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Abstract
The acquisition and processing of language is governed by
a number of universal constraints, many of which undoubt-
edly derive from innate properties of the human brain.
However, language researchers disagree about whether
these constraints are linguistic or cognitive in nature. In
this paper, we suggest that the constraints on complex
question formation, traditionally explained in terms of the
linguistic principle of subjacency, may instead derive from
limitations on sequential learning. We present results from
an artificial language learning experiment in which sub-
jects were trained either on a “natural” language involving
no subjacency violations, or on an “unnatural” language
that incorporated a limited number of subjacency viola-
tions. Although two-thirds of the sentence types were the
same across both languages, the natural language was ac-
quired significantly better than its unnatural counterpart.
The presence of the unnatural subjacency items negatively
affected the learning of the unnatural language as a whole.
Connectionist simulations using simple recurrent net-
works, trained on the same stimuli, replicated these results.
This suggests that sequential constraints on learning can
explain why subjacency violations are avoided: they make
language more difficult to learn. Thus, the constraints on
complex question formation may be better explained in
terms of innate cognitive constraints, rather than linguis-
tic constraints deriving from an innate Universal Grammar.

Introduction
One aspect of language that any comprehensive theory of
language must explain is the existence of linguistic univer-
sals. The notion of language universals refers to the observa-
tion that although the space of logically possible linguistic
subpatterns is vast; the languages of the world only take up
a small part of it. That is, there are certain universal tenden-
cies in how languages are structured and used. Theories of
language evolution seek to explain how these constraints
may have evolved in the hominid lineage.  Some theories
suggest that the evolution of a Chomskyan Universal
Grammar (UG) underlies these universal constraints (e.g.,
Pinker & Bloom, 1990).  More recently, an alternative per-
spective is gaining ground.  This approach advocates a refo-
cus in evolutionary thinking; stressing the adaptation of lin-
guistic structures to the human brain rather than vice versa
(e.g., Christiansen, 1994; Kirby, 1998). Language has
evolved to fit sequential learning and processing mechanisms
existing prior to the appearance of language. These mecha-

nisms presumably also underwent changes after the emer-
gence of language, but the selective pressures are likely to
have come not only from language but also from other kinds
of complex hierarchical processing, such as the need for in-
creasingly complex manual combination following tool so-
phistication. On this account, many language universals
may reflect non-linguistic, cognitive constraints on learning
and processing of sequential structure rather than innate UG.

This perspective on language evolution also has important
implications for current theories of language acquisition and
processing in that it suggests that many of the cognitive
constraints that have shaped the evolution of language are
still at play in our current language ability. If this is correct,
it should be possible to uncover the source of some linguis-
tic universal in human performance on sequential learning
tasks. Christiansen (2000; Christiansen & Devlin, 1997)
has previously explored this possibility in terms of a se-
quential learning explanation of basic word order universals.
He presented converging evidence from theoretical considera-
tions regarding rule interactions, connectionist simulations,
typological language analyses, and artificial language learn-
ing in normal adults and aphasic patients, corroborating the
idea of cognitive constraints on basic word order universals.

In this paper, we take a similar approach to one of the
classic linguistic universals: subjacency.  We first briefly
discuss some of the linguistic data that have given rise to
the subjacency principle.  Next, we present an artificial lan-
guage learning experiment that investigates our hypothesis
that limitations on sequential learning rather than an innate
subjacency principle provide the appropriate constraints on
complex question formation. Finally, we report on a set of
connectionist simulations in which networks are trained on
the same material as the humans, and with very similar re-
sults.  Taken together, the results from the artificial lan-
guage learning experiment and the connectionist simulations
support our idea that subjacency violations are avoided, not
because of an innate subjacency principle, but because of
cognitive constraints on sequential learning.
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1. Sara heard (the) news that everybody
likes cats.

3. * What (did) Sara hear (the) news that
everybody likes?

Figure 1.  Syntactic trees showing grammatical (2) and
ungrammatical (3) Wh-movement.

Why Subjacency?
According to Pinker and Bloom (1990), subjacency is one of
the classic examples of an arbitrary linguistic constraint that
makes sense only from a linguistic perspective. Informally,
The subjacency principle involves the assumption of certain
principles governing the grammaticality of sentences.  "Sub-
jacency, in effect, keeps rules from relating elements that are
‘too far apart from each other’, where the distance apart is
defined in term of the number of designated nodes that there
are between them" (Newmeyer, 1991, p. 12). Consider the
following sentences:

1. Sara heard (the) news that everybody likes cats.
N     V    Wh      N        V    N

2.  What (did) Sara hear that everybody likes?
Wh          N    V  Comp    N        V

3. *What (did) Sara hear (the) news that everybody likes?
Wh           N    V           N   Comp     N        V

According to the subjacency principle, sentence 3 is un-
grammatical because too many boundary nodes are placed
between the noun phrase complement (NP-Comp) and its
respective 'gaps'.  

The subjacency principle, in effect, places certain restric-
tions on the ordering of words in complex questions.  The
movement of wh-items (what in Figure 1) is limited as far
as the number of so-called bounding nodes that it may cross
during its upward movement.  In Figure 1, these bounding
nodes are the S and NP’s which are circled. Put informally,
as a wh-item moves up the tree it can use comps as tempo-
rary “landing sites” from which to launch the next move.
The subjacency principle states that during any move only a
single bounding node may be crossed. Sentence 2 is there-
fore grammatical because only one bounding node is crossed
for each of the two moves to the top comp node. Sentence 3
is ungrammatical, however, because the wh-item has to
cross two bounding nodes—NP and S—between the tempo-
rary comp landing site and the topmost comp.

Not only do subjacency violations occur in NP-
Complements, but they may also occur in Wh-phrase com-
plements (Wh-Comp).  Consider the following examples:

4. Sara asked why everyone likes cats.
N     V            N   Comp     N       V    N

5.  Who (did) Sara ask why everyone likes cats?
Wh           N   V  Wh    N           V   N

6.  *What (did) Sara ask why everyone likes?
Wh            N     V  Wh      N           V

According to the subjacency principle, sentence 6 is un-
grammatical because the interrogative pronoun has moved
across too many bounding nodes (as was the case in 3).

In the remainder of this paper, we explore an alternative
explanation of the restrictions on complex question forma-
tion.  This alternative explanation suggests that subjacency
violations are avoided, not because of a biological adaptation   
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Table 1.  The Structure of the Natural and Unnatural Languages (with Examples)

NAT UNNAT
Sentence Letter String Example Sentence Letter String Example
1. N V N Z V X 1. N V N Z V X

2. Wh N V Q Z M 2. Wh N V Q Z M

3. N V N comp N V N Q X M S X V 3. N V N comp N V N Q X M S X V

4. N V Wh N V N X M Q X M X 4. N V Wh N V N X M Q X M X

5. Wh N V comp N V Q X V S Z M 5*. Wh N V  N comp N V Q X V X S Z M

6. Wh N V Wh N V N Q Z V Q Z V Z 6*. Wh N V Wh N V Q Z V Q Z V

Note: Nouns (N) = {Z, X}; Verbs (V) = {V, M}; comp = S; Wh = Q.

incorporating the subjacency principle, but because lan-
guage itself has undergone adaptations to root out such vio-
lations in response to non-linguistic constraints on sequen-
tial learning

Artificial Language Experiment
Artificial language learning has been shown to be an effec-
tive tool in the understanding of the acquisition of language
(e.g., Gomez & Gerken, 1999; Saffran, Aslin, & Newport,
1996).  More recently, artificial language learning has been
used to explore how languages themselves may have
evolved in the human species.

Subjects
Sixty undergraduates were recruited from an introductory
psychology class at Southern Illinois University, and earned
course credit for their participation.

Materials
We created two artificial languages, natural (NAT) and un-
natural (UNNAT).  Each artificial language consisted of a set
of letter strings.  The letters in the strings each represented a
specific grammatical class (see Table 1).  The letters Z and
X represented nouns.  V and M stood for verbs.  The letter S
designated a complementizer.  Interrogative pronouns were
denoted by the letter Q.  These strings were constructed
based on the sentence structure of the six examples discussed
above.  Unique letter strings were created for training and
testing sessions.

Training Stimuli  Twenty letter strings, 10 of each for
NAT and UNNAT, were created to represent grammatical and
ungrammatical complex question formation structures
(SUB). The grammatical SUB items used for the NAT train-
ing, while the ungrammatical SUB items were used for
UNNAT training. An example of SUB letter strings for both
conditions can be seen in Table 1 as sentences 5 and 6.  

An additional 20 general training items were constructed
to represent grammatical structures (GEN). These items were

the same for both groups.  Examples of GEN letter strings
for both conditions are sentences 1 through 4 in Table 1. In
summary, 10 unique SUB and 20 GEN letters strings were
created for the training session.

Test Stimuli An additional set of novel letter strings was
created for the test session.  For each group there were 30
grammatical items and 30 ungrammatical items.  Twenty-
eight novel SUBs were constructed.  For these unique SUB
letter strings there were 14 each, of grammatical and un-
grammatical complement structures.  For UNNAT the un-
grammatical SUBs were scored as grammatical and the
grammatical SUBs were scored as ungrammatical. In the
NAT condition the grammatical SUBs were scored as gram-
matical and the ungrammatical SUBs were scored as un-
grammatical.  Testing in both groups also included 16 novel
grammatical GEN items and 16 novel ungrammatical GEN
items in which one of the letters, except those in the first
and last position, were changed.

A test item can be divided into a number of two and three
letter fragments. The relative frequency with which these
fragments occur in the training set can affect how the test
item will be classified by the human subjects. We therefore
controlled our stimuli for five different kinds of fragment
information to ensure that the structural differences between
the two languages would be the only remaining explanation
for the expected differential learning of them.

1) Associative chunk strength is measured as the sum of
the frequency of occurrence in the training items of each of
the fragments in a test item, weighted by the number of
fragments in that item (Knowlton & Squire, 1994). E.g.,
the associative chunk strength of the item ZVX would be
calculated as the sum of the frequencies of the fragments ZV,
VX and ZVX divided by 3. Two-tailed t-tests indicated that
there were no differences across the languages in associative
chunk strength for the grammatical (t<1) and the ungram-
matical (t<1) items.

2) Anchor strength is measured as the relative frequency of
initial and final fragments in similar anchor positions in the
training items (Knowlton & Squire, 1994). E.g., the anchor
strength of the item QXMSXV is calculated as the sum of
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the frequencies of the fragments QX and QXM in initial
positions in the training items and of the fragments XV and
SXV in final positions in the training items. Again, there
were no differences across the two languages in the anchor
strength of the grammatical (t(58)=1.75, p>.085) or the un-
grammatical items (t<1).

3) Novelty is measured as the number of fragments that
did not appear in any training item (Redington & Chater,
1996). E.g., if the fragments XVS and VS from the item
QXVSZM never occurred in a training item, then the test
item would receive a novelty score of 2. Here there is a sig-
nificant difference between the novelty scores for the gram-
matical test items in the NAT language (.43) and the
UNNAT language (0) (t(58)=3.50, p<.001). However, given
that items with novel fragments will seem less familiar they
are more likely to not to be accepted as grammatical, mak-
ing it more difficult to correctly classify the test items from
the NAT language. Thus this difference provides a bias
against our hypothesis that the NAT language should be
easier to learn. There were no differences between the un-
grammatical items (t<1).

4) Novel fragment position is measured as the number of
fragments that occur in novel absolute positions where they
did not occur in any training item (Johnstone & Shanks,
1999). E.g., if the fragment VQZ from the item QZVQZV
never occurred in this absolute position in any of the train-
ing items then this item would be assigned a novel fragment
position score of 1. There were no differences between the
novel fragment scores for the grammatical (t(58)=1.54,
p>.13) or ungrammatical items (t<1) across the two lan-
guages.

5) Global similarity is measured as the number of letters
that a test item is different from the nearest training item
(Vokey & Brooks, 1992). E.g., if the test item QZM has
QZV as its closest training item then it would be assigned a
global similarity score of 1. There were no differences be-
tween the two languages for the grammatical (t=0) and un-
grammatical (t<1) items.

Procedures
Subjects were randomly assigned to one of three conditions
(NAT, UNNAT, and CONTROL).  NAT and UNNAT were
trained using the natural and unnatural languages, respec-
tively.  The CONTROL group completed only the test ses-
sion.  During training, individual letter strings were pre-
sented briefly on a computer.  After each presentation, par-
ticipants were prompted to enter the letter string using the
keyboard.  Training consisted of 2 blocks of the 30 items,
presented randomly.  During the test session, participants
decided if the test items were created by the same (grammati-
cal) or different (ungrammatical) rules as the training items.
Testing consisted of 2 blocks of 60 items, again presented
randomly.

Results and Discussion

Control Group Since the test items were the same for all
groups, but scored differently depending on training condi-
tion, the control data was scored from the viewpoint of both
the natural and unnatural languages.  Differences between
correct and incorrect classification from both language per-
spectives were non-significant with all t-values <1 (range of

Figure 2.  Overall correct classification for 
NAT and UNNAT languages.
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correct classification: 59%–61%).  Thus, there was no inher-
ent bias in the test stimuli toward either language.

Experimental Group An overall t-test indicated that
NAT (59%) learned the language significantly better than
UNNAT (54%) (Figure 2; t(38)=3.27, p<.01).  This result
indicates that the UNNAT was more difficult to learn than
the NAT.  Both groups were able to differentiate the gram-
matical and ungrammatical items (NAT: t(38)=4.67,
p<.001; UNNAT: t(38)=2.07, p<.05).  NAT correctly clas-
sified 70% of the grammatical and 51% of the ungrammati-
cal items.  UNNAT correctly classified 61% of the gram-
matical and 47% of the ungrammatical items.  NAT (66%)
exceeded UNNAT (59%) at classifying the common GEN
items (Figure 3; t(38)=2.80, p<.01).  Although marginal,
NAT (52%) was also better than UNNAT (50%) at classify-
ing SUB items (Figure 4; t(38)=1.86, p=.071).  Note that
the presence of the SUB items affected the learning of the
GEN items. Even though both groups were tested on exactly
the same GEN items, the UNNAT performed significantly
worse on these items. Thus, the presence of the subjacency
violations in the UNNAT language affected the learning of
the language as a whole, not just the SUB items. From the
viewpoint of language evolution, languages such as
UNNAT would loose out in competition with other lan-
guages such as NAT because the latter is easier to learn.

Connectionist Model

In principle, one could object that the reason why we found
differences between the NAT and the UNNAT groups is be-
cause the NAT group is in some way tapping into an in-
nately specified subjacency principle when learning the lan-
guage. To counter this possible objection and to support our
suggestion that the difference in learnability between the two
languages is brought about by constraints arising from se-
quential learning, we present a set of connectionist simula-
tions of our human data.

Networks
For the simulations, we used simple recurrent networks
(SRNs; Elman, 1991) because they have been successfully
applied in the modeling of both non-linguistic sequential
learning (e.g., Christiansen & Devlin, 1997; Cleeremans,
1993) and language processing (e.g., Christiansen, 1994;
Elman, 1991). SRNs are standard feed-forward neural net-
works equipped with an extra layer of so-called context
units. The SRNs used in our simulations had 7 input/output
units (corresponding to each of the 6 letters plus an end of
sentence marker) as well as 8 hidden units and 8 context
units. At a particular time step t, an input pattern is propa-
gated through the hidden unit layer to the output layer. At
the next time step, t+1, the activation of the hidden unit
layer at time t is copied back to the context layer and paired

with the current input. This means that the current state of
the hidden units can influence the processing of subsequent
inputs, providing an ability to deal with integrated sequences
of input presented successively.

Materials
For the simulations we used the same training and test items
as in the artificial language learning experiment.

Procedures
Forty networks with different initial weight randomizations
(within ± .5) were trained to predict the next consonant in a
sequence. The networks were randomly assigned to the NAT
and UNNAT training conditions, and given 20 pass through
a random ordering of the 30 training items appropriate for a
given condition. The learning rate was set to .1 and the
momentum to .95. After training, the networks were tested
separately on the 30 grammatical and 30 ungrammatical test
items (again, according to their respective grammar).

Following successful training, an SRN will tend to out-
put a probability distribution of possible next items given
the previous sentential context. Performance was measured
in terms of how well the networks were able to approximate
the correct probability distribution given previous context.
The results are reported in terms of the Mean Squared Error
(MSE) between network predictions for a test set and the
empirically derived, full conditional probabilities given the
training set (Elman, 1991). This error measure provides an
indication of how well the network has acquired the gram-
matical regularities underlying a particular language, and
thus allows for a direct comparison with our human data.

Results and Discussion
The results show that the NAT networks had a significantly
lower MSE (.185; SD: .021) than the UNNAT networks
(.206; SD: .023) on the grammatical items (t(38)=2.85,
p<.01). On the ungrammatical items, the NAT nets had a
slightly higher error (.258; SD: .036) compared with the
UNNAT nets (.246; SD: .034), but this difference was not
significant (t<1). This pattern resembles the performance of
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the human subjects where the NAT group was 11% better
than the UNNAT group at classifying the grammatical
items, though this difference only approached significance
(t(38)=1.10, p=.279).  The difference was only <3% in favor
of the NAT group for the ungrammatical items (t=1). Also
similarly to the human subjects, there was a significant dif-
ference between the MSE on the grammatical and the un-
grammatical items for both the NAT nets (t(38)=7.69,
p<.001) and the UNNAT nets (t(38)=4.33, p<.001). If one
assumes that the greater the difference between the MSE on
the grammatical (low error) and the ungrammatical (higher
error) items, the easier it should be to distinguish between
the two types of items.  As illustrated in Figure 5, this pro-
vides the NAT networks with a significantly better basis for
making such decisions than the UNNAT networks (.072 vs.
.040; t(38)=4.31, p<.001). Thus, the simulation results
closely mimic the behavioral results, corroborating our sug-
gestion that constraints on the learning and processing of
sequential structure can explain why subjacency violations
tend to be avoided: they were weeded out because they made
the sequential structure of language too difficult to learn.

Conclusion
In this paper, we have provided evidence in favor of an alter-
native account of the universal constraints on complex ques-
tion formation. The artificial language learning results show
that not only are constructions involving subjacency viola-
tions hard to learn in and by themselves, but their presence
also makes the language as a whole harder to learn. The
connectionist simulations further corroborated these results,
emphasizing that the observed learning difficulties in rela-
tion to the unnatural language arise from non-linguistic con-
straints on sequential learning. These results, together with
the results on word order universals (Christiansen, 2000;
Christiansen & Devlin, 1997), suggest that constraints aris-
ing from general cognitive processes, such as sequential
learning and processing, are likely to play a larger role in
sentence processing than has traditionally been assumed.
This means that what we observe today as linguistic univer-
sals may be stable states that have emerged through an ex-
tended process of linguistic evolution. When language itself
is viewed as a dynamic system sensitive to adaptive pres-
sures, natural selection will favor combinations of linguistic
constructions that can be acquired relatively easily given
existing learning and processing mechanisms. Consequently,
difficult to learn language fragments, such as our unnatural
language, will tend to disappear. In conclusion, rather than
having an innate UG principle to rule out subjacency viola-
tions, we suggest that they may have been eliminated alto-
gether through an evolutionary process of linguistic adapta-
tion constrained by prior cognitive limitations on sequential
learning and processing.
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