to as the immediate task. In the case of word segmentation,
phonology, utterance boundary information, and lexical stress would be some
of the more obvious cues to attend to. On the basis of the acquired represen-
tations of these regularities the learning system may derive knowledge about
aspects of the language for which there is no single reliable cue in the input.
This means that the individual cues may be integrated and serve as hints to-
wards the derived task of detecting word boundaries in the input. In other
words, the hints represent a set of related functions which together may help
solve the derived task.

This is illustrated by the account of early word segmentation developed in
[9]. A Simple Recurrent Network [12] was trained on a single pass through a
corpus consisting of 8181 utterances of child directed speech. These utterances
were extracted from the Korman corpus [13] (a part of the CHILDES database
[14]) consisting of speech directed at pre-verbal infants aged 6{16 weeks. The
training corpus consisted of 24,648 words distributed over 814 types (type-
token ratio = .03) and had an average utterance length of 3.0 words (see [9] for
further details). A separate corpus consisting of 927 utterances and with the
same statistical properties as the training corpus was used for testing. Each
word in the utterances was transformed from its orthographic format into a
phonological form and lexical stress assigned using a dictionary compiled from
the MRC Psycholinguistic Database available from the Oxford Text Archive2.

As input the network was provided with di�erent combinations of three cues
dependent on the training condition. The cues were (a) phonology represented
in terms of 11 features on the input and 36 phonemes on the output3, (b) ut-

2Note that these phonological citation forms are unreduced (i.e., they do not include the
reduced vowel schwa). The stress cue therefore provides additional information not available
in the phonological input.

3Phonemes were used as output in order to facilitate subsequent analyses of how much
knowledge of phonotactics the net had acquired.
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terance boundary information represented as an extra feature (UBM) marking
utterance endings, and (c) lexical stress coded over two units as either no stress,
secondary or primary stress. Figure 1 provides an illustration of the network.

The network was trained on the immediate task of predicting the next
phoneme in a sequence as well as the appropriate values for the utterance
boundary and stress units. In learning to perform this task it was expected
that the network would also learn to integrate the cues such that it could carry
out the derived task of segmenting the input into words. On the reasonable as-
sumption that phonology is the basic cue to word segmentation, the utterance
boundary and lexical stress cues can then be considered as extra catalyst units,
providing hints towards the derived task.

With respect to the network, the logic behind the derived task is that the
end of an utterance is also the end of a word. If the network is able to integrate
the provided cues in order to activate the boundary unit at the ends of words
occurring at the end of an utterance, it should also be able to generalize this
knowledge so as to activate the boundary unit at the ends of words which occur
inside an utterance [4]. Figure 2 shows a snapshot of SRN segmentation perfor-
mance on the �rst 37 phoneme tokens in the training corpus. Activation of the
boundary unit at a particular position corresponds to the network's hypothesis
that a boundary follows this phoneme. Grey bars indicate the activation at
lexical boundaries, whereas the black bars correspond to activation at word
internal positions. Activations above the mean (horizontal line) are interpreted
as the postulation of a word boundary. As can be seen from the �gure, the
SRN performed well on this part of the training set, correctly segmenting out
all of the 12 words save one (/slipI/ = sleepy).
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Figure 4: Percentage of novel words correctly segmented (word completeness) for the

net trained with three cues (phon-ubm-stress { black bar) and the net trained with

two cues (phon-ubm { grey bar).

able to segment 23 of the 50 novel words, whereas the two cue network only was
able to segment 11 novel words. Thus, the phon-ubm-stress network achieved
a word completeness of 46% which was signi�cantly better (�2 = 4:23; p < :05)
than the 22% completeness obtained by the phon-ubm net. These results there-
fore supports the supposition that the integration of three cues promotes better
generalization than the integration of two cues.

Overall, these simulation results from [9] show that the integration of prob-
abilistic cues forces the networks to develop representations that allow them to
perform quite reliably on the task of detecting word boundaries in the speech
stream4. The comparisons between the nets provided with one and two addi-
tional related cues in the form of catalyst units, demonstrate that the availabil-
ity of the extra cue results in the better learning and generalization. This result
is encouraging given that the segmentation task shares many properties with
other language acquisition problems which have been taken to require innate
linguistic knowledge for their solution, and yet it seems clear that discovering
the words of one's native language must be an acquired skill.

4 Constraining the hypothesis space

The integration of the additional cues provided by the catalyst units signi�-
cantly improved network performance on the derived task of word segmenta-
tion. We can get insight into why such hints may help the SRN by considering
one of its basic architectural limitations, originally discovered in [10]; namely
that SRNs tend only to encode information about previous subsequences if this
information is locally relevant for making subsequent predictions. This means
that the SRN has problems learning sequences in which the local dependencies
are essentially arbitrary. For example, results in [6] show that the SRN per-
forms poorly on the task of learning to be a delay-line; that is, outputting the

4These results were replicated across di�erent initial weight con�gurations and with dif-
ferent input/output representations.
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Figure 6: An abstract illustration of the reduction in weight con�guration space

which follows as a product of accommodating several partially overlapping cues within

the same representational substrate.

information), but was only required to make predictions for two of these cues;
that is, for the phonology and utterance boundary cues. All other simulation
details were identical to [9].

Figure 5 provides a comparison between the network provided with three in-
put/two output cues and the earlier presented phon-ubm-stress network which
received three input/output cues. The latter network was both signi�cantly
more accurate (42.71% vs. 29.44%: �2 = 118:81; p < :001) and had a signi�-
cantly higher completeness score (44.87% vs. 33.95%: �2 = 70:46; p < :001).
These additional results demonstrate that it is indeed the integration of the
extra stress cue with respect to the prediction task, rather than the availability
of this cue in the input, which is driving the process of successful integration
of cues. Cue integration via catalyst units thus seems to be able to constrain
the set of hypotheses that the SRN can successfully entertain.

4.1 Reducing weight space search

We can conceptualize the e�ect that the cue integration process has on learning
by considering the following illustration. In Figure 6, each ellipse designates
for a particular cue the set of weight con�gurations which will enable a network
to learn the function denoted by that cue. For example, the ellipse marked A
designates the set of weight con�gurations which allow for the learning of the
function A described by the A cue. With respect to the simulation reported
above, A, B and C can be construed as the phonology, utterance boundary,
and lexical stress cues, respectively.

If a gradient descent network was only required to learn the regularities
underlying, say, the A cue, it could settle on any of the weight con�gurations
in the A set. However, if the net was also required to learn the regularities
underlying cue B, it would have to �nd a weight con�guration which would
accommodate the regularities of both cues. The net would therefore have to
settle on a set of weights from the intersection between A and B in order to
minimize its error. This constrains the overall set of weight con�gurations that



the net has to choose between|unless the cues are entirely overlapping (in
which case there would not be any added bene�t from learning this cue) or
are disjoint (in which case the net would not be able to �nd an appropriate
weight con�guration). If the net furthermore had to learn the regularities
associated with the third cue C, the available set of weight con�gurations would
be constrained even further.

Thus, the introduction of cues via catalyst units may reduce the size of the
weight space that a network has to search for an appropriate set of weights.
And since the cues designate functions which correlate with respect to the
derived task, the reduction in weight space is also likely to provide a better
representational basis for solving this task and lead to better learning and
generalization.

5 Conclusion

This paper has presented evidence in support of the idea that the integration of
multiple su�ciently correlated, partially informative cues may constrain learn-
ing and over-generalization. In this connection, results from an SRN model
of word segmentation was presented which was able to achieve a high level of
performance on a derived task for which there is no single reliable cue. This
SRN model has also recently been shown to be able to successfully deal with
variations in the speech input in terms of coarticulation and high degrees of
segmental variation [8].

The approach presented here may have rami�cations outside the domain
of speech segmentation insofar as children readily learn aspects of their lan-
guage for which traditional theories suggest that there is insu�cient evidence
(e.g., [7]). The traditional answer to this poverty of the stimulus problem is
that knowledge of such aspects of language is speci�ed by an innate Univer-
sal Grammar. A more compelling solution may lie in the integration of cues
as exempli�ed in the word segmentation model. Since recent research has re-
vealed that higher level language phenomena also appear to involve a variety
of probabilistic cues [15], the integration of such cues may provide a su�cient
representational basis for the acquisition of other kinds of linguistic structure
through derived tasks.
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