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Abstract

Research on statistical learning in adults and infants has
shown that humans are particularly sensitive to statistical
properties of the input. Early experiments in artificial
grammar learning, for instance, show a sensitivity for
transitional n-gram probabilities. It has been argued,
however, that this source of information may not help in
detecting nonadjacent dependencies, in the presence of
substantial variability of the intervening material, thus
suggesting a different focus of attention involving
change versus non-change (Gómez, 2002). Following
Gómez proposal, we contend that alternative sources of
information may be attended to simultaneously by
learners, in an attempt to reduce uncertainty. With
several potential cues in competition, performance
crucially depends on which cue is strong enough to be
relied upon. By carefully manipulating the statistical
environment it is possible to weigh the contribution of
each cue. Several implications for the field of statistical
learning and language development are drawn.

Introduction
Research in artificial grammar learning (AGL) and
artificial language learning (ALL) in infants and adults
has revealed that humans are extremely sensitive to the
statistical properties of the environment they are
exposed to. This has opened up a new trend of
investigations aimed at determining empirically the
processes involved in so-called statistical learning.

Several mechanisms have been proposed as the
default that learners use to detect structure, although
crucially there is no consensus in the literature over
which is most plausible or whether there is a default at
all. Some researchers have shown that learners are
particularly sensitive to transitional probabilities of
bigrams (Saffran, Aslin, & Newport, 1996): confronted
with a stream of unfamiliar concatenated speech-like
sound they tend to infer word boundaries between two
syllables that rarely occur adjacently in the sequence.

Sensitivity to transitional probabilities seems to be
present across modalities, for instance in the
segmentation of streams of tones (Saffran, Johnson,
Aslin, and Newport, 1999) and in the temporal
presentation of visual shapes (Fiser & Aslin, 2002).

Other researchers have proposed exemplar- or
fragment-based models, based on knowledge of
memorised chunks of bigrams and trigrams (Dulany et
al., 1984; Perruchet & Pacteau, 1990; Servan-Schreiber
& Anderson, 1990) and learning of whole items (Vokey
& Brooks, 1992). Yet others have postulated rule-
learning in transfer tasks (Reber, 1967; Marcus,
Vijayan, Rao & Voshton, 1999). In addition, knowledge
of chained events such as sentences in natural
languages require learners to track nonadjacent
dependencies where transitional probabilities are of
little help (Gómez, 2002).

In this paper we propose that there may be no default
process in human sequential learning. Instead, learners
may be actively engaged in search for good sources of
reduction in uncertainty. In their quest, they seek
alternative sources of predictability by capitalizing on
information that is likely to be the most statistically
reliable. This hypothesis was initiated by (Gómez,
2002) and is consistent with several theoretical
formulations such as reduction of uncertainty (Gibson,
1991) and the simplicity principle (Chater, 1996), that
the cognitive system attempts to seek the simplest
hypothesis about the data available. Given performance
constraints, the cognitive system may be biased to focus
on data that will be likely to reduce uncertainty as far as
possible1. Specifically, whether the system focuses on
transitional probabilities or non-adjacent dependencies
may depend on the statistical properties of the

                                                          
1 We assume that this process of selection is not necessarily
conscious, and might for example involve distribution of
processing activity in a neural network.
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environment that is being sampled. Therefore, by
manipulating the statistical structure of that
environment, it is perhaps possible to investigate
whether active search is at work in detecting structure.

In two experiments, we investigated participants’
degree of success at detecting invariant structure in an
AGL task in 5 conditions where the test items and test
task are the same but the probabilistic environment is
manipulated so as to change the statistical landscape
substantially. We propose that a small number of
alternative statistical cues might be available to
learners. We aim to show that, counter to intuition,
orthogonal sources of reliability might be at work in
different experimental conditions leading to successful
or unsuccessful learning. We also asked whether our
results are robust across perceptual modalities by
running two variations of the same experiment, one in
the auditory modality and one in the visual modality.
Our experiments are an extension of a study by Gómez
(2002), which we first introduce.

Detection of invariant structure through
context variability

Many sequential patterns in the world involve tracking
nonadjacent dependencies. For example, in English
auxiliaries and inflectional morphemes (e.g., am
cooking, has travelled) as well as dependencies in
number agreement (the books on the shelf are dusty) are
separated by various intervening linguistic material.
One potential source of learning in this case might be
embedding of first-order conditionals such as bigrams
into higher-order conditionals such as trigrams. That
learners attend to n-gram statistics in a chunking
fashion is evident in a number of studies (Schvaneveldt
& Gómez, 1998; Cohen, Ivry, & Keele, 1990). In the
example above chunking involves noting that am and
cook as well as cook and ing are highly frequent and
subsequently noting that am cooking is highly frequent
too as a trigram. Hence we may safely argue that higher
order n-gram statistics represent a useful source of
information for detecting nonadjacent dependencies.

However, sequences in natural languages typically
involve some items belonging to a relatively small set
(functor words and morphemes like am, the, -ing, -s,
are) interspersed with items belonging to a very large
set (e.g. nouns, verbs, adjectives). Crucially, this
asymmetry translates into patterns of highly invariant
nonadjacent items separated by highly variable material
(am cooking, am working, am going, etc.). Gómez
(2002) suggested that knowledge of n-gram
conditionals cannot be invoked for detecting invariant
structure in highly variable contexts because first-order
transitional probabilities, P(Y|X), decrease as the set
size of Y increases. Similarly, second-order transitional
probabilities, P(Z|XY), also decrease as a function of
set size of X. Hence, statistical estimates for these
transitional probabilities tend to be unreliable. Gómez

exposed infants and adult participants to sentences of an
artificial language of the form A-X-B. The language
contained three families of nonadjacent pairs, notably
A1—B1, A2—B2, and A3—B3. She manipulated the set
size of the middle element X in four conditions by
systematically increasing the number from 2 to 6 to 12
and 24 word-like elements. In this way, conditional
bigram and trigram probabilities decreased as a function
of number of middle words. In the test phase,
participants were required to subtly discriminate correct
nonadjacent dependencies, (e.g. A2-X1-B2) from
incorrect ones (*A2-X1-B1). Notice that the incorrect
sentences were new as trigrams, although both single
words and bigrams had appeared in the training phase
in the same positions. Hence the test requires very fine
distinctions to be made. Gómez hypothesized that if
learners were focusing on n-gram dependencies they
should learn nonadjacent dependencies better when
exposed to small sets of middle items because
transitional probabilities between adjacent elements are
higher for smaller than for larger set sizes. Conversely,
if learners spotted the invariant structure better in the
larger set size, Gómez hypothesized that increasing
variability in the context must have led them to
disregard the highly variable middle elements. Her
results support the latter hypothesis: learners performed
poorly with low variability whereas they were
particularly good when the set size of the middle item
was largest (24 middle items; see Figure 1).

Testing the zero-variability hypothesis
Gómez proposed that both infant and adult learners are
sensitive to change versus non-change, and use their
sensitivity to capitalize on stable structure. Learners
might opportunistically entertain different strategies in
detecting invariant structure, driven by a reduction of
uncertainty principle. In this study we are interested in
taking this proposal further by exploring what happens
when variability between the end-item pairs and the
middle items is reversed in the input. Gómez attributed
poor results in the middle set sizes to low variability:
the variability effect seems to be attended to reliably
only in the presence of a critical mass of middle items.
However, an alternative explanation is that in small set
size conditions both nonadjacent dependencies and
middle items vary, but none of them considerably more
than the other. This may confuse learners, in that it is
not clear which structure is non-variant. With larger set
sizes middle items are considerably more variable than
first-last item pairings, making the nonadjacent pairs
stand out as invariant. We asked what happens when
variability in middle position is eliminated, thus making
the nonadjacent items variable. We replicated Gómez’
experiment with adults and added a new condition,
namely the zero-variability condition, in which there is
only one middle element (e.g. A3-X1-B3, A1-X1-B1). Our
prediction is that non-variability of the middle item will
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make the end-items stand out, and hence detecting the
appropriate nonadjacent relationships will become
easier, increasing mean performance rates. Intuitively,
sampling transitional probabilities with large context
variability results in low information gain as the data
are too few to be reliable; by the same vein, the lack of
variability should produce low information gain for
transitional probabilities as well, because it is just
obvious what the bigram structure is. Hence this should
make nonadjacent dependencies stand out, as
potentially more informative sources of information, by
contrast.

The final predicted picture is a U-shape learning
curve in detecting nonadjacent dependencies, on the
assumption that learning is a flexible and adaptive
process.

Figure 1. Total percentage endorsements from Gómez
(2002) for the different conditions of variability of the

middle item.

Experiment 1

Method
Participants Sixty undergraduate and postgraduate
students at the University of Warwick participated and
were paid £3 each.
Materials In the training phase participants listened to
auditory strings generated by one of two artificial
languages (L1 or L2). Strings in L1 had the form aXd,
bXe, and cXf. L2 strings had the form aXe, bXf, cXd.
Variability was manipulated in 5 conditions, by
drawing X from a pool of either 1, 2, 6, 12, or 24
elements. The strings, recorded from a female voice,
were the same that Gómez used in her study and were
originally chosen as tokens among several recorded
sample strings in order to eliminate talker-induced
differences in individual strings.

The elements a, b, and c were instantiated as pel, vot,
and dak; d, e, and f, were instantiated as rud, jic, tood.
The 24 middle items were wadim, kicey, puser, fengle,
coomo, loga, gople, taspu, hiftam, deecha, vamey,

skiger, benez, gensim, feenam, laeljeen, chla, roosa,
plizet, balip, malsig, suleb, nilbo, and wiffle. Following
the design by Gómez (2002) the group of 12 middle
elements were drawn from the first 12 words in the list,
the set of 6 were drawn from the first 6, the set of 2
from the first 2 and the set of 1 from the first word.
Three strings in each language were common to all five
groups and they were used as test stimuli. The three L2
items served as foils for the L1 condition and vice
versa. In Gómez (2002) there were six sentences
generated by each language, because the smallest set
size had 2 middle items. To keep the number of test
items equal to Gómez we presented the 6 test stimuli
twice in two blocks, randomizing within blocks for each
participant. Words were separated by 250-ms pauses
and strings by 750-ms pauses.

Procedure Six participants were recruited in each of
the five set size conditions (1, 2, 6, 12, 24) and for each
of the two language conditions (L1, L2) resulting in 12
participants per set size. Learners were asked to listen
and pay close attention to sentences of an invented
language and they were told that there would be a series
of simple questions relating to the sentences after the
listening phase. During training, participants in all 5
conditions listened to the same overall number of
strings, a total of 432 token strings. This way,
frequency of exposure to the nonadjacent dependencies
was held constant across conditions. For instance
participants in set-size 24 heard six iterations of each of
72 type strings (3 dependencies x 24 middle items),
participants in set-size 12 encountered each string twice
as often as those exposed to set size 24 and so forth.
Hence whereas nonadjacent dependencies where held
constant, transitional probabilities decreased as set size
increased.

Training lasted about 18 minutes. Before the test,
participants were told that the sentences they had heard
were generated according to a set of rules involving
word order, and they would now hear 12 strings, 6 of
which would violate the rules. They were asked to press
“Y” on a keyboard if they thought a sentence followed
the rules and to press “N” otherwise.

Results and Discussion
An analysis of variance with Set Size (1 vs. 2 vs. 6 vs.
12 vs. 24) and Language (L1 vs. L2) as between-
subjects and Grammaticality (Trained vs. Untrained
strings) as a within-subjects variable resulted in a main
effect of Grammaticality, F (1,50)=24.70, p<.001, a
main Set Size effect, F(4,50)=3.85, p<.008, and a
Language x Set Size interaction, F(4,50)=2.59, p<.047.
We were particularly interested in determining whether
performance across the different set-size conditions
would result in a U-shaped function. Consistent with
our prediction, a polynomial trend analysis yielded a
significant quadratic effect, F(1,50)=5.85, p<.05. In

Total percentage endorsements (Gómez, 2002)
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contrast to Gómez (2002), there was not a significant
increase between set size 12 and set size 24, t(22)=.57,
p=.568. This leveling off is responsible for a significant
cubic effect, F(1,50)=9.49, p<.005. Figure 2
summarizes total percentage endorsements for correct
answers.

Figure 2. Total percentage endorsements in Experiment
1 for different variability.

Experiment 2

Method
Participants Sixty undergraduate and postgraduate
students at the University of Warwick participated and
were paid £3 each. None of them had participated in
Experiment 1.

Materials. The stimuli were identical to those used in
Experiment 1, except that they were presented visually
instead of auditorily.

Procedure. Exactly the same procedure as in
Experiment 1 was used. Participants sat and looked at
the strings as they appeared on the screen. Training
lasted approximately 18 minutes, as in Experiment 1.
Each string from the language was flashed up in black
typeface against white background on a computer
screen. Each string stayed on the screen for 2 seconds
and was followed by a 750-ms white screen so that the
strings could be perceived as independent one from the
other. These values were chosen so that training lasted
as long as training in Experiment 1. The test phase was
the same as in Experiment 1, except that test stimuli
were presented visually on the screen.

Results and discussion
An analysis of variance with Set Size (1 vs. 2 vs. 6 vs.
12 vs. 24) and materials (L1 vs. L2) as between-
subjects and grammaticality (trained vs. untrained
strings) as a within-subjects variable resulted in a main
effect of Grammaticality, F(1, 50) =16.39, p <.001, but
no significant Grammaticality x Set Size interaction,

F(4, 50)=.971, p<.505. There were no other main
effects or interactions. In contrast to Experiment 1, a
polynomial trend analysis did not show a significant
quadratic effect, F<1. Figure 3 presents the percentage
of endorsements for total accuracy in each of the five
set-size conditions.

Figure 3. Total percentage endorsements in Experiment
2 for different variability.

General discussion
We used a simple artificial language to enquire into the
way learners track remote dependencies. Knowledge of
sequence events in the world, including language,
involves detecting fixed nonadjacent dependencies
interspersed with highly variable material. Gómez
(2002) found what we dub a variability effect, i.e. a
facilitatory effect in detecting invariant structure when
the context is highly variable, but not when it is
moderately or even little variable. In general, this points
to a specific sensitivity to change versus non-change.
Conditions 2 to 4 in our Experiment 1 replicate her
findings, although performance in terms of percent
accuracy seems to improve only gradually from set size
2 to 24, whereas Gómez found a significant difference
between set size 12 and 24.

Overall, Gómez’ original results do not square well
with recent findings of learners’ striking sensitivity to
n-gram transitional probabilities. Because transitional
probabilities are higher in set sizes 2, 6, and 12,
performance should be better. Instead, the opposite is
the case. We reasoned that perhaps variability in both
the middle item and end-point items leave learners in
doubt as to what is the invariant structure. Hence, by
eliminating variability in the middle item in a new
condition, the variability of the nonadjacent items
stands out again, this time reversed. However, the effect
is, quite counter intuitively, not reversed. Indeed similar
performance results are obtained for set size 1 and set
size 24. In set size 1 performance is near 100% and
significantly better than set size 2 (Experiment 1). One
could argue that word trigrams, if recorded perfectly,
could suffice to account for performance in set size 1,
thus trivializing our results and explaining away the
variability effect in this condition. However, as a
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counter to that it would be reasonable to expect good
performance in set size 2 condition too, given the high
number of repetitions (72) for only six type strings. A
control condition is currently being run involving
learning six frames (instead of three) with 1 different
middle item each (e.g. A3-X3-B3, A6-X6-B6) so as to
reproduce the same number of type and token
frequencies of set size 2, but with no middle item being
shared by different frames. Similarly, one could argue
that good performance in set size 24 could be achieved
by strikingly but not impossibly memorizing 72 type
strings. However, this would imply good performance
in all smaller set sizes as well and this runs counter to
data.

Notice also that in all conditions, including set size 1,
bigram transitional probabilities by themselves are not
sufficient for detecting the correct string pel wadim rud
from the incorrect one *pel wadim jic (example taken
from L1) as both pel wadim,  wadim rud, and wadim jic
appear as bigrams during training. Moreover, Gómez
(2002) conjectured that perhaps low discrimination
rates in small set sizes are due to overexposure of string
tokens during training, resulting in boredom and
distraction. Our findings disconfirm this hypothesis: if
it held true performance would drop even lower in the
zero-variability condition, as the type/token ratio
decreases even more. Crucially, the finding that there is
a statistically significant difference in learning in the
two conditions becomes intriguing for several reasons.

A larger project underway examines the extent to
which a U-shape learning curve is modality-
independent. In Experiment 2 training and test stimuli
were presented visually on a computer screen. The
obtained U-shape curve is less marked. One possible
explanation is that attending to visually presented word-
like strings is less demanding cognitively, suggesting a
ceiling effect. This explanation is preliminary and needs
further evidence. However, the fact that results in
Experiment 2 show the same trend as Experiment 1 are
encouraging.

The implications of our findings might inform in
various degrees both the AGL community and
researchers of language development.  AGL researchers
working mainly with adults have long debated whether
there are one or more mechanisms at work in learning
structured events from experience. Our results suggest
that associative learning based on adjacent material may
not be the only source of information. There seems to
be a striking tendency to detect variant versus invariant
structure, and the way learners do it is extremely
adaptive to the informational demands of their input.
Without claiming exhaustiveness we explored two
putative sources of information, namely n-gram
transitional probabilities and the variability effect. At
this stage we can only give an informal explanation of
the reduction of uncertainty hypothesis. Intuitively,
sampling bigrams involving middle items under no
variability yields no information gain, as the middle

item is always the same. Under this condition learners
may be driven to shift attention towards nonadjacent
structure. Likewise, sampling bigrams with large
variability yields no reduction of uncertainty, as bigram
transitional probabilities are very low. In a similar way
then, learners may be lead to focus on nonadjacent
dependencies. With low variability, sampling bigrams
may be reliable enough, hence “distracting” learners
away from nonadjacent structure. Other sources may be
at work and disentangling the contribution of each of
them to learning is an empirical project yet to be
investigated. For instance, post-test verbal reports from
the majority of our participants suggest that, regardless
of their performance, they were aware of the positional
dependencies of single words in the strings. This piece
of information may be misleading for our task: on the
one side it reduces uncertainty by eliminating irrelevant
hypotheses about words in multiple positions (each
word is either initial, middle, or final), on the other side
distinguishing pel wadim rud from *pel wadim jic
requires more than positional knowledge. We believe
that positional knowledge deserves more research in the
current AGL literature. Studies of sequential learning
have found that it is an important source of information.
However, many nonadjacent dependencies are free
ranging and hence non-positionally dependent. Further
experiments are needed to investigate whether people
can detect such non-positionally dependent constraints
as A_x_y_B, A_x_y_w_B, A_x_y_w_z_B, equally well.

Our results have been modeled successfully using a
connectionist model. Onnis et al. (submitted) use
simple recurrent neural networks (SRNs) trained in
experimental conditions akin to the adult data reported
here, obtaining a very similar U-shape curve. SRNs can
be thought of as reducing uncertainty in that predictions
tend to converge towards the optimal conditional
probabilities of observing a particular successive item
to the sequence presented up to that point. The SRNs
specific task was to predict the third nonadjacent
element Bi correctly. Minimizing the sum squared error
maximizes the probability of the next element, given
previously occurring adjacent elements (McClelland,
1998). This is equivalent to exploiting bigram
probabilities. As we have seen, conditional probability
matching only yields suboptimal behaviour. To
overcome this, SRNs possess a stack of memory units
that help them maintain information about previously
encountered material. Crucially, they maintain a trace
of the correct non-adjacent item Ai under either no
variability or large variability only. This happens by
forming separate graded representations in the hidden
units for each nonadjacent dependency.

The reduction of uncertainty hypothesis may also be
given a formal account in terms of active data selection
(MacKay, 1992, Oaksford & Chater, 1994), a form of
rational analysis (Anderson, 1990). However, the
details of such model are outside the scope of this paper
(see Monaghan, Chater & Onnis, in preparation).
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Overall, framing our results within a reduction of
uncertainty principle should prompt new research
aimed at discovering in which carefully controlled
statistical environments multiple sources are attended to
and either discarded or integrated.

Finally, our findings might inform research in
language development. Gómez (2002) found that
infants attend to the variability effect. We are currently
investigating whether the U-shape curve found in our
experiments applies to infant learning as well. The fact
that performance in the zero-variability condition is
very good is consistent with various findings that
children develop productive linguistic knowledge only
gradually building from fixed item-based constructions.
According to the Verb Island hypothesis for example
(for a review, see Tomasello, 2000) early knowledge of
verbs and verb frames is extremely idiosyncratic for
each specific verb. In addition, morphological markings
are unevenly distributed across verbs. In this view I-am-
eat-ing is first learnt as an unanalyzed chunk and it
takes the child a critical mass of verbs to realize that the
frame am—ing can be used productively with different
verbs. Two- and three-year olds have been found to
generalize minimally, their repertoire consisting of a
high number of conservative utterances and a low
number of productive ones. The speculation is that a
critical number of exemplars is vital for triggering
schematization. Perhaps then, young children exploit n-
gram statistics as a default option, because their
knowledge of language is limited to a few type items.
This situation is similar to learning in small set sizes
and it only works if each string is learnt as a separate
item. When children’s repertoire is variable enough
(arguably at ages three to four), then switching to
change versus non-change as a source of information
becomes more relevant and helps the learner reduce
uncertainty by detecting variant versus invariant
structure. Although our experiments do not test for
generalisation, the fact that learners in the large set size
discard the middle item could be interpreted as a form
of generalisation for material in the middle item
position. At this stage the link between AGL results and
language learning can only be speculative, but invites to
intringuing research for the immediate future.
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