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Connectionist psycholinguistics:
capturing the empirical data

Morten H. Christiansen and Nick Chater

Connectionist psycholinguistics is an emerging approach to modeling empirical
data on human language processing using connectionist computational
architectures. For almost 20 years, connectionist models have increasingly been
used to model empirical data across many areas of language processing. We
critically review four key areas: speech processing, sentence processing,
language production, and reading aloud, and evaluate progress against three
criteria: data contact, task veridicality, and input representativeness. Recent
connectionist modeling efforts have made considerable headway toward
meeting these criteria, although it is by no means clear whether connectionist
(or symbolic) psycholinguistics will eventually provide an integrated model of
full-scale human language processing.
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What is the significance of connectionist models of
language processing? Will connecTIONISM (See
Glossary) ultimately replace, complement or simply
implement symBoLIc APPROACHES t0 language? (see
Box 1) Early connectionists addressed this issue by
attempting to show that connectionism could, in
principle, capture aspects of language and language
processing. These models showed that connectionist
networks could acquire parts of linguistic structure
without extensive ‘innate’ knowledge!. Recent work
has moved towards a ‘connectionist psycholinguistics’,
which captures detailed psychological dataZ.

Criteria for connectionist psycholinguistics

We review progress in connectionist psycholinguistics
in four key areas: speech processing, sentence
processing, language production, and reading aloud.
We suggest that computational models, whether
connectionist or symbolic, should meet three criteria:
(1) data contact, (2) task veridicality, and (3) input
representativeness. Data contact refers to the degree
to which a model captures psycholinguistic data. Of
course, there is more to capturing the data than
simply fitting existing empirical results; for example,
a model should also make non-obvious predictions
(see Ref. 3 for discussion). Task veridicality refers to
the match between the task facing people and the
task given to the model. Although a precise match is
difficult to obtain, it is important to minimize the
discrepancy. For example, many models of the
English past tense* have low task veridicality
because they map verb stems to past tense forms, a
task remote from children’s language acquisition.
Input representativeness refers to the match between
the information available to the model and the
person. The performance of connectionist models
may be impaired by low input representativeness,
because the model does not have access to

information sources that may be crucial to
human performance.

Symbolic computational psycholinguistics

Few symbolic models make direct contact with
psycholinguistic data, with the important exception of
comprehensive models of word-by-word reading
times®6 (and see Ref. 7 for a review). Moreover,
symbolic models typically do not focus on task
veridicality. For example, rule-based theories® of the
English past tense involve the same stem to past tense
mappings as the early connectionist models, and thus
suffer from low task veridicality in comparison with
more recent connectionist verb morphology models®.
Input representativeness is typically low in symbolic
models!®, where abstract fragments of language are
typically modeled, rather than input derived from real
corpora. The remainder of the paper considers
whether connectionist psycholinguistics is better able
to meet these three criteria.

Speech processing

Connectionist modeling of speech processing begins
with TRACE, which has an ‘interactive activation’
architecture, with a sequence of ‘layers’ of units (see
Fig. 1), for phonetic features, phonemes and words*™.
TRACE captured a wide range of empirical data, and,
as we shall see, made important novel predictions.

Evidence for interactive models

TRACE is most controversial because it is interactive —
the bi-directional links between units mean that
information flows Tor-pown as well as Bottom-up. Other
connectionist models, by contrast, assume purely
bottom-up information flow!2. TRACE provided an
impetus to the interactive versus bottom-up debate,
with a prediction apparently incompatible with bottom-
up models. In natural speech, the pronunciation of a
phoneme is affected by surrounding phonemes: this is
‘coarticulation’. The speech processor takes account of
this via ‘compensation for coarticulation’ (CFC)!3. CFC
suggests a way of detecting whether lexical information
interactively affects the phoneme level when CFC is
considered across word boundaries; for example, a
word-final /s/ influencing a word-initial /k/ as in
Christmas capes. If the word level influences the
phoneme level, the compensation of the /k/ should occur
even when the /s/ relies on PHONEME RESTORATION

for its identity (i.e. with an ambiguous /s/ in Christmas,
the /s/ should be restored and thus CFC should
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Bottom-up process: A process in which representations that are less abstract
with respect to perceptual or linguistic input influence more abstract
representations (e.g. influence from phonetic to semantic representations; in
connectionist terms, influence of layers of units close to the input to layers far
from the input).

Center-embedding: The embedding of one sentence within another. For example,
the sentence ‘the cat chases the mice’ can be embedded in the center of the
sentence ‘the mice run away’, yielding the center-embedded sentence ‘the mice that
the cat chases run away’.

Connectionism: Computational architecture using networks of processing units,
each of which has an output that is a simple numerical function of its inputs. Loosely
inspired by neural architecture.

Cross-serial dependency: Syntactic construction similar to center-embedding
except that dependencies between nouns and verbs ‘cross over’ rather than being
embedded within each other in an onion-like structure (N,N,V,V, versus N;N,V,V,).
Distributed representation: Items are represented by a pattern of activation over
several connectionist units.

Dynamical system: Approach to cognitive processing that focuses on the way in
which systems change, and described in terms of a set of continuously changing,
interdependent quantitative variables governed by a set of equations.

Hidden layer: Units in a connectionist network that lie ‘between’ input and output,
and are hence ‘hidden’. The invention of backpropagation and other learning
algorithms to train networks with hidden units dramatically increased the power of
connectionist methods.

Implicit learning: Learning without conscious awareness of or access to what has
been learned. What learning (if any) is implicit is highly controversial.

Localist representation: Items are represented by activation of a single
connectionist unit.

Phoneme restoration: If the acoustic form of aword is ‘doctored’ to remove a
phoneme (and, for example, replace it with a noise burst), the phoneme is
nonetheless sometimes subjectively perceived as present - it has been perceptually
‘restored”.

Recursion: A productive feature of language by which, in principle, we can always
add to a sentence by embedding new phrases within it.

Regular spelling-to-sound correspondence: A word that has a straightforward
rule-like mapping from spelling to sound has regular spelling-to-sound
correspondence. For example, the -intendings in tint, lint,and mintare all
pronounced in the same way. Exception words by contrast have a more
idiosyncratic mapping from spelling to sound (e.qg. -intin pint).

Relative clause: A clause that provides additional information about a preceding
noun. In subject relative clauses, such as ‘the senator that attacked the reporter
admitted the error’, the first noun (senator) is also the subject of the embedded
clause. In object relative clauses, such as ‘the senator that the reporter attacked
admitted the error’, the first noun is the object of the embedded clause.

Symbolic approach: Computational style in which representations are discrete
symbols, and computation involves operations defined on the form of those
representations. This style of computation is the basis of digital computer
technology.

Top-down process: Reverse of bottom-up —a process of influence from more to
less abstract representations (e.g. from semantic to phonetic representations;
influence of later from earlier layers; in connectionist terms, influence of layers of
units far from the input to layers close to the input).

occur as normal). TRACE's novel prediction was
experimentally confirmed?4.

Bottom-up connectionist models strike back
Surprisingly, bottom-up connectionist models can
capture these results. One study used a simple
recurrent network (SRN; see Fig. 1) to map phonetic
input onto phoneme output®®. When the net received
phonetic input with an ambiguous first word-final
phoneme and ambiguous initial segments of the second
word, an analog of CFC was observed. The percentages
of /t/ and /k/ responses to the first phoneme of the
second word depended on the identity of the first word
(asin Ref. 14). Importantly, the explanation for this
pattern of results cannot be top-down influence from
word units, because there are no word units.
Nonetheless the presence of ‘feedback’ connections in
the HiDDEN LAYER of the SRN might suggest that some
form of interactive processing occurs in this model.
But this is misleading — the feedback occurs within the
hidden layer (i.e. from its previous to its present state),
rather than flowing from top to bottom.

This model, although an important demonstration,
has poor input representativeness, because it deals
with just 12 words. However, a subsequent study
scaled-up these results using a similar network trained
on phonologically transcribed conversational
English8. How can bottom-up processes mimic lexical
effects? It was argued that restoration depends on local
statistical regularities at the phonemic level, rather
than depending on access to lexical representations.
More recent experiments have since shown that CFC is
indeed determined by statistical regularities for non-
word stimuli, and that, for word stimuli, there appear
to be no residual effects of lexical status, once statistical
regularities are taken into account!’. Itis not clear,
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though, whether bottom-up models can model other
evidence that phoneme identification is affected by the
lexicon, for example, from signal detection analyses of
phoneme restoration?8.

Exploiting distributed representations

Adifferent line of results provides additional evidence
that bottom-up models can accommodate apparently
top-down effects?®. An SRN was trained to map a
systematically altered featural representation of speech
onto a phonemic and semantic representation of the
same speech (following a previously established
tradition?0). After training, the network showed evidence
of lexical effects in modeling lexical and phonetic decision
data?%. This work was extended by an SRN trained to
map sequential phonetic input onto corresponding
DISTRIBUTED REPRESENTATIONS Of phonological surface
forms and semantics?2. This style of representation
contrasts with the LocALIST REPRESENTATIONS UsSed in
TRACE. The ability of the SRN to model the integration
of partial cues to phonetic identity and the time course of
lexical access provides support for adistributed
approach. Animportant challenge for such distributed
models is to model the simultaneous activation of
multiple lexical candidates necessitated by the temporal
ambiguity of the speech input (e.g. /kaep/ could continue
captain and captive) (see Ref. 23 for a generalization of
this phenomenon). The ‘coactivation’ of several lexical
candidates in a distributed model results in a semantic
‘blend’ vector. Computational explorations?* of such
semantic blends provide explanations of recent empirical
results aimed at measuring lexical coactivation?.

Speech segmentation
Further evidence for the bottom-up approach to
speech processing comes from the modeling of speech



Box 1. The debate over connectionist models of language
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There are many recurrent themes in the debate over the value of
connectionist models of language. Here we list some of the most
prominent and enduring.

(1) Learning

Many connectionist networks acquire their ‘knowledge’ through
training on input-output examples, making learning an essential
part of these models. By contrast, many symbolic models come
with most of their knowledge ‘built-in’, although some learning
may be required to fine-tune this knowledge.

(2) Generalization

People are able to produce and process linguistic forms (words,
sentences) that they have never heard before. Generalization to
new cases is thus a crucial test? for many connectionist models.

(3) Representation

Because most connectionist nets learn, their internal codes are
devised by the network to be appropriate for the task. Developing
methods for understanding these codes is an important research
strand. Whereas internal codes may be learned, the inputs and
outputs to a network generally use a code specified by the
researcher. The choice of code can be crucial in determining
network performance. How these codes relate to standard
symbolic representations of language is contentious.

(4) Rules versus exceptions
Many aspects of language exhibit ‘quasi-regularities’: regularities
which usually hold, but which admit exceptions. In a symbolic

framework, quasi-regularities may be captured by symbolic rules,
associated with explicit lists of exceptions. Symbolic processing
models often incorporate this distinction by having separate
mechanisms for regular and exceptional cases. In contrast,
connectionist nets may provide a single mechanismthat can learn
general rule-like regularities, and their exceptions. The viability of
such ‘single route’ models has been a major point of controversy,
although itis notintrinsic to connectionism. One or both separate
mechanisms for rules and exceptions could themselves be modeled
in connectionist termsb-9. A further question is whether networks
really learn rules at all, or merely approximate rule-like behavior.
Opinions differ on whether the latter is an important positive proposal,
which may lead to a revision®f of the role of rules in linguistics, or
whether itis fatal?h to connectionist models of language.
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segmentation?. An SRN was trained to integrate sets of
phonetic features with information about lexical stress
(strong or weak) and utterance boundary information
(encoded as a binary unit) derived from a corpus of
child-directed speech. The network was trained to
predict the appropriate values of these three cues for
the next segment. After training, the network was able
to generalize patterns of cue information that occurred
at the end of utterances to when the same patterns
occurred elsewhere in the utterance. Relying entirely on
bottom-up information, the model performed well on
the word segmentation task, and captured important
aspects of infant speech segmentation.

Summary

Overall, connectionist speech processing models
make good contact with psycholinguistic data, and
has motivated novel experimental work. Input
representativeness is also generally good, with
models being trained on large lexicons and
sometimes corpora of natural speech. Task
veridicality is questionable, however, because the
standard abstract representations of the input

(e.g. phonetic or phonological representations) may
not be computed by the listener?! and, furthermore,
bypass the deep problems involved in handling the
physical variability of natural speech.
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Sentence processing

Sentence processing provides a considerable challenge
for connectionism. Some connectionists?” have built
symbolic structures directly into the network, whilst
others?® have chosen to construct a modular system of
networks, each tailored to acquire different aspects of
syntactic processing. However, the approach that has
made the most contact with psycholinguistic data
involves directly training networks to discover
syntactic structure from word sequences?.

Capturing complexity judgment and reading time data
One study has explored the learning of different types
of RECURsION by training SRNs on small artificial
languages®°. A measure of grammatical prediction
error (GPE) was developed, allowing network output
to be mapped onto human performance data. GPE is
computed for each word in a sentence and reflects the
processing difficulties that a network is experiencing
at a given point in a sentence. Averaging GPE across
awhole sentence, the model fitted human data
concerning the greater perceived difficulty associated
with ceNTER-EMBEDDING in German compared with
CROSS-SERIAL DEPENDENCIES in Dutch3!. Related models
trained on more naturalistic language fragments

(M. Christiansen, unpublished results) captured the
same data, and provided the basis for novel
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Fig. 1 Network architectures used in connectionist psycholinguistics. (a) An interactive activation network
(e.g. TRACE) has bi-directional excitatory (arrows) or inhibitory (filled circles) links. Activation flows bottom-
up and top-down, reinforcing mutually consistent states and inhibiting inconsistent states. The weights in
an interactive activation network are typically hand-coded rather than learned. (b) A feed-forward network
is normally trained using back-propagation?, which minimizes the discrepancy between the network’s
actual and desired output. Information flows bottom-up from input to output units. (c) A simple recurrent
network (SRN)! is essentially a standard feed-forward network equipped with an extra layer of so-called
context units. At each time step, input propagate through the hidden units to the output (solid arrows). The
hidden unitactivation at the previous time step is copied back to the context layer (dashed arrows) and
paired with the currentinput (solid arrows). Thus the hidden units influence the processing of subsequent
inputs, providing a limited ability to deal with sequential inputs. (d) Recurrent networks often have the same
architecture as SRNs but are trained using more complex learning algorithms$263, Current activations affect
future activations via the recurrent links. Recurrent links between hidden units are not viewed as ‘unfolded’
into separate context units, because the learning algorithms deal directly with recurrent connections.

predictions concerning other types of recursive
constructions. These predictions have been confirmed
experimentally (M. Christiansen and M. MacDonald,
unpublished results). Finally, single-word GPE scores
from a related model32 were mapped directly onto
reading times, providing an experience-based account
for human data concerning the differential processing
of singly center-embedded subject and object RELATIVE
cLausts by good and poor comprehenders.

Another approach to sentence processing involves a
two-component model of ambiguity resolution,
combining an SRN with a ‘gravitational’ mechanism
(i.e. apynamicAL sysTEM)33. The SRN was trained in the
usual way on sentences derived from a grammar. After
training, SRN hidden unit representations for
individual words were placed in the gravitational
mechanism, and the latter was allowed to settle into a
stable state. Settling times were then mapped onto
word reading times. The two-component model was
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able to fit data from several experiments concerning
the interaction of lexical and structural constraints on
the resolution of temporary syntactic ambiguities

(i.e. garden path effects) in sentence comprehension.
More recently, the two-component model was
extended?®* to account for empirical findings reflecting
the influence of semantic role expectations on syntactic
ambiguity resolution in sentence processing®.

Capturing grammaticality ratings in aphasia

Some headway has also been made in accounting for
data concerning the effects of aphasia on grammaticality
judgments®. A recurrent network (see Fig. 1) was
trained mutually to associate two input sequences: a
sequence of word forms and a corresponding sequence of
word meanings. The network was able to learn a small
artificial language successfully, enabling it to regenerate
the word forms from the meanings and vice versa.
Grammaticality judgments were simulated by testing
how well the network could recreate a given input
sequence, allowing activation to flow from the provided
input forms to meaning and then back again.
Ungrammatical sentences were recreated less
accurately than grammatical sentences, and hence the
network was able to distinguish grammatical from
ungrammatical sentences. The network was then
‘lesioned’ by removing 10% of the weights in the
network. Grammaticality judgments were then elicited
from the impaired network for 10 different sentence
types from a classic study of aphasic grammaticality
judgments®”. The aphasic patients had problems with
three of these sentence types, and the network fitted this
pattern of performance impairment exactly.

Summary

Overall, connectionist models of syntactic processing
are at an early stage of development. Current
connectionist models of syntax typically use ‘toy’
fragments of grammar and small vocabularies, and
thus have low input representativeness. Nevertheless,
the models have good data contact and a reasonable
degree of task veridicality. However, more research is
required to decide whether promising initial results can
be scaled up to deal with the complexities of real
language, or whether a purely connectionist approach is
beset by fundamental limitations, and can only succeed
by incorporating symbolic methods into the models.

Language production

Connectionist models have had a large impact on the
field of language production, and played an
important role in framing theories of normal and
impaired production.

Aphasic word production

One of these models is a paradigm of connectionist
psycholinguistics, and quantitatively fitted error data
from 21 aphasics and 60 normal controls38. The network
has three layers with bi-directional connections,
mapping from semantic features denoting a concept, to
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a choice of word; and then to the phonemes realizing
that word. The model differs from other interactive
activation models, such as TRACE, by incorporating a
two-step approach to production. First, activation at
the semantic features spreads throughout the
network for a fixed time. The most active word unit
(typically the best match to the semantic features) is
‘selected’, and its activation boosted. Second,
activation again spreads throughout the network for
afixed time, and the most highly activated phonemes
are selected, with a phonological frame that specifies
the sequential ordering of the phonemes.

Even in normal production, processing sometimes
breaks down, leading to semantic errors (cat — dog),
phonological errors (cat — hat), mixed semantic and
phonological errors (cat — rat), non-word errors
(cat — zat), and unrelated errors (cat — fog). Normal
and aphasic errors are proposed to reflect the same
processes, differing only in degree. Therefore, the
model’'s parameters were set by fitting data from
controls relating to the five types of errors above. To
simulate aphasia, the model was ‘damaged’ by
reducing two global parameters (connection strength
and decay rate), leading to more errors. The model
fitted the five types of errors found for the aphasics
(see Refs 39,40 for discussions). Furthermore,
predictions were derived, and subsequently
confirmed, concerning the effect of syntactic categories
on phonological errors (dog - log), phonological effects
on semantic errors (cat — rat), naming error patterns
after recovery, and errors in word repetition.

Structural priming in syntactic productions
Connectionist models have also been applied to
experimental data on sentence production,
particularly concerning structural priming. Structural
priming arises when the syntactic structure of a
previously heard or spoken sentence influences the
processing or production of a subsequent sentence. An
SRN model of grammatical encoding was
implemented*! to test the suggestion that structural
priming may be an instance of impLICIT LEARNING. The
input to the model was a ‘proposition’, coded by units
for semantic features (e.g. child), thematic roles

(e.g. agent) and action descriptions (e.g. walking), and
some additional input encoding the internal state of an
unimplemented comprehension network. The
network outputs a sequence of words expressing the
proposition. Structural priming was simulated by
allowing learning to occur during testing. This created
transient biases in weight space that were sufficiently
robust to cause the network to favor (i.e. to be primed
by) recently encountered syntactic structures.

The model fitted data concerning the priming,
across up to 10 unrelated sentences, of active and
passive constructions as well as prepositional (‘The boy
gave the guitar to the singer’) and double-object (‘The
boy gave the singer the guitar’) dative constructions?2,
The model fitted the passive data well, and showed
priming from intransitive locatives (‘The 747 was
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landing by the control tower ") to passives (‘The 747 was
landed by the control tower’). However, it fitted the
dative data less well, and showed no priming from
transitive locatives (‘The wealthy woman drove the
Mercedes to the church’) to prepositional datives (‘The
wealthy woman gave the Mercedes to the church’).

A more recent model with an implemented
comprehension network and a less rigid representation
of thematic roles provides a better fit with these data®.

Summary

The connectionist production models make good
contact with the data, and have reasonable task
veridicality, but suffer from low input
representativeness — these models are trained on
small fragments of natural language. It seems likely
that connectionist models will continue to play a
central role in future research on language production.
However, scaling up these models to deal with more
realistic input is a major challenge for future work.

Reading aloud

Connectionist research on reading aloud has focused
on single words. A classic early model used a feed-
forward network (see Fig. 1) to map from a distributed
orthographic representation to a distributed
phonological representation, for monosyllabic English
words*. The net's performance captured a wide range
of experimental data, on the assumption that network
error maps onto response time.

This model contrasts with standard views of reading,
which assume both a ‘phonological route’, applying rules
of pronunciation, and a ‘lexical route’, which is a list of
words and their pronunciations. Words with a REGULAR
SPELLING-TO-SOUND CORRESPONDENCE can be read using
either route; exception words by the lexical route; and
non-words by the phonological route. It was claimed
that, instead, a single connectionist route can pronounce
both exception words and non-words.

Critics have responded that the network’s non-word
reading is well below human performance* (although
see Ref. 46). Another difficulty is the model’s reliance on
(log) frequency compression during training (otherwise
exception words are not learned successfully).
Subsequent research has addressed both limitations,
showing that a network trained on actual word
frequencies can achieve human levels of performance
on both word and non-word pronunciation*’.

Capturing the neuropsychological data

Single and dual route theorists generally agree that
there is an additional ‘semantic’ route, where
pronunciation is retrieved via a semantic code — the
controversy is whether there are one or two
non-semantic routes. Some connectionists argue that
the division of labor between the phonological and
semantic routes can explain diverse neuropsychological
syndromes that have been taken to require a dual-route
account’. On this view, a division of labor emerges
between the phonological and the semantic pathway
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during reading acquisition: the phonological pathway
specializes in regular orthography-to-phonology
mappings at the expense of exceptions, which are read
by the semantic pathway. Damage to the semantic
pathway causes ‘surface dyslexia’ (where exceptions are
selectively impaired); damage to the phonological
pathway causes ‘phonological dyslexia’ (where non-
words are selectively impaired). According to this
viewpoint, ‘deep dyslexia’ occurs when the phonological
route is damaged, and the semantic route is also
partially impaired (which leads to semantic errors, such
as reading the word peach as apricot, which are
characteristic of the syndrome).

Capturing the experimental data

Moving from neuropsychological to experimental
data, connectionist models of reading have been
criticized for not modeling effects of specific lexical
items*8. One defense is that current models are too
partial (e.g. containing no letter recognition and
phonological output components) to model word-level
effects*®. However, this challenge is taken upina
study in which an SRN is trained to pronounce words
phoneme-by-phoneme®°. The network can also
refixate the input when unable to pronounce part of a
word. The model performs well on words and
non-words, and fits empirical data on word length
effects5152. Complementary work using a recurrent
network focuses on providing a richer model of
phonological knowledge and processing®3, which may
be importantly related to reading development®4.
Finally, it has been shown how a two-route model of
reading might emerge naturally from a connectionist
learning architecture®®. Using backpropagation,
direct links between orthographic input and
phonological output learn to encode letter-to-
phoneme correspondences (a ‘phonological route’)
whereas links via hidden units spontaneously learn to

Outstanding questions

Can connectionist models ‘scale-up’ successfully to provide more
realistic models of language processing, or do they have fundamental
computational limitations? And, if connectionist systems can scale up
successfully, will the resulting models still provide close fits with the
psycholinguistic data?

To what degree does learning in connectionist networks provide a
potential model of human language acquisition? How much structure
and knowledge must be ‘built’ into connectionist networks to deal with
real human language?

Can the connectionist subsystems that have been developed separately
to deal with different sub-areas of language processing be integrated?
Should connectionist subsystems be considered as separate modules?
If so, what are the appropriate modules for connectionist language
processing? What implications does this have for the criteria for
connectionist psycholinguistics?

How can we more fully characterize what it means to ‘capture the data’?
How do we best compare computational models? Should models be
required to make non-obvious predictions?
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handle exception words (a ‘lexical route’). Here, as
elsewhere in connectionist psycholinguistics,
connectionist models can provide persuasive
instantiations of a range of theoretical positions.

Summary

Connectionist research on reading has good data
contact and reasonable input representativeness. Task
veridicality is questionable: children do not typically
associate written and spoken forms for individual
words when learning to read (although Ref. 53
partially addresses this issue). A major research
challenge is synthesizing insights from accounts of
different aspects of reading into a single model.

Conclusion

Current connectionist models involve important
simplifications with respect to natural language
processing. In some cases, these simplifications are
relatively modest. For example, models of reading
aloud typically ignore how eye movements are
planned, how information is integrated across eye-
movements, ignore the sequential character of speech
output, and typically deal only with short words. In
other cases, the simplifications are more drastic. For
example, connectionist models of syntactic processing
involve vocabularies and grammars that are vastly
simplified. In many cases, these limitations stem from
compromises made in order to implement
connectionist models as working computational
models. Many symbolic modelsg, on the other hand, can
give the appearance of good data contact simply
because they have not yet been implemented and have
therefore not been tested in an empirically rigorous
way. Nevertheless, we argue that proponents of both
connectionist and symbolic models must aim to achieve
high degrees of data contact, task veridicality and
input representativeness in order to advance
computational psycholinguistics.

The present breadth of connectionist
psycholinguistics, as outlined above, indicates that
the approach has considerable potential. Despite
attempts to establish a priori limitations on
connectionist language processing®%:57, we suggest
that the only way to determine the value of the
approach is to pursue it with the greatest possible
creativity and vigor. If realistic connectionist models
of language processing can be provided, then a
radical rethinking of language processing and
structure may be required. It might be that the
ultimate description of language resides in the
structure of complex networks®8, and can only be
approximated by symbolic grammatical rules.
Conversely, connectionist models might only succeed
to the extent that they build in standard linguistic
constructs®, or form a hybrid with symbolic models®°.
The future of connectionist psycholinguistics is
therefore likely to have important implications either
in overturning, or reaffirming, traditional
psychological and linguistic assumptions.
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