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Abstract

Traditionally, it has been assumed that rules are necessary to
explain language acquisition. Recently, Marcus, Vijayan, Rao,
& Vishton (1999) have provided behavioral evidence which
they claim can only be explained by invoking algebraic rules.
In the first part of this paper, we show that contrary to these
claims an existing simple recurrent network model of word
segmentation can fit the relevant data without invoking any
rules. Importantly, the model closely replicates the experimen-
tal conditions, and no changes are made to the model to ac-
commodate the data. The second part provides a corpus anal-
ysis inspired by this model, demonstrating that lexical stress
changes the basic representational landscape over which statis-
tical learning takes place. This change makes the task of word
segmentation easier for statistical learning models, and further
obviates the need for lexical stress rules to explain the bias to-
wards trochaic stress patterns in English. Together the connec-
tionist simulations and the corpus analysis show that statistical
learning devices are sufficiently powerful to eliminate the need
for rules in an important part of language acquisition.

Introduction
One of the basic questions in cognitive science pertains to
whether or not explicit rules are necessary to account for com-
plex behavior. Nowhere has the debate over rules been more
heated than within the study of language acquisition. Tradi-
tionally, generative grammarians have postulated the need for
rules in order to account for the patterns found in natural lan-
guages (Chomsky & Halle, 1968). In addition, much of the
acquisition literature within this framework requires the child
to map underlying representations to a surface realization via
rules (Smith, 1973; Macken, 1980). On this account, statisti-
cal learning is assumed to play little or no role in the acquisi-
tion process; instead, abstract rules have been claimed to con-
stitute the fundamental basis of language acquisition and pro-
cessing. Recently, an alternative approach has emerged em-
phasizing the role of statistical learning in both the acquisition
and processing of language. A growing body of research have
explored the power of statistical learning in infancy from both
behavioral (e.g., Saffran, Aslin, Newport, 1996) and compu-
tational perspectives (e.g., Brent & Cartwright, 1996; Chris-
tiansen, Allen & Seidenberg, 1998). This line of research
has demonstrated the viability of statistical learning; includ-
ing cases that were previously thought to require the acqui-
sition of rules and cases for which the input was thought to
be too impoverished for learning to take place. In this paper,
we extend this research within the area of early infant speech
segmentation, providing further evidence against the need for
algebraic rules in language acquisition.

Within the traditional rule-based approach Marcus, Vi-
jayan, Rao, & Vishton (1999) have recently presented results
from experiments with 7-month-old infants apparently show-
ing that they acquire abstract algebraic rules after two minutes
of exposure to habituation stimuli. Marcus et al. further claim
that statistical learning models—including the simple recur-
rent network (SRN; Elman, 1990)—are unable to fit their ex-
perimental data. In the first part of this paper we show that
knowledge acquired in the service of learning to segment the
speech stream can be recruited to carry out the kind of clas-
sification task used in the experiment by Marcus et al. For
this purpose we took an existing model of early infant speech
segmentation (Christiansen et al., 1998) and used it to simu-
late the results obtained by Marcus et al. Crucially, our sim-
ulations do not focus on the phonological output of the net-
work, but rather seek to determine whether the network devel-
ops on-line internal representations—that is, transient hidden
unit patterns—which can form the basis for reliable classifi-
cation of input patterns. Stimulus classification then becomes
a signal detection problem based on the internal representa-
tion, and the preference for one type of stimuli over another is
explained in terms of differential segmentation performance.
Thus, no rules are needed to account for the data; rather, sta-
tistical knowledge related to word segmentation can explain
the rule-like behavior of the infants in the Marcus et al. study.

In the second part of the paper we turn our attention to
another claim about the necessity of rules in language acqui-
sition. Within the area of the acquisition of lexical stress re-
searchers have debated whether children learn stress by rule
or lexically (Hochberg 1988; Klein, 1984). The evidence so
far appears to support the claim that children learn stress by
rule (Hochberg, 1988) or by setting a parameter in an abstract
rule-based system (Fikkert, 1994). In contrast, the segmenta-
tion model of Christiansen et al. (1998) acquires lexical stress
through statistical learning. The superior performance of the
model when provided with lexical stress information, sug-
gests that lexical stress may change the basic representational
landscape from which the SRN acquires the statistical regu-
larities relevant for the word segmentation task. We investi-
gate this suggestion through the means of a corpus analysis.
The results demonstrate that representational changes caused
by lexical stress facilitate learning and obviate the need for
rules to explain lexical stress acquisition. Together the re-
sults from the corpus analysis and the connectionist simula-
tions suggest that statistical learning is sufficiently powerful
to avoid the postulation of abstract rules—at least within the
area of speech segmentation.



Rule-Like Behavior without Rules
Marcus et al. (1999) used an artificial language learning
paradigm to test their claim that the infant has two mecha-
nisms for learning language, one that uses statistical informa-
tion and another which uses algebraic rules. They conducted
three experiments which tested infants’ ability to generalize
to items not presented in the familiarization phase of the ex-
periment. They claim that because none of the test items ap-
peared in the habituation part of the experiment the infants
would not be able to use statistical information.

The subjects in Marcus et al. (1999) were seven-month
old infants randomly placed in an experimental condition. In
the first two experiments, the conditions were ABA or ABB.
Each word in the sentence frame ABA or ABB consisted of a
consonant and vowel sequence (e.g., “li wi li” or “li wi wi”).
During the two-minute long familiarization phase the infants
were exposed to three repetitions of each of 16 three-word
sentences. The test phase in both experiments consisted of
12 sentences made up of words the infants had not previously
been exposed to. The test items were broken into 2 groups
for both experiments: consistent (items constructed with the
same grammar as the familiarization phase) and inconsistent
(constructed from the grammar the infants were not trained
on). In the second experiment the test items were altered in
order to control for an overlap of phonetic features found in
the first experiment. This was to prevent the infants from us-
ing this type of statistical information. The results of the first
and second experiments showed that the infants preferred the
inconsistent test items over the consistent ones. In the third
experiment, which we focus on in this paper, the ABA gram-
mar was replaced with an AAB grammar. The rationale was
to ensure that infants could not distinguish between gram-
mars based solely on reduplication information. Once again,
the infants preferred the inconsistent items over the consistent
items.

The conclusion drawn by Marcus et al. (1999) was that a
system which relied on statistical information alone could not
account for the results. In addition, they claimed that a SRN
would not be able to model their data because of the lack
of phonological overlap between habituation and test items.
Specifically, they state,

Such networks can simulate knowledge of grammatical
rules only by being trained on all items to which they
apply; consequently, such mechanisms cannot account
for how humans generalize rules to new items that do
not overlap with the items that appeared in training (p.
79).

We demonstrate that SRNs can indeed fit the data from Mar-
cus et al. Crucially, we do not build a new model to accommo-
date the results (see Elman, 1999, for a simulation of experi-
ment 21), but take an existing SRN model of speech segmen-
tation (Christiansen et al., 1998) and show how this model—
without additional modification—provides an explanation for
the results.

1It is not clear that these simulation results can be extended to
Experiment 3 because this SRN was trained to activate a unit when
reduplication occurred. In Experiment 3, however, both conditions,
and therefore both types of test items, contain reduplication and
hence cannot be distinguished on the basis of reduplication alone.
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Figure 1: Illustration of the SRN used in Christiansen et al.
(1998). Solid lines indicate trainable weights, whereas the
dashed line denotes the copy-back weights (which are always
1). U-B refers to the unit coding for the presence of an utter-
ance boundary.

Simulations

The model by Christiansen et al. (1998) was developed as
an account of early word segmentation. An SRN was trained
on a single pass through a corpus consisting of 8181 utter-
ances of child directed speech. These utterances were ex-
tracted from the Korman (1984) corpus of British English
speech directed at pre-verbal infants aged 6-16 weeks (a part
of the CHILDES database, MacWhinney, 1991). The train-
ing corpus consisted of 24,648 words distributed over 814
types (type-token ratio = .03) and had an average utterance
length of 3.0 words (see Christiansen et al. for further de-
tails). A separate corpus consisting of 927 utterances and
with the same statistical properties as the training corpus was
used for testing. Each word in the utterances was transformed
from its orthographic format into a phonological form and
lexical stress assigned using a dictionary compiled from the
MRC Psycholinguistic Database available from the Oxford
Text Archive2.

As input the network was provided with different combina-
tions of three cues dependent on the training condition. The
cues were (a) phonology represented in terms of 11 features
on the input and 36 phonemes on the output3, (b) utterance
boundary information represented as an extra feature mark-
ing utterance endings, and (c) lexical stress coded over two
units as either no stress, secondary or primary stress. Figure
1 provides an illustration of the network.

The network was trained on the task of predicting the next
phoneme in a sequence as well as the appropriate values for
the utterance boundary and stress units. In learning to per-
form this task it was expected that the network would also
learn to integrate the cues such that it could carry out the task
of segmenting the input into words.

With respect to the network, the logic behind the segmen-
tation task is that the end of an utterance is also the end of a
word. If the network is able to integrate the provided cues in

2Note that these phonological citation forms were unreduced
(i.e., they did not include the reduced vowel schwa). The stress
cue therefore provided additional information not available in the
phonological input.

3Phonemes were used as output in order to facilitate subsequent
analyses of how much knowledge of phonotactics the net had ac-
quired.



order to activate the boundary unit at the ends of words oc-
curring at the end of an utterance, it should also be able to
generalize this knowledge so as to activate the boundary unit
at the ends of words which occur inside an utterance (Aslin,
Woodward, LaMendola & Bever, 1996).

Classification as a Secondary Signal Detection Task
The Christiansen et al. (1998) model acquired distributional
knowledge about sequences of phonemes and the associated
stress patterns. This knowledge allowed it to perform well on
the task of segmenting the speech stream into words. We sug-
gest that this knowledge can be put to use in secondary tasks
not directly related to speech segmentation—including artifi-
cial tasks used in psychological experiments such as Marcus
et al. (1999). This suggestion resonates with similar perspec-
tives in the word recognition literature (Seidenberg, 1995)
where knowledge acquired for the primary task of learning
to read can be used to perform other secondary tasks such as
lexical decision.

Marcus et al. (1999) state that they conducted simulations
in which SRNs were unable to fit the experimental data. As
they do not provide any details of the simulations, we assume
(based on other simulations reported by Marcus, 1998) that
these focused on some kind of phonological output that the
SRNs produced. Given our characterization of the experi-
mental task as a secondary task, we do not think that the
basis for the infants’ differentiation between consistent and
inconsistent stimuli should be modeled using the phonolog-
ical output of an SRN. Instead, it should primarily be based
on the internal representations generated during the process-
ing of a sentence. On our account, the differentiation of the
two stimulus types becomes a signal detection task involving
the internal representation of the SRN (though we shall see
below that a part of the non-phonological output can explain
why the inconsistent items elicited longer looking-times).

Method Network. We used the SRN from Christiansen et
al. (1998) trained on all three cues.

Materials. The materials from Experiment 3 in Marcus et
al. (1999) were transformed into the phoneme representation
used by Christiansen et al. Two habituation sets were cre-
ated in this manner: one for AAB items and one for ABB
items. The habituation sets used here, and in Marcus et al.,
consisted of 3 blocks of 16 sentences in random order, yield-
ing a total of 48 sentences. Each sentence contained 3 mono-
syllabic nonsense words. As in Marcus et al. there were four
different test trials: “ba ba po”, “ko ko ga” (consistent with
AAB), “ba po po” and “ko ga ga” (consistent with ABB). The
test set consisted of three blocks of randomly ordered test tri-
als, totaling 12 test sentences. Both the habituation and test
sentences were treated as a single utterance with no explicit
word boundaries marked between the individual words. The
end of the utterance was marked by activating the utterance
boundary unit.

Procedure. The network was habituated by providing
it with a single pass through the habituation corpus—one
phoneme at a time—with learning parameters identical to the
ones used originally in Christiansen et al. (1998) (i.e., learn-
ing rate = .1 and momentum = .95). The test set was presented
to the network (with the weights “frozen”) and the hidden
unit activation for the final input phoneme in each test sen-

tence was recorded. Given the processing architecture of the
SRN, the activation pattern over the hidden units at this point
provides a representation of the sentence as a whole; that is,
a compressed version of the sequence of hidden unit states
that the SRN has gone through during the processing of the
sentence. Each hidden unit representation constitutes an 80-
dimensional vector.

Result and Discussion We used discriminant analysis
(Cliff, 1987; see Christiansen & Chater, in press, for an ear-
lier application to SRNs) to determine whether the hidden
unit representations contained sufficient information to dis-
tinguish between the consistent and inconsistent items for a
given habituation condition. The 12 vectors were divided into
two groups depending on whether they were recorded for an
AAB or ABB test item. The vectors were entered into a dis-
criminant analysis to determine whether they contained suffi-
cient information to be linearly separated into the relevant two
groups. As a control, we randomly re-assigned three vectors
from each group to the other group such that our random con-
trols cut across the two original groupings (i.e., both random
groups contained three AAB and three ABB vectors).

The results from both the AAB and ABB habituation con-
ditions showed significant separation of the correct vectors
(df = 5; p < :001; df = 6; p < :001), but not for the random
controls (df = 6; p = :3589; df = 6; p = :4611). Conse-
quently, it was possible on the basis of the hidden unit rep-
resentation derived from the model to correctly predict the
appropriate group membership of the test items at 100% ac-
curacy in both conditions. However, for the random control
items in both conditions the accuracy (83.3%) was not signif-
icantly different from chance.

The superficially high classification of the random vec-
tors is due to the high number of hidden units (80) and the
low number of test items (6) in each group. This increases
the probability that a random variable may provide informa-
tion that can distinguish between the two random groups by
chance. Nonetheless, the significance statistics suggest that
only the original correct grouping of hidden unit patterns con-
tain sufficient information for the reliable categorization of
the items. This information can be used by the network to
distinguish between the consistent and inconsistent test items.
Similarly, we argue that infants may have access to same type
of information on which they can classify the test items pre-
sented to them in the Marcus et al. (1999) study.

Explaining the Preference for Inconsistent Items
The results from the discriminant analyses demonstrate that
no algebraic rules are necessary to account for the differen-
tial classification of consistent and inconsistent items in Ex-
periment 3 of Marcus et al. (1999). However, the question
remains as to why the infants looked longer at the inconsis-
tent items compared to the consistent items. To address this
question we looked at the activation of the non-phonological
output unit coding for utterance boundaries. Christiansen et
al. (1998) used the activation of this unit as an indication
of predicted word boundaries. Our prediction for the current
simulations was that the SRN should show a differential abil-
ity to predict word boundaries for the words in the two test
conditions. As in Christiansen et al., we used accuracy and
completeness scores (Brent & Cartwright, 1996) as a quanti-



tative measure of segmentation performance.

Accuracy =
Hits

Hits + False Alarms
(1)

Completeness =
Hits

Hits + Misses
(2)

Accuracy provides a measure of how many of the words that
the network postulated were actual words, whereas complete-
ness provides a measure of how many of the actual words in
the test sets that the net discovered. Consider the following
hypothetical utterance example:

# t h e # d o g # s # c h a s e # t h e c # a t #

where # corresponds to a predicted word boundary. Here the
hypothetical learner correctly segmented out two words, the
and chase, but also falsely segmented out dog, s, thec, and at,
thus missing the words dogs, the, and cat. This results in an
accuracy of 2/(2+4) = 33.3% and a completeness of 2/(2+3)
= 40.0%.

Given these performance measures, Christiansen et al.
(1998) found that the network trained with all three cues
(phonology, stress and utterance boundary information)
achieved an accuracy of 42.71% and a completeness of
44.87%. So, nearly 43% of the words the network segmented
out were actual words and it segmented out nearly 45% of the
words in the test corpus. We used the same method to com-
pare how well the network segmented the words in the test
sentences from Marcus et al. (1999).

Method Network and Materials. Same as in the previous
simulation.

Procedure. The network habituated in the previous simu-
lation was retested on the test set (with the weights “frozen”)
and the output for the utterance boundary unit was recorded
for every phoneme input. For each habituation condition, the
output was divided into two groups dependent on whether
the trials were consistent or inconsistent with the habituation.
For each habituation condition, the activation of the boundary
unit was recorded across all items and the mean activation
was calculated. For a given habituation condition, the net-
work was said to have postulated a word boundary whenever
the boundary unit activation was above the mean.

Results and Discussion Word boundaries were posited
more accurately for the inconsistent items across both condi-
tions (80.00% and 75.00%) than for the consistent items. The
scores for word completeness were also higher for the incon-
sistent items (see Table 1). The results indicate that overall
there was better segmentation of the inconsistent items. This
suggests that the inconsistent items would stand out more
clearly and thus may explain why the infants looked longer
towards the speaker playing the inconsistent items in the Mar-
cus et al. (1999) study.

There was a clear effect of habituation on the segmentation
performance of the model in the present study compared to
the model’s performance in Christiansen et al. (1998) where
scores were generally lower on both measures. However, in
Christiansen et al. the average number of phonemes per word
was three, whereas the average number in the current study
was only two phonemes per word, thus making the present
task easier.

Table 1: Word completeness and accuracy for consistent and
inconsistent items in the two habituation conditions.

AAB Condition ABB Condition
Con. Incon. Con. Incon.

Accuracy 75.00% 80.00% 66.67% 75.00%
Completeness 50.00% 66.67% 44.44% 50.00%
Note. Con. = Consistent items; Incon. = Inconsistent items.

The simulations show how an existing SRN model of word
segmentation can fit the data from Marcus et al. (1999) with-
out invoking explicit rules. The SRN had learned to in-
tegrate the regularities governing the phonological, lexical
stress, and utterance boundary information in child-directed
speech. This form of statistical learning enabled it to fit the
infant data. In this context, the positive impact of lexical
stress information on network performance (as reported in
Christiansen et al. 1998) suggests that lexical stress changes
the representational landscape over which statistical learning
takes place. As we shall see next, this removes the need for
lexical stress rules to explain the strong/weak (trochaic) bias
in English over weak/strong (iambic).

Taking Advantage of Lexical Stress without
Rules

Evidence from infant research has shown that infants between
one and four months are sensitive to changes in stress pat-
terns (Jusczyk & Thompson, 1978). Additionally, researchers
have found that English infants have a trochaic bias at nine-
months of age yet this preference does not appear to exist at
six-months (Jusczyk, Cutler & Redanz, 1993). This suggests
that at some time between 6 and 9 months of age, infants be-
gin to orient to the predominant stress pattern of the language.
One might then assume that if the infant does not have a rule-
like representation of stress that assigns a trochaic pattern to
syllables, then he/she cannot take advantage of lexical stress
information in the segmenting of speech.

The arguments put forth in the literature for rules are based
on the production data of children, and based on these pro-
ductions, it has been shown that word-level (lexical) stress
is acquired through systematic stages of development across
languages and children (Fikkert, 1994; Demuth & Fee, 1995).
If children are learning stress without the use of rules, then
systematic stages would not be expected. In other words,
due to the consistent patterns of children’s productions, a rule
must be postulated in order to account for the data (Hochberg,
1988). However, we believe that this conclusion is prema-
ture. Drawing on research on the perceptual and distribu-
tional learning abilities of infants, we present a corpus analy-
sis investigating how lexical stress may contribute to statisti-
cal learning and how this information can help infants group
syllables into coherent word units. The results suggest that
infants need not posit rules to perform these tasks.



Stress Changes the Representational Landscape: A
Corpus Analysis
Infants are sensitive to the distributional (Saffran et al., 1996)
and stress related (Jusczyk & Thompson, 1978) properties
of language. We suggest that infants’ perceptual differenti-
ation of stressed and unstressed syllables result in a repre-
sentational differentiation of the two types of syllables. The
same syllable is represented differently depending on whether
it is stressed or unstressed. This changes the representational
landscape, and we employ a corpus analysis to demonstrate
how this facilitates the task of speech segmentation.

Method Materials. For the corpus analysis we used the
Korman (1984) corpus that Christiansen et al. (1998) had
transformed into a phonologically transcribed corpus with in-
dications of lexical stress. Their training corpus forms the
basis for our analyses. We note that in child-directed speech
there appears to be little differentiation in lexical stress be-
tween function and content words (at least at the level of ab-
straction we are representing here; Bernstein-Ratner, 1987;
see Christiansen et al. for a discussion). Function words
were therefore encoded as having primary stress. We further
used a whole syllable representation to simplify our analysis,
whereas Christiansen et al. used single phoneme representa-
tions.

Procedure. All 258 bisyllabic words were extracted from
the corpus. For each bisyllabic word we recorded two bi-
syllabic nonwords. One consisted of the last syllable of the
previous word (which could be a monosyllabic word) and
the first syllable of the bisyllabic word, and one of the sec-
ond syllable of the bisyllabic word and the first syllable of
the following word (which could be a monosyllabic word).
For example, for the bisyllabic word /slipI/ in /A ju eI slipI
hed/ we would record the bisyllables /eIsli/ and /pIhed/. We
did not record bisyllabic nonwords that straddled an utter-
ance boundary as they are not likely to be perceived as a
unit. Three bisyllabic words only occurred as single word ut-
terances, and, as a consequence, had no corresponding non-
words. These were therefore omitted from further analysis.
For each of the remaining 255 bisyllabic words we randomly
chose a single bisyllabic nonword for a pairwise comparison
with the bisyllabic word. Two versions of the 255 word-
nonword pairs were created. In one version, the stress condi-
tion, lexical stress was encoded by adding the level of stress
(0-2) to the representation of a syllable (e.g., /sli/ ! /sli2/).
This allows for differences in the representations of stressed
and unstressed syllables consisting of the same phonemes. In
the second version, the no-stress condition, no indication of
stress was included in the syllable representations.

Our hypothesis suggests that lexical stress changes the ba-
sic representational landscape over which infants carry out
their statistical analyses in early speech segmentation. To op-
erationalize this suggestion we have chosen to use mutual in-
formation (MI) as the dependent measure in our analyses. MI
is calculated as:

MI = log

�
P (X;Y )

P (X)P (Y )

�
(3)

and provides an information theoretical measure of how sig-
nificant it is that two elements, X and Y , occur together

Table 2: Mutual information means for words and nonwords
in the two stress conditions.

Condition Words Nonwords
Stress 4.42 -0.11
No-stress 3.79 -0.46

Table 3: Mutual information means for words and nonwords
from the stress condition as a function of stress pattern.

Stress Pattern Words Nonwords No. of Words
Trochaic 4.53 -0.11 209
Iambic 4.28 -0.04 40
Dual 1.30 -1.02 6

given their individual probabilities of occurrence. Simplify-
ing somewhat, we can use MI to provide a measure of how
strongly two syllables form a bisyllabic unit. If MI is posi-
tive, the two syllables form a strong unit: a good candidate
for a bisyllabic word. If, on the other hand, MI is negative,
the two syllables form an improbable candidate for bisyllabic
word. Such information could be used by a learner to inform
the process of deciding which syllables form coherent units
in the speech stream.

Results and Discussion The first analysis aimed at investi-
gating whether the addition of lexical stress significantly al-
ters the representational landscape. A pairwise comparison
between the bisyllabic words in the two conditions showed
that the addition of stress resulted in a significantly higher MI
mean for the stress condition (t(508) = 2:41; p < :02)—see
Table 2. Although the lack of stress in the no-stress condi-
tion resulted in a lower MI mean for the no-stress condition
than for the stress condition, this trend was not significant
(t(508) = 1:29; p > :19). This analysis thus confirms our
hypothesis that lexical stress benefits the learner by chang-
ing the representational landscape in such away as to provide
more information that the learner can use in the task of seg-
menting speech.

The second analysis investigated whether the trochaic
stress pattern provided any advantage over other stress
patterns—in particular, the iambic stress pattern. Table 3 pro-
vides the MI means for words and nonwords for the bisyl-
labic items in the stress condition as a function of stress pat-
tern. The trochaic stress pattern provides for the best separa-
tion of words from nonwords as indicated by the fact that this
stress pattern has the largest difference between the MI means
for words and nonwords. Although none of the differences
were significant (save for the comparison between trochaic
and dual4 stressed words: (t(213) = 2:85; p < :006), the re-
sults suggest that a system without any built-in bias towards
trochaic stress nevertheless benefits from the existence of the
abundance of such stress patterns in languages like English.
In other words, the results indicate that no prior bias is needed

4According to the Oxford Text Archive, the following words
were coded as having two equally stressed syllables: upstairs, in-
side, outside, downstairs, hello, and seaside.



toward a trochaic stress patterns because the presence of lex-
ical stress alters the representational landscape over which
statistical analyses are done such that simple distributional
learning devices end up finding trochaic words easier to seg-
ment.

The segmentation model of Christiansen et al. (1998) de-
veloped a bias towards trochaic patterns, such that, when seg-
menting test corpora with either iambic or trochaic syllable
groupings, the model was better at segmenting out words
that followed a trochaic pattern. Thus, the SRN acquired the
trochaic bias given the change in the distributional landscape
that stress provides.

Conclusion

In this paper, we have demonstrated the power of statisti-
cal learning in two areas of language acquisition in which
abstract rules have been deemed necessary for the explana-
tion of the data. Using an existing model of infant speech
segmentation (Christiansen et al., 1998), we first presented
simulation results fitting the behavioral data from Marcus et
al. (1999). The SRN’s internal representations incorporated
sufficient information for a correct classification of the test
items; and the differential segmentation performance on the
stimuli words in the consistent and inconsistent conditions
provided an explanation for the inconsistent item preference:
They are more salient. No rules are needed to explain these
data. We then used a corpus analysis to test predictions from
the same model concerning the way lexical stress changes
the representational landscape over which statistical analyses
are done. These changes result in more information being
available to a statistical learner, and provide the basis for the
trochaic stress bias in English. Again, no rules are needed to
explain these data.

There are, of course, other aspects of language for which
we have not shown that rules are not needed. Future research
will have to determine whether rules may be needed outside
the domain of speech segmentation. Some of our other work
(Christiansen & Chater, in press) suggests that rules may not
be needed to account for one of the supposedly basic rule-
based properties of language: Recursion. But why is statis-
tical learning often dismissed as a plausible explanation of
language phenomena? We suggest that this may stem from
an impoverished view of statistical learning. For example,
Pinker (1999) in his commentary on Marcus et al. (1999)
forces statistical learning, and connectionist models in partic-
ular, into a behavioristic mold: Only input-output relations
are said to matter. However, connectionists have also taken
part in the cognitive revolution and therefore posit internal
representations mediating between input and output. As we
demonstrated in the first part of the paper, hidden unit rep-
resentations provide an important source of information for
the modeling of rule-like behavior. Another oversight relates
to the significance of combining several kinds of information
within a single statistical learning device. The second part
of the paper showed how the addition of lexical stress infor-
mation to the phonological representations resulted in more
information being available for the learner. Thus, a more so-
phisticated approach to statistical learning is likely to reveal
its true power, and may obviate the need for algebraic rules.
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