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1 Introduction

In linguistics and psycholinguistics, it is standard to assume that natural language involves

rare but important recursive constructions. This assumption originates with Chomsky’s (1957,

1959, 1965) arguments that the grammars for natural languages exhibit potentially unlimited

recursion. Chomsky assumed that, if the grammar allows a recursive construction, it can

apply arbitrarily many times. Thus, if (1) is sanctioned with one level of recursion, then the

grammar must sanction arbitrarily many levels of recursion, generating, for example, (2) and

(3).

(1) The mouse that the cat bit ran away.

(2) The mouse that the cat that the dog chased bit ran away.

(3) The mouse that the cat that the dog that the man frightened chased bit ran away.

But people can only deal easily with relatively simple recursive structures (e.g., Bach, Brown

& Marslen-Wilson, 1986). Sentences like (2) and (3) are extremely difficult to process.

Note that the idea that natural language is recursive requires broadening the notion of

which sentences are in the language, to include sentences like (2) and (3). To resolve the dif-

ference between language so construed and the language that people produce and comprehend,

Chomsky (e.g., 1965) distinguished between linguistic competence and human performance.

Competence refers to a speaker/hearer’s knowledge of the language, as studied by linguis-

tics. In contrast, psycholinguists study performance—i.e., how linguistic knowledge is used

in language processing, and how non-linguistic factors interfere with using that knowledge.

Such “performance factors” are invoked to explain why some sentences, while consistent with

linguistic competence, will not be said or understood.

The claim that language allows unbounded recursion has two key implications. First,

processing unbounded recursive structures requires unlimited memory—this rules out finite
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state models of language processing. Second, unbounded recursion was said to require innate

knowledge because the child’s language input contain so few recursive constructions. These

implications struck at the heart of the then-dominant approaches to language. Both structural

linguistics and behaviorist psychology (e.g., Skinner 1957) lacked the generative mechanisms

to explain unbounded recursive structures. And the problem of learning recursion undermined

both the learning mechanisms described by the behaviorists, and the corpus-based methodol-

ogy of structural linguistics. More importantly, for current cognitive science, both problems

appear to apply to connectionist models of language. Connectionist networks consist of finite

sets of processing units, and therefore appear to constitute a finite state model of language,

just as behaviorism assumed; and connectionist models learn by a kind of associative learn-

ing algorithm, more elaborate than, but similar in spirit to, that postulated by behaviorism.

Furthermore, connectionist models attempt to learn the structure of the language from finite

corpora, echoing the corpus-based methodology of structural linguistics. Thus, it seems that

Chomsky’s arguments from the 1950s and 1960s may rule out, or at least, limit the scope of,

current connectionist models of language processing.

One defense of finite state models of language processing, to which the connectionist might

turn, is that connectionist models should be performance models, capturing the limited recur-

sion people can process, rather than the unbounded recursion of linguistic competence (e.g.,

Christiansen, 1992), as the above examples illustrate. Perhaps, then, finite state models can

model actual human language processing successfully.

This defense elicits a more sophisticated form of the original argument: that what is

important about generative grammar is not that it allows arbitrarily complex strings, but

that it gives simple rules capturing regularities in language. An adequate model of language

processing must somehow embody grammatical knowledge that can capture these regularities.

In symbolic computational linguistics, this is done by representing grammatical information

and processing operations as symbolic rules. While these rules could, in principle, apply to
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sentences of arbitrary length and complexity, in practice they are bounded by the finiteness

of the underlying hardware. Thus, a symbolic model of language processing, such as CC-

READER (Just & Carpenter, 1992), embodies the competence-performance distinction in

this way. Its grammatical competence consists of a set of recursive production rules which are

applied to produce state changes in a working memory. Limitations on the working memory’s

capacity explain performance limitations without making changes to the competence part of

the model. Thus a finite processor, CC-READER, captures underlying recursive structures.

Unless connectionist networks can perform the same trick they cannot be complete models of

natural language processing.

From the perspective of cognitive modeling, therefore, the unbounded recursive struc-

ture of natural language is not axiomatic. Nor need the suggestion that a speaker/hearer’s

knowledge of the language captures such infinite recursive structure be taken for granted.

Rather, the view that “unspeakable” sentences which accord with recursive rules form a part

of the knowledge of language is an assumption of the standard view of language pioneered

by Chomsky and now dominant in linguistics and much of psycholinguistics. The challenge

for a connectionist model is to account for those aspects of human comprehension/production

performance that suggest the standard recursive picture. If connectionist models can do this

without making the assumption that the language processor really implements recursion, or

that arbitrarily complex recursive structures really are sentences of the language, then they

may present a viable, and radical, alternative to the standard ’generative’ view of language

and language processing.

Therefore, in assessing the connectionist simulations that we report below, which focuses

on natural language recursion, we need not require that connectionist systems be able to

handle recursion in full generality. Instead, the benchmark for performance of connectionist

systems will be set by human abilities to handle recursive structures. Specifically, the challenge

for connectionist researchers is to capture the recursive regularities of natural language, while

3



allowing that arbitrarily complex sentences cannot be handled. This requires (a) handling

recursion at a comparable level to human performance, and (b) learning from exposure and

generalizing to novel recursive constructions. Meeting this challenge involves providing a new

account of people’s limited ability to handle natural language recursion, without assuming an

internally represented grammar which allows unbounded recursion—i.e., without invoking the

competence/performance distinction.1

Here, we consider natural language recursion in a highly simplified form. We train con-

nectionist networks on small artificial languages that exhibit the different types of recursion

in natural language. This addresses directly Chomsky’s (1957) arguments that recursion in

natural language in principle rules out associative and finite state models of language pro-

cessing. Considering recursion in a pure form permits us to address the in-principle viability

of connectionist networks in handling recursion, just as simple artificial languages have been

used to assess the feasibility of symbolic parameter-setting approaches to language acquisition

(Gibson & Wexler, 1994; Niyogi & Berwick, 1996).

The structure of this chapter is as follows. We begin by distinguishing varieties of recursion

in natural language. We then summarize past connectionist research on natural language

recursion. Next, we introduce three artificial languages, based on Chomsky’s (1957) three

kinds of recursion, and describe the performance of connectionist networks trained on these

languages. These results suggest that the networks handle recursion to a degree comparable

with humans. We close with conclusions for the prospects of connectionist models of language

processing.

2 Varieties of Recursion

Chomsky (1957) introduced the notion of a recursive generative grammar. Early generative

grammars were assumed to consisted of phrase structure rules and transformational rules

(which we shall not consider below). Phrase structure rules have the form A → BC, meaning
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that the symbol A can be replaced by the concatenation of B and C. A phrase structure

rule is recursive if a symbol X is replaced by a string of symbols which includes X itself

(e.g., A → BA). Recursion can also arise through applying recursive sets of rules, none of

which need individually be recursive. When such rules are used successively to expand a

particular symbol, the original symbol may eventually be derived. A language construction

modeled using recursion rules is a recursive construction; a language has recursive structure if

it contains such constructions.

Modern generative grammar employs many formalisms, some distantly related to phrase

structure rules. Nevertheless, corresponding notions of recursion within those formalisms can

be defined. We shall not consider such complexities here, but use phrase structure grammar

throughout.

There are several kinds of recursion relevant to natural language. First, there are those

generating languages that could equally well be generated non-recursively, by iteration. For

example, the rules for right-branching recursion shown in Table 1 can generate the right-

branching sentences (4)–(6):

(4) John loves Mary.

(5) John loves Mary who likes Jim.

(6) John loves Mary who likes Jim who dislikes Martha.

But these structures can be produced or recognized by a finite state machine using iteration.

The recursive structures of interest to Chomsky, and of interest here, are those where recursion

is indispensable.

————–insert Table 1 about here————–

Chomsky (1957) invented three artificial languages, generated by recursive rules from a

vocabulary consisting only of a’s and b’s. These languages cannot be generated or parsed
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by a finite state machine. The first language, which we call counting recursion, was inspired

by sentence constructions like ‘if S1, then S2’ and ‘either S1, or S2’. These can, Chomsky

assumed, be nested arbitrarily, as in (7)–(9):

(7) if S1 then S2.

(8) if if S1 then S2 then S3.

(9) if if if S1 then S2 then S3 then S4.

The corresponding artificial language has the form anbn and includes the following strings:

(10) ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, . . .

Unbounded counting recursion cannot be parsed by any finite device processing from left to

right, because the number of ‘a’s must be stored, and this can be unboundedly large, and

hence can exceed the memory capacity of any finite machine.

The second artificial language was modeled on the center-embedded constructions in many

natural languages. For example, in sentences (1)–(3) above the dependencies between the

subject nouns and their respective verbs are center-embedded, so that the first noun is matched

with the last verb, the second noun with the second but last verb, and so on. The artificial

language captures these dependency relations by containing sentences that consists of a string

X of a’s and b’s followed by a ’mirror image’ of X (with the words in the reverse order), as

illustrated by (11):

(11) aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, . . .

Chomsky (1957) used the existence of center-embedding to argue that natural language must

be at least context-free, and beyond the scope of any finite machine.
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The final artificial language resembles a less common pattern in natural language, cross-

dependency, which is found in Swiss-German and in Dutch,2 as in (12)-(14) (from Bach, Brown

& Marslen-Wilson, 1986):

(12) De lerares heeft de knikkers opgeruimd.

Literal: The teacher has the marbles collected up

Gloss: The teacher collected up the marbles.

(13) Jantje heeft de lerares de knikkers helpen opruimen.

Literal: Jantje has the teacher the marbles help collect up.

Gloss: Jantje helped the teacher collect up the marbles.

(14) Aad heeft Jantje de lerares de knikkers laten helpen opruimen.

Literal: Aad has Jantje the teacher the marbles let help collect up.

Gloss: Aad let Jantje help the teacher collect up the marbles.

Here, the dependencies between nouns and verbs are crossed such that the first noun matches

the first verb, the second noun matches the second verb, and so on. This is captured in the

artificial language by having all sentences consist of a string X followed by an identical copy

of X as in (15):

(15) aa, bb, abab, baba, aaaa, bbbb, aabaab, abbabb, . . .

The fact that cross-dependencies cannot be handled using a context-free phrase structure

grammar has meant that this kind of construction, although rare even in languages in which

it occurs, has assumed considerable importance in linguistics.3 Whatever the linguistic status

of complex recursive constructions, they are difficult to process compared to right-branching

structures. Structures analogous to counting recursion have not been studied in psycholin-

guistics, but sentences such as (16), with just one level of recursion, are plainly difficult (see

Reich, 1969).
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(16) If if the cat is in, then the dog cannot come in then the cat and dog dislike each other.

The processing of center-embeddings has been studied extensively, showing that English

sentences with more than one center-embedding (e.g., sentences (2) and (3) presented above)

are read with the same intonation as a list of random words (Miller, 1962), that they are

hard to memorize (Foss & Cairns, 1970; Miller & Isard, 1964), and that they are judged to be

ungrammatical (Marks, 1968). Using sentences with semantic bias or giving people training

can improve performance on such structures, to a limited extent (Blaubergs & Braine, 1974;

Stolz, 1967). Cross-dependencies have received less empirical attention, but present similar

processing difficulties to center-embeddings (Bach et al., 1986; Dickey & Vonk, 1997).

3 Connectionism and Recursion

Connectionist models of recursive processing fall in three broad classes. Some early models

of syntax dealt with recursion by “hardwiring” symbolic structures directly into the network

(e.g., Fanty, 1986; Small, Cottrell & Shastri, 1982). Another class of models attempted to

learn a grammar from “tagged” input sentences (e.g., Chalmers, 1990; Hanson & Kegl, 1987;

Niklasson & van Gelder, 1994; Pollack, 1988, 1990; Stolcke, 1991). Here, we concentrate on a

third class of models that attempts the much harder task of learning syntactic structure from

strings of words (see Christiansen & Chater, Chapter 2, this volume, for further discussion of

connectionist sentence processing models). Much of this work has been carried out using the

Simple Recurrent Network (SRN) (Elman, 1990) architecture. The SRN involves a crucial

modification to a standard feedforward network–a so-called “context layer”—allowing past

internal states to influence subsequent states (see Figure 1 below). This provides the SRN

with a memory for past input, and therefore an ability to process input sequences, such as

those generated by finite-state grammars (e.g., Cleeremans, Servan-Schreiber & McClelland,

1989; Giles, Miller, Chen, Chen, Sun & Lee, 1992; Giles & Omlin, 1993; Servan-Schreiber,

Cleeremans & McClelland, 1991).
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Previous efforts in modeling complex recursion fall in two categories: simulations using

language-like grammar fragments and simulations relating to formal language theory. In the

first category, networks are trained on relatively simple artificial languages, patterned on En-

glish. For example, Elman (1991, 1993) trained SRNs on sentences generated by a small

context-free grammar incorporating center-embedding and one kind of right-branching recur-

sion. Within the same framework, Christiansen (1994, 2000) trained SRNs on a recursive

artificial language incorporating four kinds of right-branching structures, a left branching

structure, and center-embedding or cross-dependency. Both found that network performance

degradation on complex recursive structures mimicked human behavior (see Christiansen &

Chater, Chapter 2, this volume, for further discussion of SRNs as models of language pro-

cessing). These results suggest that SRNs can capture the quasi-recursive structure of actual

spoken language. One of the contributions of the present chapter is to show that the SRN’s

general pattern of performance is relatively invariant over variations in network parameters

and training corpus—thus, we claim, the human-like pattern of performance arises from in-

trinsic constraints of the SRN architecture.

While work in the first category has been suggestive but relatively unsystematic, work

in the second category has involved detailed investigations of small artificial tasks, typically

using very small networks. For example, Wiles and Elman (1995) made a detailed study

of counting recursion, with a recurrent networks with 2 hidden units (HU),4 and found a

network that generalized to inputs far longer than those used in training. Batali (1994) used

the same language, but employed 10HU SRNs and showed that networks could reach good

levels of performance, when selected by a process of “simulated evolution” and then trained

using conventional methods. Based on a mathematical analysis, Steijvers and Grünwald

(1996) “hardwired” a second order 2HU recurrent network (Giles et al., 1992) to process

the context-sensitive counting language b(a)kb(a)k. . . for values of k between 1 and 120.

An interesting question, which we address below, is whether performance changes with more
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than two vocabulary items—e.g., if the network must learn to assign items into different

lexical categories (“noun” and “verb”) as well as paying attention to dependencies between

these categories. This question is important with respect to the relevance of these results for

natural language processing.

No detailed studies have previously been conducted with center-embedding or crossed-

dependency constructions. The studies below comprehensively compare all three types of

recursion discussed in Chomsky (1957), with simple right-branching recursion as a baseline.

Using these abstract languages allows recursion to be studied in a “pure” form, without in-

terference from other factors. Despite the idealized nature of these languages, the SRN’s

performance qualitatively conforms to human performance on similar natural language struc-

tures.

A novel aspect of these studies is comparison with performance benchmark from statistical

linguistics. The benchmark method is based on n-grams, i.e., strings of n consecutive words.

It is “trained” on the same input as the networks, and records the frequency of each n-gram.

It predicts new words from the relative frequencies of the n-grams which are consistent with

the previous n − 1 words. The prediction is a vector of relative frequencies for each possible

successor item, scaled to sum to 1, so that they can be interpreted as probabilities, and are

comparable with the output vectors of the networks. Below, we compare network performance

with the predictions of bigram and trigram models.5 These simple models can provide insight

into the sequential information which the networks pick up, and make a link with statistical

linguistics (e.g., Charniak, 1993).

4 Three Benchmark Tests Concerning Recursion

We constructed three languages to provide input to the network. Each language has two

recursive structures: one of the three complex recursive constructions and the right-branching

construction as a baseline. Vocabulary items were divided into “nouns” and “verbs”, incor-
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porating both singular or plural forms. An end of sentence marker (EOS) completes each

sentence.

i. Counting recursion

aabb NNVV

For counting recursion, we treat Chomsky’s symbols ‘a’ and ‘b’ as the categories of noun

and verb, respectively, and ignore singular/plural agreement.

ii. Center-embedding recursion

the boy girls like runsa b b a SNPNPV SV

In center-embedding recursion, we map ‘a’ and ‘b’ onto the categories of singular and

plural words (whether nouns or verbs). Nouns and verbs agree for number as in center-

embedded constructions in natural language.

iii. Cross-dependency recursion

the boy girls runs likea b a b SNPNSV PV

In cross-dependency recursion we map ‘a’ and ‘b’ onto the categories of singular and

plural words. Nouns and verbs agree for number as in cross-dependency constructions.

iv. Right-branching recursion

girls like the boy that runsa a b b PNPV SNSV

For right-branching recursion, we map ‘a’ and ‘b’ onto the categories of singular and

plural words. Nouns and verbs agree as in right-branching constructions.
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Thus, the counting recursive language consisted of both counting recursive constructions (i)

interleaved with right-branching recursive constructions (iv), the center-embedding recursive

language of center-embedded recursive constructions (ii) interleaved with right-branching re-

cursive constructions (iv), and the cross-dependency recursive language of cross-dependency

recursive constructions (iii) interleaved with right-branching recursive constructions (iv).

How can we assess how well a network has learned these languages? By analogy with

standard linguistic methodology, we could train the net to make “grammaticality judgments”,

i.e., to distinguish legal and non-legal sentences. But this chapter focuses on performance on

recursive structures, rather than meta-linguistic judgments (which are often assumed to relate

to linguistic competence).6 Therefore, we use a task which directly addressed how the network

processes sentences, rather than requiring it to make meta-linguistic judgments. Elman (1990)

suggested such an approach, which has become standard in SRN studies of natural language

processing. The network is trained to predict the next item in a sequence, given previous

context. That is, the SRN gets an input word at time t and then predicts the word at t + 1.

In most contexts in real natural language, as in these simulations, prediction will not be

perfect. But while it is not possible to be certain what item will come next, it is possible to

predict successfully which items are possible continuations, and which are not, according to

the regularities in the corpus. To the extent that the network can predict successfully, then,

it is learning the regularities underlying the language.

5 Simulation Results

We trained SRNs on the three languages, using a sixteen word vocabulary with four singular

nouns, four singular verbs, four plural nouns, and four plural verbs.7 All nets had 17 input

and output units (see Figure 1), where units correspond to words, or the EOS marker. The

hidden layer contained between 2 and 100 units. Except where noted below, training corpora

consisted of 5000 variable length sentences, and test corpora of 500 novel sentences, generated
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in the same way. The training and test corpora did not overlap. Each corpus was concatenated

into a single long string and presented to the network word by word. Both training and test

corpora comprised 50% complex recursive constructions interleaved with 50% right-branching

constructions. The distribution of depth of embedding is shown in Table 2. The mean sentence

length in training and test corpora was 4.7 words (SD: 1.3).

————–insert Figure 1 about here————–

————–insert Table 2 about here————–

Since the input consists of a single concatenated string of words, the network has to discover

that the input consists of sentences, i.e., nouns followed by verbs (ordered by the constraints

of the language being learned) and delineated by EOS markers. Consider an SRN trained on

the center-embedding language and presented with the two sentences: ‘n1v5#N3n8v2V4#’.8

First, the network gets ‘n1’ as input and is expected to produce ‘v5’ as output. The weights

are then adjusted depending on the discrepancy between the actual and desired output and

the desired output using back-propagation (Rumelhart, Hinton & Williams, 1986). Next, the

SRN receives ‘v5’ as input and should produce as output the end-of-sentence marker (‘#’).

At the next time-step, ‘#’ is provided as input and ‘N3’ is the target output, followed by

the input/output pairs: ‘N3/n8’, ‘n8’/‘v2’, ‘v2’/‘V4’, and ‘V4’/‘#’. Training continues in this

manner for the whole training corpus.

Test corpora were then presented to the SRNs and output recorded, with learning turned

off. As we noted above, in any interesting language-like task, the next item is not deter-

ministically specified by the previous items. In the above example at the start of the second

sentence, the grammar for the center-embedding language permits both noun categories, ‘n’

and ‘N’, to begin a sentence. If the SRN has acquired the relevant aspects of the grammar

which generated the training sentences, then it should activate all word tokens in both ‘n’ and

‘N’ following an EOS marker. Specifically, the network’s optimal output is the conditional
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probability distribution over possible next items. We can therefore measure amount of learn-

ing by comparing the network’s output with an estimate of the true conditional probabilities

(this gives a less noisy measure than comparing against actual next items). This overall per-

formance measure is used next. Below, we introduce a measure of Grammatical Prediction

Error to evaluate performance in more detail.

5.1 Overall performance

As we noted, our overall performance measure compared network outputs with estimates of

the true conditional probabilities given prior context, which, following Elman (1991), can

be estimated from the training corpus. However, such estimates cannot assess performance

on novel test sentences, because a naive empirical estimate of the probability of any novel

sentence is 0, as it has never previously occurred. One solution to this problem is to esti-

mate the conditional probabilities based on the prior occurrence of lexical categories—e.g.,

‘NVnvnvNV#’—rather than individual words. Thus, with ci denoting the category of the ith

word in the sentence we have the following relation:9

————–insert equation 1 here————–

where the probability of getting some member of a given lexical category as the pth item,

cp, in a sentence is conditional on the previous p − 1 lexical categories. Note that for the

purpose of performance assessment singular and plural nouns are assigned to separate lexical

categories throughout this chapter, as are singular and plural verbs.

Given that the choices of lexical item for each category are independent, and that each

word in the category is equally frequent,10 the probability of encountering a word wn, which

is a member of a category cp, is inversely proportional to the number of items, Cp, in that

category. So, overall,

————–insert equation 2 here————–
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If the network is performing optimally, the output vector should exactly match these prob-

abilities. We measure network performance by the summed squared difference between the

network outputs and the conditional probabilities, defining Squared Error:

————–insert equation 3 here————–

where W is the set of words in the language (including the end of sentence marker), and there

is an output unit of the network corresponding to each word. The index j runs through each

possible next word, and compares the network output to the conditional probability of that

word. Finally, we obtain an overall measure of network performance by calculating the Mean

Squared Error (MSE) across the whole test corpus. MSE will be used as a global measure of

the performance of both networks and n-gram models below.

5.1.1 Intrinsic constraints on SRN performance

Earlier simulations concerning the three languages (Christiansen, 1994) showed that perfor-

mance degrades as embedding depth increases. As mentioned earlier, SRN simulations in

which center-embeddings were included in small grammar fragments have the same outcome

(Christiansen, 1994, 2000; Elman, 1991, 1993; Weckerly & Elman, 1992) and this is also true

for cross-dependencies (Christiansen, 1994, 2000). But does this human-like pattern arise in-

trinsically from the SRN architecture, or is it an artifact of the number of HUs used in typical

simulations?

To address this objection, SRNs with 2, 5, 10, 15, 25, 50, and 100 HUs were trained on the

three artificial languages. Across all simulations, the learning rate was 0.1, no momentum was

used, and the initial weights were randomized to values in the interval [-0.25,0.25]. Although

the results presented here were replicated across different initial weight randomizations, we

focus on a typical set of simulations for the ease of exposition. Networks of the same size were

given the same initial random weights to facilitate comparisons across the three languages.
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Figure 2 shows performance averaged across epochs for different sized nets tested on cor-

pora consisting entirely of either complex recursive structures (left panels) or right-branching

recursive structures (right panels). All test sentences were novel and varied in length (fol-

lowing the distribution in Table 2). The MSE values were calculated as the average of the

MSEs sampled at every second epoch (from epoch 0 to epoch 100). The MSE for bigram and

trigram models are included (black bars) for comparison.

————–insert figure 2 about here————–

The SRNs performed well. On counting recursion, nets with 15HUs or more obtained

low MSE on complex recursive structures (top left panel). Performance on right-branching

structures (top right panel) was similar across different numbers of HUs. For both types of

recursion, the nets outperformed the bigram and trigram models. For the center-embedding

language, nets with at least 10HUs achieved essentially the same level of performance on

complex recursive structures (middle left panel), whereas nets with five or more HUs per-

formed similarly on the right-branching structures (middle right panel). Again, the SRNs

generally outperformed bigram and trigram models. Nets with 15HUs or more trained on the

cross-dependency language all reached the same level of performance on complex recursive

structures (bottom left panel). As with counting recursion, performance was quite uniform

on right-branching recursive constructions (bottom right panel) for all numbers of HUs, and

the SRNs again outperformed bigram and trigram models. These results suggest that the

above objection does not apply to the SRN. Above 10-15HUs, the number of HUs seems not

to affect performance.

Comparing across the three languages, the SRN found the counting recursion language

the easiest and found cross-dependencies easier than center embeddings. This is important

because people also appear better at dealing with cross-dependency constructions than equiv-

alent center-embedding constructions. This is surprising for linguistic theory where cross-

dependencies are typically viewed as more complex than center-embeddings because, as we
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noted above, they cannot be captured by phrase-structure rules. Interestingly, the bigram and

trigram models showed the opposite effect, with better performance on center-embeddings

than cross-dependencies. Finally, the SRNs with at least 10 hidden units had a lower MSE on

complex recursive structures than on right-branching structures. This could be because the

complex recursive constructions essentially become deterministic (with respect to length) once

the first verb is encountered, but this is not generally true for right-branching constructions.

These results show that the number of HUs, when sufficiently large, does not substantially

influence performance on these test corpora. Yet perhaps the number of HUs may matter

when processing the doubly embedded complex recursive structures which are beyond the

limits of human performance. To assess this, Christiansen and Chater (1999) retested the

SRNs (trained on complex and right-branching constructions of varying length) on corpora

containing just novel doubly embedded structures. Their results showed a similar performance

uniformity to that in Figure 2. These simulations also demonstrated that once an SRN

has a sufficient size (5-10 HUs) it outperforms both n-gram models on doubly embedded

constructions. Thus, above a sufficient number of hidden units, the size of the hidden layer

does seems irrelevant to performance on novel doubly embedded complex constructions drawn

from the three languages. Two further objections may be raised, however.

First, perhaps the limitations on processing complex recursion is due to the interleaving

of right-branching structures during training. To investigate this objection, SRNs with 2, 5,

10, 15, 25, 50 and 100 HUs were trained (with the same learning parameters as above) on

versions of the three languages only containing complex recursive constructions of varying

length. When tested on complex recursive sentence structures of varying length, the results

were almost identical to those in the left panels of Figure 2, with a very similar performance

uniformity across the different HU sizes (above 5-10 units) for all three languages. Also

as before, this performance uniformity was also evident when on corpora consisting entirely

of doubly embedded complex constructions. Moreover, similar results were found for SRNs
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of different HU sizes trained on a smaller 5 word vocabulary. These additional simulations

show that the interleaving of the right-branching constructions does not significantly alter

performance on complex recursive constructions.

Second, perhaps processing limitations result from an inefficient learning algorithm. An

alternative training regime for recurrent networks, back-propagation through time (BPTT),

appears preferable on theoretical grounds, and is superior to SRN training in various artificial

tasks (see Chater & Conkey, 1992). But choice of learning algorithm does not appear to

be crucial here. Christiansen (1994) compared the SRN and BPTT learning algorithms on

versions of the three languages only containing complex recursive constructions of varying

length (and same embedding depth distribution as in Table 2). In one series of simulations,

SRNs and BPTT training (unfolded 7 steps back in time) with 5, 10 and 25 HUs were trained

using a five word vocabulary. There was no difference across the three languages between SRN

and BPTT training. Further simulations replicated these results for nets with 20HUs and a

17 word vocabulary. Thus, there is currently no evidence that the human level processing

limitations that are exhibited in these simulations are artifacts of using an inefficient learning

algorithm.

5.2 Performance at different depths of embedding

We have seen that the overall SRN performance roughly matches human performance on

recursive structures. We now consider performance at different levels of embedding. Human

data suggests that performance should degrade rapidly as embedding depth increases for

complex recursive structures, but that it should degrade only slightly for right-branching

constructions.

Above we used empirical conditional probabilities based on lexical categories to assess

SRN performance (Equations 2 and 3). However, this measure is not useful for assessing

performance on novel constructions which either go beyond the depth of embedding found in
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the training corpus, or deviate, as ungrammatical forms do, from the grammatical structures

encountered during training. For comparisons with human performance we therefore use a

different measure: Grammatical Prediction Error (GPE).

When evaluating how the SRN has learned the grammar underlying the training corpus, it

is not only important to determine whether the words the net predicts are grammatical, but

also that the net predicts all the possible grammatical continuations. GPE indicates how a

network is obeying the training grammar in making its predictions, taking hits, false alarms,

correct rejections and misses into account. Hits and false alarms are calculated as the accu-

mulated activations of the set of units, G, that are grammatical and the set of ungrammatical

activated units, U , respectively:

————–insert equation 4 here————–

————–insert equation 5 here————–

Traditional sensitivity measures, such as d’ (Signal Detection Theory, Green & Swets, 1966) or

α (Choice Theory, Luce, 1959), assume that misses can be calculated as the difference between

total number of relevant observations and hits. But, in terms of network activation, “total

number of relevant observations” has no clear interpretation.11 Consequently, we need an

alternative means of quantifying misses; that is, to determine an activation-based penalty for

not activating all grammatical units and/or not allocating sufficient activation to these units.

With respect to GPE, the calculation of misses involves the notion of a target activation, ti,

computed as a proportion of the total activation (hits and false alarms) determined by the

lexical frequency, fi, of the word that unit i designates and weighted by the sum of the lexical

frequencies, fj, of all the grammatical units:

————–insert equation 6 here————–
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The missing activation for each unit can be determined as the positive discrepancy, mi, be-

tween the target activation, ti, and actual activation, ui, for a grammatical unit:

————–insert equation 7 here————–

Finally, the total activation for misses is the sum over missing activation values:

————–insert equation 8 here————–

The GPE for predicting a particular word given previous sentential context is thus mea-

sured by:

————–insert equation 9 here————–

GPE measures how much of the activation for a given item accords with the grammar (hits)

in proportion to the total amount of activation (hits and false alarms) and the penalty for

not activating grammatical items sufficiently (misses). Although not a term in Equation 9,

correct rejections are taken into account by assuming that they correspond to zero activation

for units that are ungrammatical given previous context.

GPEs range from 0 and 1, providing a stringent measure of performance. To obtain a

perfect GPE of 0 the SRN must predict all and only the next items prescribed by the gram-

mar, scaled by the lexical frequencies of the legal items. Notice that to obtain a low GPE

the network must make the correct subject noun/verb agreement predictions (Christiansen &

Chater, 1999). The GPE value for an individual word reflects the difficulty that the SRN ex-

perienced for that word, given the previous sentential context. Previous studies (Christiansen,

2000; MacDonald & Christiansen, in press) have found that individual word GPE for an SRN

can be mapped qualitatively onto experimental data on word reading times, with low GPE

reflecting short reading times. Average GPE across a sentence measures the difficulty that

the SRN experienced across the sentence as a whole. This measure maps onto sentence gram-
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maticality ratings, with low average GPEs indicating high rated “goodness” (Christiansen &

MacDonald, 2000). .

5.2.1 Embedding depth performance

We now use GPE to measure SRN performance on different depths of embedding. Given that

number of HUs seems relatively unimportant, we focus just on 15HU nets below. Inspection

of MSE values across epochs revealed that performance on complex recursive constructions

asymptotes after 35–40 training epochs. From the MSEs recorded for epochs 2 through 100,

we chose the number of epochs at which the 15HU nets had the lowest MSE. The best

level of performance was found after 54 epochs for counting recursion, 66 epochs for center-

embedding, and 92 epochs for cross-dependency. Results reported below use SRNs trained for

these number of epochs.

Figure 3 plots average GPE on complex and right-branching recursive structures against

embedding depth for 15HU nets, bigram models, and trigram models (trained on complex and

right-branching constructions of varying length). Each data point represents the mean GPE

on 10 novel sentences. For the SRN trained on counting recursion there was little difference

between performance on complex and right-branching recursive constructions, and perfor-

mance only deteriorated slightly with increasing embedding depth. In contrast, the n-gram

models (and especially the trigram model) performed better on right-branching structures

than complex recursive structures. Both n-gram models showed a sharper decrease in perfor-

mance across depth of recursion than the SRN. The SRN trained on center-embeddings also

outperformed the n-gram models, although it, too, had greater difficulty with complex recur-

sion than with right-branching structures. Interestingly, SRN performance on right-branching

recursive structures decreased slightly with depth of recursion. This contrasts with many sym-

bolic models where unlimited right-branching recursion poses no processing problems (e.g.,

Church, 1982; Gibson, 1998; Marcus, 1980; Stabler, 1994). However, the performance dete-
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rioration of the SRN appears in line with human data (see below). A comparison between

the n-gram models’ performance on center-embedding shows that whereas both exhibited a

similar pattern of deteriorating with increasing depth on the complex recursive constructions,

the trigram models performed considerably better on the right-branching constructions than

the bigram model. As with the MSE results presented above, SRN performance on cross-

dependencies was better than on center-embeddings. Although the SRN, as before, obtained

lower GPEs on right-branching constructions compared with complex recursive structures,

the increase in GPE across embedding depth on the latter was considerably less for the cross-

dependency net than for its center-embedding counterpart. Bigrams performed poorly on the

cross-dependency language both on right-branching and complex recursion. Trigrams per-

formed substantially better, slightly outperforming the SRN on right branching structures,

though still lagging behind the SRN on complex recursion. Finally, note that recursive depth

4 was not seen in training. Yet there was no abrupt breakdown in performance for any of the

three languages at this point, for both SRNs and n-gram models. This suggests that these

models are able to generalize to at least one extra level of recursion beyond what they have

been exposed to during training (and this despite only 1% of the training items being of depth

3).

————–insert figure 3 about here————–

Overall, the differential SRN performance on complex recursion and right-branching con-

structions for center-embeddings and cross-dependencies fit well with human data.12

5.3 Training exclusively on doubly embedded complex construc-

tions

An alternative objection to the idea of intrinsic constraints being the source of SRN limitations

is that these limitations might stem from the statistics of the training corpora: e.g., perhaps the

fact that just 7% of sentences involved doubly embedded complex recursive structures explains
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the poor SRN performance with these structures. Perhaps adding more doubly embedded

constructions would allow the SRN to process these constructions without difficulty.

We therefore trained 15HU SRNs on versions of the three languages consisting exclusively

of doubly embedded complex recursion without interleaving right-branching constructions.

Using the same number of words as before, best performance was found for the counting

recursion depth 2 trained SRN (D2-SRN) after 48 epochs, after 60 epochs for the center-

embedding D2-SRN, and after 98 epochs for the cross-dependency D2-SRN. When tested on

the test corpora containing only novel doubly embedded sentences, the average MSE found

for the counting recursion network was 0.045 (vs. 0.080 for the previous 15HU SRN), 0.066

for the center-embedding net (vs. 0.092 for the previous 15HU SRN), and 0.073 for the cross-

dependency net (vs. 0.079 for the previous 15HU SRN). Interestingly, although there were sig-

nificant differences between the MSE scores for the SRNs and D2-SRNs trained on the counting

recursion (t(98) = 3.13, p < 0.003) and center-embeddings (t(98) = 3.04, p < 0.004), the dif-

ference between the two nets was not significant for cross-dependencies (t(98) = .97, p > 0.3).

The performance of the D2-SRNs thus appear to be somewhat better than the performance

of the SRNs trained on the corpora of varying length—at least for the counting and center-

embedding recursion languages. However, D2-SRNs are only slightly better than their coun-

terparts trained on sentences of varying length.

Figure 4 plots GPE against word position across doubly embedded complex recursive con-

structions from the three languages, averaged over 10 novel sentences. On counting recursion

sentences (top panel), both SRN and D2-SRN performed well, with a slight advantage for

the D2-SRN on the last verb. Both networks obtained lower levels of GPE than the bigrams

and trigrams which were relatively inaccurate, especially for the last two verbs. On center-

embeddings (middle panel), the two SRNs showed a gradual pattern of performance degra-

dation across the sentence, but with the D2-SRN achieving somewhat better performance,

especially on the last verb. Bigrams and trigrams performed similarly, and again performed
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poorly on the two final verbs. When processing doubly embedded cross-dependency sentences

(bottom panel) SRN performance resembled that found for counting recursion. The GPE for

both SRNs increased gradually, and close to each other, until the first verb. Then, the SRN

GPE for the second verb dropped whereas the D2-SRN GPE continued to grow. At the third

verb, the GPE for the D2-SRN dropped whereas the SRN GPE increased.

Although this pattern of SRN GPEs may seem puzzling, it appears to fit recent results

concerning the processing of similar cross-dependency constructions in Dutch. Using a phrase-

by-phrase self-paced reading task with stimuli adapted from Bach et al. (1986), Dickey and

Vonk (1997) found a significant jump in reading times between the second and third verb,

preceded by a (non-significant) decrease in reading times between the first and second verb.

When the GPEs for individual words are mapped onto reading times, the GPE pattern of

the SRN, but not the D2-SRN, provides a reasonable approximation of the pattern of reading

times found by Dickey and Vonk. Returning to Figure 4, the trigram model—although not

performing as well as the SRN—displayed a similar general pattern, whereas the bigram

model performed very poorly. Overall, Figure 4 reveals that despite being trained exclusively

on doubly embedded complex recursive constructions and despite not having to acquire the

regularities underlying the right-branching structures, the D2-SRN only performed slightly

better on doubly embedded complex recursive constructions than the SRN trained on both

complex and right-branching recursive constructions of varying length. This suggests that

SRN performance does not merely reflect the statistics of the training corpus, but intrinsic

architectural constraints.

————–insert figure 4 about here————–

It is also interesting to note that the SRNs are not merely learning sub-sequences of

the training corpus by rote—they substantially outperformed the n-gram models. This is

particularly important because the material that we have used in these studies is the most
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favorable possible for n-gram models, since there is no intervening material at a given level of

recursion. In natural language, of course, there is generally a considerable amount of material

between changes of depth of recursion, which causes problems for n-gram models because

they concentrate on short-range dependencies. While n-gram models do not generalize well

to more linguistically natural examples of recursion, SRN models, by contrast, do show good

performance on such material. We have found (Christiansen, 1994, 2000; Christiansen &

Chater, 1994) that the addition of intervening non-recursive linguistic structure does not

significantly alter the pattern of results found with the artificial languages reported here.

Thus, SRNs are not merely learning bigrams and trigrams, but acquiring richer grammatical

regularities that allow them to exhibit behaviors qualitatively similar to humans. We now

consider the match with human data in more detail.

5.4 Fitting Human Data

5.4.1 Center-embedding vs. cross-dependency

As we have noted, Bach et al. (1986) found that cross-dependencies in Dutch were com-

paratively easier to process than center-embeddings in German. They had native Dutch

speakers listen to sentences in Dutch involving varying depths of recursion in the form of

cross-dependency constructions and corresponding right-branching paraphrases with the same

meaning. Native German speakers were tested using similar materials in German, but with

the cross-dependency constructions replaced by center-embedded constructions. Because of

differing intuitions among German informants concerning whether the final verb should be

in an infinitive or a past participle, two versions of the German materials were used. After

each sentence, subjects rated its comprehensibility on a 9-point scale (1 = easy, 9 = difficult).

Subjects were also asked comprehension questions after two-thirds of the sentences. In order

to remove effects of processing difficulty due to length, Bach et al. subtracted the ratings for

the right-branching paraphrase sentences from the matched complex recursive test sentences.
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The same procedure was applied to the error scores from the comprehension questions. The

resulting difference should thus reflect the difficulty caused by complex recursion.

Figure 5 (left panel) shows the difference in mean test/paraphrase ratings for singly and

doubly embedded cross-dependency sentences in Dutch and German. We focus on the past

participle German results because these were consistent across both the rating and comprehen-

sion tasks, and were comparable with the Dutch data. Mean GPE across a sentence reflects

how difficult the sentence was to process for the SRN. Hence, we can map GPE onto the

human sentence rating data, which are thought to reflect the difficulty that subjects experi-

ence when processing a given sentence. We used the mean GPEs from Figure 3 for the SRNs

trained on center-embeddings and cross-dependencies to model the Bach et al. results. For

recursive depth 1 and 2, mean GPEs for the right-branching constructions were subtracted

from the average GPEs for the complex recursive constructions, and the differences plotted

in Figure 5 (right panel).13 The net trained on cross-dependencies maps onto the Dutch data

and the net trained on center-embedding maps onto the German (past participle) data. At a

single level of embedding, Bach et al. found no difference between Dutch and German, and

this holds in the SRN data (t(18) = 0.36, p > 0.7). However, at two levels of embedding

Bach et al. found that Dutch cross-dependency stimuli were rated significantly better than

their German counterparts. The SRN data also shows a significant difference between depth 2

center-embeddings and cross-dependencies (t(18) = 4.08, p < 0.01). Thus, SRN performance

mirrors the human data quite closely.

————–insert figure 5 about here————–

5.4.2 Grammatical vs. ungrammatical double center-embeddings

The study of English sentences with multiple center-embeddings is an important source of in-

formation about the limits of human sentence processing (e.g., Blaubergs & Braine, 1974; Foss

& Cairns, 1970; Marks, 1968; Miller, 1962; Miller & Isard, 1964; Stolz, 1967). A particularly
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interesting recent finding (Gibson and Thomas, 1999), using an off-line rating task, suggests

that some ungrammatical sentences involving doubly center-embedded object relative clauses

may be perceived as grammatical.

(17) The apartment that the maid who the service had sent over was cleaning every week was

well decorated.

(18)*The apartment that the maid who the service had sent over was well decorated.

In particular, they found that when the middle VP was removed (as in 18), the result was

rated no worse than the grammatical version (in 17).

Turning to the SRN, in the artificial center embedding language, (17) corresponds to

‘NNNVVV’, whereas the (18) corresponds to (‘NNNVV’). Does the output activation following

‘NNNVV’ fit the Gibson and Thomas data? Figure 6 shows mean activation across 10 novel

sentences and grouped into the four lexical categories and EOS marker. In contrast to the

results of Gibson and Thomas, the network demonstrated a significant preference for the

ungrammatical 2VP construction over the grammatical 3VP construction, predicting that

(17) should be rated worse than (18).

————–insert figure 6 about here————–

Gibson and Thomas (1999) employed an off-line task, which might explain why (17) was

rated worse than (18). Christiansen and MacDonald (2000) conducted an on-line self-paced

word-by-word (center presentation) grammaticality judgment task using Gibson and Thomas’

stimuli. At each point in a sentence subjects judged whether what they had read was a

grammatical sentence or not. Following each sentence (whether accepted or rejected), subjects

rated the sentences on a 7-point scale (1 = good, 7 = bad). Christiansen and MacDonald

found that the grammatical 3VP construction was again rated significantly worse than the

ungrammatical 2VP construction.
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One potential problem with this experiment is that the 2VP and 3VP stimuli were different

lengths, introducing a possible confound. The Gibson and Thomas stimuli also incorporated

semantic biases (e.g., apartment/decorated, maid/cleaning, service/sent over in (17)) which

may make the 2VP stimuli seem spuriously plausible. Christiansen and MacDonald therefore

replicated their first experiment using stimuli controlled for length and without noun/verb

biases, such as (19) and (20):

(19) The chef who the waiter who the busboy offended appreciated admired the musicians.

(20)*The chef who the waiter who the busboy offended frequently admired the musicians.

Figure 7 shows the rating from the second experiment in comparison with SRN mean GPEs.

As before, Christiansen and MacDonald found that grammatical 3VP constructions were rated

as significantly worse than the ungrammatical 2VP constructions. The SRN data fitted this

pattern with significantly higher GPEs in 3VP constructions compared with 2VP constructions

(t(18) = 2.34, p < 0.04).

————–insert figure 7 about here————–

5.4.3 Right-branching subject relative constructions

Traditional symbolic models suggest that right-branching recursion should not cause process-

ing problems. In contrast, we have seen that the SRN shows some decrement with increasing

recursion depth. This issue has received little empirical attention. However, right-branching

constructions are often control items in studies of center-embedding, and some relevant in-

formation can be gleaned from some of these studies. For example, Bach et al. (1986) report

comprehensibility ratings for their right-branching paraphrase items. Figure 8 shows the

comprehensibility ratings for the German past participle paraphrase sentences as a function

of recursion depth, and mean SRN GPEs for right-branching constructions (from Figure 3) for
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the center-embedding language. Both the human and the SRN data show the same pattern

of increasing processing difficulty with increasing recursion depth.

————–insert figure 8 about here————–

A similar fit with human data is found by comparing the human comprehension errors as

a function of recursion depth reported in Blaubergs and Braine (1974) with mean GPE for

the same depths of recursion (again for the SRN trained on the center-embedding language).

Christiansen and MacDonald (2000) present on-line rating data concerning right-branching

PP modifications of nouns in which the depth of recursion varied from 0 to 2 by modifying a

noun by either one PP (21), two PPs (22), or three PPs (23):

(21) The nurse with the vase says that the [flowers by the window] resemble roses.

(22) The nurse says that the [flowers in the vase by the window] resemble roses.

(23) The blooming [flowers in the vase on the table by the window] resemble roses.

The stimuli were controlled for length and propositional and syntactic complexity. The results

showed that subjects rated sentences with recursion of depth 2 (23) worse than sentences with

recursion depth 1 (22), which, in turn, were rated worse than sentences with no recursion

(21). Although these results do not concern subject relative constructions, they suggest that

processing right-branching recursive constructions is affected by recursion depth—although

the effect of increasing depth is less severe than in complex recursive constructions. Impor-

tantly, this dovetails with the SRN predictions (Christiansen, 1994, 2000; Christiansen and

MacDonald, 2000), though not with symbolic models of language processing (e.g., Church,

1982; Gibson, 1998; Marcus, 1980; Stabler, 1994).

29



5.4.4 Counting recursion

Finally, we briefly discuss the relationship between counting recursion and natural language.

We contend that, despite Chomsky (1957), such structures may not exist in natural language.

Indeed, the kind of structures that Chomsky had in mind (e.g., nested ‘if–then’ structures)

seem closer to center-embedded constructions than to counting recursive structures. Consider

the earlier mentioned depth 1 example (16), repeated here as (24):

(24) If1 if2 the cat is in, then2 the dog cannot come in then1 the cat and dog dislike each other.

As the subscripts indicate, the ‘if–then’ pairs are nested in a center-embedding order. This

structural ordering becomes even more evident when we mix ‘if–then’ pairs with ‘either–or’

pairs (as suggested by Chomsky, 1957: p. 22):

(25) If1 either2 the cat dislikes the dog, or2 the dog dislikes the cat then1 the dog cannot come

in.

(26) If1 either2 the cat dislikes the dog, then1 the dog dislikes the cat or2 the dog cannot come

in.

The center-embedding ordering seems necessary in (25) because if we reverse the order of ‘or’

and ‘then’ then we get the obscure sentence in (26). Thus, we predict that human behavior

on nested ‘if–then’ structures should follow the same breakdown pattern as for nested center-

embedded constructions (perhaps with a slightly better overall performance).

5.5 Probing the Internal Representations

We now consider the basis of SRN performance by analyzing the HU representations with

which the SRNs store information about previous linguistic material. We focus on the doubly

embedded constructions, which represent the limits of performance for both people and the

SRN. Moreover, we focus on what information the SRN’s HUs maintain about the number
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agreement of the three nouns encountered in doubly embedded constructions (recording the

HUs’ activations immediately after the three nouns have been presented).

We first provide an intuitive motivation for our approach. Suppose that we aim to assess

how much information the HUs maintain about the number agreement of the last noun in a

sentence; that is, the noun that the net has just seen. If the information is maintained well,

then the HU representations of input sequences that end with a singular noun (and thus be-

long to the lexical category combinations: nn-n, nN-n, Nn-n and NN-n) will be well-separated

in HU space from the representations of the input sequences ending in a plural noun (i.e.,

NN-N, Nn-N, nN-N and nn-N). Thus, it should be possible to split the HU representations

along the plural/singular noun category boundary such that inputs ending in plural nouns

are separated from inputs ending in singular nouns. It is important to contrast this with a

situation in which the HU representations instead retain information about the agreement

number of individual nouns. In this case, we should be able to split the HU representa-

tions across the plural/singular noun category boundary such that input sequences ending

with particular nouns, say, N1, n1, N2 or n2 (i.e., nn-{N1, n1, N2, n2},
14 nN-{N1, n1, N2, n2},

Nn-{N1, n1, N2, n2} and NN-{N1, n1, N2, n2}) are separated from inputs ending with remain-

ing nouns N3, n3, N4 or n4 (i.e., nn-{N3, n3, N4, n4}, nN-{N3, n3, N4, n4}, Nn-{N3, n3, N4, n4}

and NN-{N3, n3, N4, n4}). Note that the above separation along lexical categories is a spe-

cial case of across category separation in which inputs ending with the particular (singular)

nouns n1, n2, n3 or n4 are separated from input sequences ending with the remaining (plural)

nouns N1, N2, N3 or N4. Only by comparing the separation along and across the lexical cate-

gories of singular/plural nouns can we assess whether the HU representations merely maintain

agreement information about individual nouns, or whether more abstract knowledge has been

encoded pertaining to the categories of singular and plural nouns. In both cases, information

is maintained relevant to the prediction of correctly agreeing verbs, but only in the latter case

are such predictions based on a generalization from the occurrences of individual nouns to
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their respective categories of singular and plural nouns.

We can measure the degree of separation by attempting to split the HU representations

generated from the (8 × 8 × 8 =) 512 possible sequences of three nouns into two equal groups.

We attempt to make this split using a plane in HU space; the degree to which two groups

can be separated either along or across lexical categories therefore provides a measure of what

information the network maintains about the number agreement of the last noun. A standard

statistical test for the separability of two groups of items is discriminant analysis (Cliff, 1987;

see Bullinaria, 1994; Wiles & Bloesch, 1992; Wiles & Ollila, 1993 for earlier applications to

connectionist networks).

Figure 9(a) schematic illustrates a separation along lexical categories with a perfect differ-

entiation of the two groups, corresponding to a 100% correct vector classification. The same

procedure can be used to assess the amount of information that the HUs maintain concerning

the number agreement of the nouns in second and first positions. We split the same HU ac-

tivations generated from the 512 possible input sequences into groups both along and across

lexical categories. The separation of the HU vectors along the lexical categories according

to the number of the second noun in Figure 9(b) is also perfect. However, as illustrated by

Figure 9(c), the separation of the HU activations along the lexical categories according to the

first encountered noun is less good, with 75% of the vectors correctly classified, because N-Nn

is incorrectly classified with the singulars and n-nN with the plurals.

————–insert figure 9 about here————–

We recorded HU activations for the 512 possible noun combinations for complex and

right-branching recursive constructions of depth 2 (ignoring the interleaving verbs in the right-

branching structures). Table 3 lists the percentage of correctly classified HU activations for

each combination. Classification scores were found for these combinations both before and

after training, and both for separation along and across singular/plural noun categories. Scores
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were averaged over different initial weight configurations and collapsed across the SRNs trained

on the three languages (there were no significant differences between individual scores). The

results from the separations across singular/plural noun categories show that prior to any

training the SRN retained a considerable amount of information about the agreement number

of individual nouns in the last and middle positions. Only for the first encountered noun was

performance essentially at chance (i.e., close to the performance achieved through a random

assignment of the vectors into two groups). The SRN had, not surprisingly, no knowledge

of lexical categories of singular and plural nouns before training, as indicated by the lack

of difference between the classification scores along and across noun categories. The good

classification performance of the untrained nets on the middle noun in the right-branching

constructions is, however, somewhat surprising because this noun position is two words (a

verb and a noun) away from the last noun. In terms of absolute position from the point

where the HU activations were recorded, the middle noun in right-branching constructions

(e.g., ‘N1V3−N3−V2n4’) corresponds to the first noun in complex recursive constructions

(e.g., ‘N1−N3n4’). Whereas untrained classification performance for this position was near

chance on complex recursion, it was near perfect on right-branching recursion. This suggests

that in the latter case information about the verb, which occurs between the last and the

middle nouns, does not interfere much with the retention of agreement information about the

middle noun. Thus, prior to learning, the SRN appears to have an architectural bias which

facilitates processing right-branching structures over complex recursive structures.

————–insert table 3 about here————–

After training, the SRN HUs retained less information about individual nouns. Instead,

lexical category information was maintained as evidenced by the big differences in classification

scores between groups separated along and across singular/plural noun categories. Whereas

classification scores along the two noun categories increased considerably as a result of training,

the scores for classifications made according to groups separated across the categories of
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singular and plural nouns actually decreased—especially for the middle noun position. The

SRN appears to have learned about the importance of the lexical categories of singular and

plural nouns for the purpose of successful performance on the prediction task, but at the cost

of losing information about individual nouns in the middle position.

The results of the discriminant analyses suggest that the SRN is well-suited for learning

sequential dependencies. The feedback between the context layer and the hidden layer allows

the net to retain information relevant to appropriate distinctions between previously encoun-

tered plural and singular items even prior to learning. Of course, a net has to learn to take

advantage of this initial separation of the HU activations to produce the correct output, which

is a nontrivial task. Prior to learning, the output of an SRN consist of random activation pat-

terns. Thus, it must discover the lexical categories and learn to apply agreement information

in the right order to make correct predictions for center-embeddings and cross-dependencies.

On a methodological level, these results suggest that analyses of the untrained networks

should be used as baselines for analyses of HU representations in trained networks. This

may provide insight into which aspects of network performance are due to architectural biases

and which arise from learning. A network always has some bias with respect to a particular

task, and this bias depends on several factors, such as overall network configuration, choice

of activation function, choice of input/output representations, initial weight setting, etc. As

evidenced by our discriminant analyses, even prior to learning, HU representations may display

some structural differentiation, emerging as the combined product of this bias (also cf. Kolen,

1994) and the statistics of the input/output relations in the test material. However, all too

often HU analyses—such as cluster analyses, multi-dimensional scaling analyses, principal

component analyses—are conducted without any baseline analysis of untrained networks.
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6 General Discussion

We have shown that SRNs can learn to process recursive structures with similar performance

limitations regarding depth of recursion as in human language processing. The SRNs limi-

tations appear relatively insensitive to the size of the network and the frequency of deeply

recursive structures in the training input. The qualitative pattern of SRN results match hu-

man performance on natural language constructions with these structures. The SRNs trained

on center-embedding and cross-dependency constructions performed well on singly embedded

sentences—although, as for people, performance was by no means perfect (Bach et al., 1986;

Blaubergs & Braine, 1974; King & Just, 1991). Of particular interest is the pattern of perfor-

mance degradation on sentences involving center-embeddings and cross-dependencies of depth

2, and its close match with the pattern of human performance.

These encouraging results suggest a reevaluation of Chomsky’s (1957, 1959) arguments that

the existence of recursive structures in language rules out finite state and associative models of

language processing. These arguments have been taken to indicate that connectionist networks

cannot in principle account for human language processing. But we have shown that this in-

principle argument is not correct. Connectionist networks can learn to handle recursion with

a comparable level of performance to people. Our simulations are, of course, small scale, and

do not show that this approach generalizes to model the acquisition of the full complexity of

natural language. But this limitation applies equally well to symbolic approaches to language

acquisition (e.g., Anderson, 1983), including parameter-setting models (e.g., Gibson & Wexler,

1994; Niyogi & Berwick, 1996), and other models which assume an innate universal grammar

(e.g., Berwick & Weinberg, 1984).

Turning to linguistic issues, the better SRN performance on cross-dependencies over center-

embeddings may reflect the fact that the problem of learning limited versions of context-free

and context-sensitive languages may be very different from the problem of learning the full,

35



infinite versions of these languages (compare Vogel, Hahn and Branigan, 1996). Within the

framework of Gibson’s (1998) Syntactic Prediction Locality Theory, center-embedded con-

structions (of depth 2 or less) are harder to process than their cross-dependency counterparts

because center-embedding requires holding information in memory over a longer stretch of in-

tervening items. Although a similar explanation is helpful in understanding the difference in

SRN performance on the two types of complex recursive constructions, this cannot be the full

explanation. Firstly, this analysis incorrectly suggests that singly embedded cross-dependency

structures should be easier than comparable center-embedded constructions. As illustrated

by Figure 5, this is not true of the SRN predictions, nor in the human data from Bach et al.

(1986). Secondly, the above analysis predicts a flat or slightly rising pattern of GPE across

the verbs in a sentence with two cross-dependencies. In contrast, the GPE pattern for the

cross-dependency sentences (Figure 4) fits the reading time data from Dickey and Vonk (1997)

because of a drop in the GPEs for the second verb. Overall, the current results suggest that

we should be wary of drawing strong conclusions for language processing, in networks and

perhaps also in people, from arguments concerning idealized infinite cases.

A related point concerns the architectural requirements for learning languages involving,

respectively, context-free and context-sensitive structures. In our simulations, the very same

network learned the three different artificial languages to a degree similar to human perfor-

mance. To our knowledge, no symbolic model has been shown to be able to learn these three

kinds of recursive structures given identical initial conditions. For example, Berwick and Wein-

berg’s (1984) symbolic model of language acquisition has a built-in stack and would therefore

not be able to process cross-dependencies. Of course, if one builds a context-sensitive parser

then it can also by definition parse context-free strings. However, the processing models that

are able to account for the Bach et al. (1986) data (Gibson, 1998; Joshi, 1990; Rambow &

Joshi, 1994) do not incorporate theories of learning that can explain how the ability to process

center-embedding and cross-dependency could be acquired.
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In this chapter, we have presented results showing a close qualitative similarity between

breakdowns in human and SRN processing when faced with complex recursion. This was

achieved without assuming that the language processor has access to a competence grammar

which allows unbounded recursion, subject to performance constraints. Instead, the SRN

account suggests that the recursive constructions that people actually say and hear may be

explained by a system with no representation of unbounded grammatical competence, and

performance limitations arise from intrinsic constraints on processing. If this hypothesis is

correct, then the standard distinction between competence and performance, which is at the

center of contemporary linguistics, may need to be rethought.
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Further Readings

Most of the early connectionist models of recursion were essentially simple re-implementations

of symbolic parsers (e.g., Fanty, 1986; Small, Cottrell & Shastri, 1982). The first more com-

prehensive model of this kind was McClelland and Kawamoto’s (1986) neural network model

of case-role assignment. Many of the subsequent models of sentence processing and recur-

sion have sought to provide alternatives to the symbolic processing models. One approach

has been to learn recursive structure from “tagged” input sentences. Among these, Pollack’s

(1988, 1990) recursive auto-associative memory network has inspired several subsequent mod-

eling efforts (e.g., Chalmers, 1990; Niklasson & van Gelder, 1994; see also Steedman, Chapter

11, this volume). Another approach is to construct a modular system of networks, each of

which is trained to acquire different aspects of syntactic processing. Miikkulainen’s (1996)

three-network system provides a good example of this approach. But the most popular con-

nectionist approach to recursion and syntactic processing builds on Elman’s (1990, 1991, 1993)

Simple Recurrent Network model.

Recently, efforts have been made to model reading time data from recursive sentence

processing experiments. The work by Christiansen (2000; Christiansen & Chater, 1999; Mac-

Donald & Christiansen, in press) is perhaps the best example of this line of research. Turning

to syntactic processing more generally, Tabor, Juliano & Tanenhaus (1997) provide a dy-

namical sentence processing model (see also, Tabor & Tanenhaus, Chapter 6, this volume).

The most influential non-connectionist model of sentence processing results is Gibson’s (1998)

Syntactic Prediction Locality Theory model. A slightly older non-connectionist model is the

CC-READER model by Just and Carpenter (1992).

For discussions of the future prospects of connectionist models of syntax (and recursion),

see Seidenberg and MacDonald (Chapter 9, this volume) and Steedman (Chapter 11, this

volume).
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Notes
1 We leave aside generalization, which we discuss elsewhere (Christiansen, 1994, 2000;

Christiansen & Chater, 1994).

2 Cross-dependency has also been alleged to be present in “respectively” constructions in
English, such as ‘Anita1 and the girls2 walks1 and skip2, respectively’. Church (1982) questions
the acceptability of these constructions with two cross-dependencies, and even one, as in this
example, seems bizarre.

3 Pullum & Gazdar (1982) have argued, controversially, that natural language is, nonethe-
less, context-free (see Gazdar & Pullum, 1985; Shieber, 1985; ).

4 Their nets were trained using back-propagation through time (Rumelhart, Hinton &
Williams, 1986)—see below.

5 Intuition may suggests that higher order n-gram models should outperform simple bigram
and trigram models, because they can encode more extended regularities. However, results
using text corpora have shown that higher order n-grams provide for poor predictions due
to distributional ‘undersampling’: many higher order n-grams only have one or very few
instances, or do not occur at all in a given corpus (Gale & Church, 1990; Redington, Chater
& Finch, 1998).

6 The relation between grammaticality judgments and processing mechanisms is contro-
versial (see Christiansen, 1994; Schütze, 1996).

7 These simulations used the Tlearn simulator available from the Center for Research on
Language, University of California, San Diego.

8 We adopt the convention that ‘n’ and ‘N’ corresponds to categories of nouns, ‘v’ and ‘V’
to categories of verbs with capitalization indicating plural agreement. The EOS marker is
denoted by ‘#’. Individual word tokens are denoted by adding a subscript, e.g., ‘N3’.

9 We use bold for random variables.

10 These assumptions are, of course, very unrealistic of the skewed distribution of word-
frequencies in natural language, but are nonetheless used for simplicity.

11 Note that ‘’total network activation” is not a possible interpretation, because the differ-
ence between the total activation and hit activation (see Equation 4) corresponds to the false
alarm activation (see Equation 5).

12 Could GPE hide a failure to make correct agreement predictions for singly center-
embedded sentences, such as ‘The man1 the boys2 chase2 likes1 cheese’? If so, one would
expect high agreement error for the two verb predictions in the singly center-embedded (com-
plex depth 1) constructions in Figure 3. Agreement error can be calculated as the percentage
of verb activation allocated to verbs which do not agree in number with their respective nouns.
The agreement error for the first and second verbs was 1.00% and 16.85%, respectively. This
level of agreement error is comparable with human performance (Larkin and Burns, 1977).
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13 The human data presented here and below involve three different scales of measurement
(i.e., differences in mean test/paraphrase comprehensibility ratings, mean grammaticality rat-
ings from 1-7, and mean comprehensibility ratings from 1-9). It was therefore necessary to
adjust the scales for the comparisons with the mean GPEs accordingly.

14 Curly brackets indicate that any of the nouns may occur in this position, creating the
following combinations: nn-N1, nn-n1, nn-N2 and nn-n2.
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TABLE 1
A Recursive Set of Rules for

Right-Branching Relative Clauses
S → NP VP

NP → N (comp S)
VP → V (NP)

Note. S = sentence; NP = noun phrase;
VP = verb phrase; N = noun; comp =
complementizer; V = verb; Constituents
in parentheses are optional.
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TABLE 2
The Distribution of Embedding Depths in

Training and Test Corpora
Embedding Depth

Recursion Type 0 1 2 3
Complex 15% 27.5% 7% .5%
Right-Branching 15% 27.5% 7% .5%
Total 30% 55% 14% 1%
Note. The precise statistics of the individual corpora
varied slightly from this ideal distribution.

51



TABLE 3
Percentage of Cases Correctly Classified given Discriminant Analyses

of Network Hidden Unit Representations
Recursion Type

Separation Along Separation Across
Singular/Plural Noun Categories Singular/Plural Noun Categories

Noun Position Complex Right-Branching Complex Right-Branching
Before Training

First 62.60 52.80 57.62 52.02
Middle 97.92 94.23 89.06 91.80
Last 100.00 100.00 100.00 100.00
Random 56.48 56.19 55.80 55.98

After Training
First 96.91 73.34 65.88 64.06
Middle 92.03 98.99 70.83 80.93
Last 99.94 100.00 97.99 97.66
Random 55.99 55.63 54.93 56.11

Notes. Noun position denotes the left-to-right placement of the noun being tested, with
Random indicating a random assignment of the vectors into two groups.

52



Equations

P (cp|c1, c2, . . . , cp−1) '
Freq(c1, c2, . . . , cp−1, cp)

Freq(c1, c2, . . . , cp−1)
(1)

P (wn|c1, c2, . . . , cp−1) '
Freq(c1, c2, . . . , cp−1, cp)

Freq(c1, c2, . . . , cp−1) Cp

(2)

Squared Error =
∑

j∈W

(outj − P (wn = j))2 (3)

hits =
∑

i∈G

ui (4)

false alarms =
∑

i∈U

ui (5)

ti =
(hits + misses)fi

∑

j∈G fj

(6)

mi =

{

0 if ti − ui ≤ 0
ti − ui otherwise

(7)

misses =
∑

i∈G

mi (8)

GPE = 1−
hits

hits + false alarms + misses
(9)
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Figure Captions

Figure 1: The basic architecture of a simple recurrent network (SRN). The rectangles corre-

spond to layers of units. Arrows with solid lines denote trainable weights, whereas the arrow

with the dashed line denotes the copy-back connections.

Figure 2: The performance averaged across epochs on complex recursive constructions (left

panels) and right-branching constructions (right panels) of nets of different sizes as well as

the bigram and trigram models trained on the counting recursion language (top panels), the

center-embedding recursion language (middle panels), and the cross-dependency recursion

language (bottom panels). Error bars indicate the standard error of the mean.

Figure 3: The mean grammatical prediction error on complex (C) and right-branching (RB)

recursive constructions as a function of embedding depth (0-4). Results are shown for the SRN

as well as the bigram and trigram models trained on the counting recursion language (top left

panel), the center-embedding recursion language (top right panel), and the cross-dependency

recursion language (bottom panel).

Figure 4: Grammatical prediction error for each word in doubly embedded sentences for

the net trained on constructions of varying length (SRN), the net trained exclusively on

doubly embedded constructions (D2-SRN), and the bigram and trigram models. Results

are shown for counting recursion (top panel), center-embedding recursion (middle panel), and

cross-dependency recursion (bottom panel). Subscripts indicate subject noun/verb agreement

patterns.

Figure 5: Human performance (from Bach et al., 1986) on singly and doubly center-embedded

German (past participle) sentences compared with singly and doubly embedded cross-dependency

sentences in Dutch (left panel), and SRN performance on the same kinds of constructions (right

panel). Error bars indicate the standard error of the mean.
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Figure 6: The mean output activation for the four lexical categories and the EOS marker

(EOS) given the context ‘NNNVV’. Error bars indicate the standard error of the mean.

Figure 7: Human ratings (from Christiansen & MacDonald, 2000) for 2VP and 3VP center-

embedded English sentences (left ordinate axis) compared with the mean grammatical pre-

diction error produced by the SRN for the same kinds of constructions (right ordinate axis).

Error bars indicate the standard error of the mean.

Figure 8: Human comprehensibility ratings (left ordinate axis) from Bach et al. (1996: Ger-

man past participle paraphrases) compared with the average grammatical prediction error for

right-branching constructions produced by the SRN trained on the center-embedding language

(right ordinate axis), both plotted as a function of recursion depth.

Figure 9: Schematic illustration of hidden unit state space with each of the noun combinations

denoting a cluster of hidden unit vectors recorded for a particular set of agreement patterns

(with ‘N’ corresponding to plural nouns and ‘n’ to singular nouns). The straight dashed lines

represent three linear separations of this hidden unit space according to the number of (a)

the last seen noun, (b) the second noun, and (c) the first encountered noun (with incorrectly

classified clusters encircled).
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