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INTRODUCTION

Psycholinguistics refers to the empirical study of the human language processing system,

typically using behavioral experiments. This chapter considers attempts to capture

psycholinguistic data using connectionist models (Christiansen and Chater, 2001). We

primarily focus on relatively ‘early’ aspects of speech processing--speech segmentation

and word recognition.

This chapter has four sections. Connectionist Modeling: A Bridge Between

Psycholinguistics and Brain Theory? outlines the gulf between theories of brain function

and traditional account of language processing. Connectionist modeling promises to help

span this gulf, by attempting to ground speech processing in a connectionist processing

architecture, a type of architecture initially inspired by attempts to model the computational

properties of the brain. The section Segmentation and Recognition: Two processes or one?

asks how far the problem of segmenting speech into words occurs independently of word

recognition—a critical question for computational modelling. Competition and Interaction

in Word Recognition considers connectionist models of word recognition, and their

interplay with empirical research and theory.

CONNECTIONIST MODELING: A BRIDGE FROM

PSYCHOLINGUISTICS TO BRAIN THEORY?

Both theoretical and empirical aspects of the psycholinguistics of speech processing seem,

at first sight, rather distant from brain theory.

Theoretically, the starting point in psycholinguistics has been to take ideas from

linguistics, the study of the abstract structure of language. But a theoretical vocabulary of

‘phonemes,’ or ‘nouns,’ to say nothing of the subtle notions of modern linguistic theory,

seems difficult to relate to neural mechanisms. We shall see, though, that neural network

models of aspects of speech processing may be viewed as building a bridge between the
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abstract domain of linguistic representation and processing and computational architectures

that may capture some general properties of neural machinery.

Empirically, data on psycholinguistics also seems distant from brain theory at an

experimental level, because relatively little is known about the detailed structure and

function of the rather diverse brain areas involved in processing speech. Partly this is

because, in contrast to the study of perception or motor control, it is not possible to gather

relevant information from detailed neurobiological studies of non-human animals, because

natural language appears to be unique to humans. Perhaps more important, it seems

unlikely that brain structures underlying speech processing will have an neurophysiological

basis as readily interpretable as the topographic maps in the visual and motor cortex. This is

because the computational problems of speech processing problem have no apparent spatial

structure that might be expected to map onto cortex in a spatially coherent way. In any case,

at present, neurobiological considerations impose relatively coarse constraints on

computational models of speech processing. Although data from neuropsychology and

functional imaging are becoming increasingly important, the main empirical constraints on

psycholinguistic models are derived from the vast body of sophisticated, but often highly

equivocal, laboratory studies of human language processing.

Perhaps the strongest constraint on such models is that language processing must

somehow be implemented in neural hardware, rather than on a conventional symbolic

machine. Conventional symbolic models of language processing in cognitive science and

artificial intelligence have typically ignored this constraint, often on the assumption that the

brain must be as powerful as a universal Turing machine, and hence able to implement any

computable procedure. But this argument ignores the fact that language processing

operations must operate extremely rapidly, using large numbers of slow and simple neural

components, thus requiring a highly parallel, co-operative style of computation. This style

of computation is not easy to reconcile with the very complex chains of sequential symbolic

operations involved in most conventional language processing models.
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Connectionist modeling attempts to help bridge the gulf between psycholinguistics

and neuroscience, by attempting to capture detailed psycholinguistic data using

computational models that aim to embody at least some of the computational principles of

the brain. It also has more general significance: As a crucial test case for the viability of

neural network models of cognition. Because conventional linguistic theory describes the

structure of language in terms of a highly complex set of symbolic rules, language

processing appears to represent a very difficult challenge for neural network modelling (see

CONSTITUENCY AND RECURSION IN CONNECTIONIST NETWORKS). At

present, connectionist models of speech processing are only partially developed, but

prospects are encouraging in a number of areas (Christiansen and Chater, 2001).

The problem of speech processing is, of course, extremely broad, ranging from

acoustic processing to semantic analysis. Here, the focus is the middle-ground problem of

understanding how the brain segments and recognizes individual words in continuous,

fluent speech.

SEGMENTATION AND RECOGNITION: TWO PROCESSES OR

ONE?

In speech processing, as in perception, a fundamental question concerns the relationship

between segmenting the sensory input (e.g., the speech signal) into chunks, and recognising

those chunks. Segmentation and recognition appear to stand in a chicken-and-egg

relation—i.e., its simply not clear how one could precede the other. Unless the input is

segmented, how do we know what chunks of speech we should even be attempted identify

as specific words (or other linguistic units)? But, conversely, unless we know what

linguistic unit has been said, how can we know where the boundaries between units lie?
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One approach to resolving the paradox is to assume that segmentation and

recognition are two aspects of a single process—that tentative hypotheses about each issue

are developed and tested simultaneously, and mutually consistent hypotheses are

reinforced. A second approach is to suppose that there are segmentation cues in the input

that are used to give at least better-than-chance indications of what segments may

correspond to identifiable words. So the question is: Does speech processing involve

dedicated segmentation strategies, prior to word recognition?

Developmental considerations suggest that there may be specialised segmentation

methods. The infant, initially knowing no words, seems constrained to segment speech

input using some method not requiring word recognition. Moreover, infant studies have

shown that pre-linguistic infants may use such methods, and are sensitive to a variety of

information that is available in the speech stream and potentially useful for segmentation,

such as phonotactics and lexical stress—probably before cues based on the possible

meaning of what is being said can be used by the child (Jusczyk, 1997).

How can children learn to segment speech? Cairns et al. (1997) note that language

is less predictable across, rather than between, words. They trained a recurrent network on a

large corpus of phonologically transcribed conversational speech, represented as a sequence

of bundles of binary phonetic features. The network was trained to predict the next bundle

of features along with the previous and current feature bundles, based on the current input

material. Where prediction error was large, it was assumed that a word boundary had been

encountered. This model captured some aspects of human segmentation performance. For

example, it spontaneously learned to pay attention to patterns of strong and weak syllables

as a segmentation cue. However it was able to reliably predict only a relatively small

proportion of word boundaries, indicating that cues need also be exploited. Christiansen,

Allen and Seidenberg (1998) showed how multiple, partial constraints on segmentation

could yield much better segmentation performance. They trained a simple recurrent network

to integrate sets of phonetic features with information about lexical stress (strong or weak)
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and utterance boundary information (encoded as a binary unit) derived from a corpus of

child-directed speech.  The network was trained to predict the appropriate values of these

three cues for the next segment. After training, the network was able to integrate the input

such that it would activate the boundary unit not only at utterance boundaries, but also at

word boundaries inside utterances. The network was thus able to generalize patterns of cue

information that occurred at the end of utterances to when the same patterns occurred inside

an utterance. This model performed well on the word segmentation task while capturing

additional aspects of infant segmentation, such as the bias toward the dominant trochaic

(strong-weak) stress pattern in English, the ability to distinguish between phonotactically

legal and illegal novel words, and having segmentation errors being constrained by English

phonotactics.

Although it seems likely that segmentation cues are exploited to guide the process

of word recognition, this can achieve only limited results. A definitive segmentation of

speech can only occur after word recognition has occurred. Empirical evidence strongly

indicates that, during word recognition in adulthood, multiple candidate words are activated,

even if these correspond to different segmentation of the input. For example, Gow and

Gordon (1995) found that adult listeners hearing sentences involving a sequence (e.g., two

lips) which could also be a single word (tulips, in US pronounciation) showed speeded

processing of an associate of the second word (kiss) and to an associated of the longer

word (flower), indicating that the two conflicting segmentations were simultaneously

entertained. This would not occur if a complete segmentation of the input occurred before

word recognition was attempted. On the other hand, it is not clear how these data generalize

to word segmentation and recognition in infancy before any comprehensive vocabulary has

been established. How the segmentation and recognition develop into the kind of integrated

system evidenced by the Gow and Gordon data remains a matter for future research.
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COMPETITION AND INTERACTION IN WORD RECOGNITION

Gow and Gordon’s (1995) result also suggests that word recognition itself may be a matter

of competition between multiple activated word representations, where the activation of the

word depends on the degree of match between the word and the speech input. Indeed, many

studies point towards this conclusion, from a range of experimental paradigms. Such

competition is typically implemented in neural networks by a localist code for words (the

activation of a single unit represents the strength of evidence for that word (see LOCALIST

AND DISTRIBUTED REPRESENTATIONS), with inhibitory connections between

word-units. Thus, when an isolated word is identified, a ‘cohort’ of words consistent with

that input is activated; as more of the word is heard, this cohort is rapidly reduced, perhaps

to a single item.

While competition at the word level has been widely assumed, considerable

theoretical dispute has occurred over the nature of the interaction between different levels of

mental representation. Bottom-up  (or ‘data-driven’) models are those in which less abstract

levels of linguistic representation feed into, but are not modified by, more abstract levels

(e.g., the phoneme level feeds to the word level, but not the reverse). We note, however, that

this does not prevent these models from taking advantage of supra-segmental information,

such as in the inclusion of lexical stress in the Christiansen et al. segmentation model

above, provided that this information is available in a purely bottom-up fashion (i.e., no

lexical-level feedback). Interactive (also ‘conceptually-driven’ or ‘top-down’) models

allow a two-way flow of information between levels of representation. Figure 1 provides an

abstract illustration of the differences in information flow between the two types of models

of word recognition. Note that bottom-up models allow information to flow through the

network in one direction only, whereas an interactive model allows information to flow in

both directions.

The bottom-up/interactive debate rages in all areas of language processing, and also

in perception and motor control. Here we focus on putative interactions between
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information at the phonemic and the lexical levels in word recognition (i.e., between

phonemes and words), where experimental work and neural network modelling has been

intense.

The most obvious rationale for presuming that there are top-down information flows

from the lexical to the phoneme levels stems from the effects of lexical context on phoneme

identification. For example, Ganong (1980) showed that the identification of a

syllable-initial speech sound that was constructed to be between a /g/ and a /k/ was

influenced by lexical knowledge. This intermediate sound was predominantly heard as a /k/

if the rest of the word was iss (kiss was favored over giss), but heard as /g/ if the rest of the

word was ift (gift was favored over kift).

The TRACE model (McClelland and Elman, 1986) has an interactive activation

architecture, with a sequence of layers of units. First layer units correspond to phonetic

features, second layer units correspond to phonemes, and third layer units correspond to

words.  Within and between layers, there are fixed inhibitory bi-directional connections

between units standing for incompatible states and fixed bi-directional excitatory

connections between units standing for mutually compatible states.  TRACE also deals with

the temporal dimension of speech--there are many copies of the entire network, standing for

different points in time, with appropriate connections between the units in each copy.

TRACE captures effects of lexical context because lexical units influence phonemic

input—McClelland and Elman modelled a wide range of data, and provided a model that

has proved remarkably robust.

But ‘context’ effects on phoneme recognition can also be explained in purely

bottom-up terms. If a person’s decisions about phoneme identity depend on both the

phonemic and lexical levels then phoneme identification will be lexically influenced, even

though there need be no feedback from the lexical to the phoneme level. For example, the

Ganong effect might be explained by assuming that the phoneme identification of an initial

consonant that is ambiguous between /g/ and /k/ is directly influenced by the lexical level.
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Thus, if gift is recognized at the lexical level, this will influence the participant to respond

that the initial phoneme was a /g/; but if kiss is recognized, this will influence the participant

to respond that the initial phoneme was a /k/.

A substantial experimental literature has attempted to distinguish TRACE from

bottom-up models, indicating the importance of connectionist modelling in inspiring

experimental research. One experimental result (Elman and McClelland, 1988), derived as a

novel prediction TRACE, appeared to be particularly persuasive evidence against bottom-up

connectionist models. In natural speech, the pronunciation of a phoneme will to some extent

be altered by the phonemes that surround it, in part for articulatory reasons. This

phenomenon is known as coarticulation. Listeners should therefore adjust their category

boundaries depending on the phonemic context.  Experiments confirm that people do

indeed exhibit this ‘compensation for coarticulation’ (CFC; Mann and Repp, 1981).  For

example, given a series of synthetically produced tokens between /t/ and /k/, listeners move

the category boundary towards the /t/ following a /s/ and towards the /k/ following a /sh/.

This phenomenon suggests a way of detecting whether lexical information really

does feed back to the phoneme level.  Elman and McClelland considered the case where

compensation for coarticulation occurs across word boundaries. For example, a word-final

/s/ influences a word-initial phoneme ambiguous between /t/ and /k/ to be heard as a /k/ (as

in Christmas capes). If lexical-level representations feed back on to phoneme-level

representations, the compensation of the /c/ should still occur when the /s/ relies on lexically

driven phoneme restoration for its identity (i.e. in an experimental condition in which the

identity of /s/ in Christmas is obscured, the /s/ should be restored and thus compensation

for coarticulation should proceed as normal).  Elman and McClelland confirmed TRACE’s

prediction experimentally. Recognition of the phoneme at the start of the second word was

apparently influenced by CFC, as if the word-final phoneme in the first word had been

‘restored’ by lexical influence.
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Surprisingly, bottom-up connectionist models can also capture these results.  Norris

(1993) provided a small-scale demonstration, training a simple recurrent network to map

phonetic input onto phoneme output, for a small (12 word vocabulary) artificial language.

When the net received phonetic input with an ambiguous first word-final phoneme and

ambiguous initial segments of the second word, an analog of CFC was observed. The

percentages of /t/ and /k/ responses to the first phoneme of the second word depended on

the identity of the first word, as in Elman and McClelland (1998).  But the explanation for

this pattern of results cannot be top-down influence from word units, because there are no

word units. Moreover, Cairns et al. (1995) scaled-up these results using a similar network

trained on phonologically transcribed conversational English.

How can an autonomous computational model, where there is no lexical influence

on phoneme processing, mimic the apparent influence of word recognition on

coarticulation? Cairns et al. (1995) argued that sequential dependencies between the

phoneme sequences in spoken English can often ‘mimic’ lexical influence. The idea is that

the identification of the word-final ambiguous phoneme favored by the word level is also,

typically, favored by transitional probability statistics across phonemes. Analysing statistical

regularities in the phoneme sequences in a large corpus of conversational English, Cairns et

al. showed that this explanation applies to Elman and McClelland’s (1988) experimental

stimuli. If these transitional probabilities have been learned by the speech processor, then

previous phonemic context might support the ‘restoration’ of the ambiguous word final

phoneme, with no reference to the word in which it is contained.

Pitt and McQueen (1998) tested between these two explanations experimentally.

They carefully controlled for transitional probabilities across phonemes, and re-ran a

version of Elman and McClelland’s experiment: compensation for coarticulation was

eliminated. Moreover, when transitional probabilities are manipulated in non-word contexts,

compensation for coarticulation effects are observed. This pattern of results suggests that
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compensation for coarticulation is not driven by top-down lexical influence, but by

phoneme-level statistical regularities.

Against this, Samuel (1996) argues that the precise pattern of phoneme restoration

does indicate the existence of small but discernible top-down effects. He conducted a

statistical analysis of people’s ability to discriminate whether a phoneme has been replaced

by a noise in a word or non-word context, from the case where the phoneme and noise are

both present. The logic is that to the extent that top-down factors ‘restore’ the missing

phoneme, it should be difficult to tell whether or not the phoneme is actually present, and

hence people’s discrimination between the two cases should be poorer. Hence, phoneme

present/absent discrimination should be poorer in word contexts than for non-word

contexts, because top-down factors should be stronger. This prediction was confirmed

experimentally (Samuel, 1996). Predictably, however, purely bottom-up explanations of this

finding have since been proposed (Norris, McQueen and Cutler, 2000).

The theoretical debate concerning segmentation and word recognition has been

profoundly influenced by connectionism. Connectionist models are now the dominant style

of computational account, even for advocates of very different positions (as we have seen in

relation to the bottom-up/interactive debate). Attempts to test between the predictions of

competing models have generating experimental advances, which have in turn informed how

models develop.

DISCUSSION

We have seen that connectionist models can provide a rich framework for modeling

important aspects of human speech recognition, and is now central to the theoretical and

empirical literature in the psychology of language. Moreover, connectionist methods can

also be applied both to early processes in speech recognition, concerned with the early

analysis of what is a highly complex and variable acoustic stimulus (see RECURRENT

NETWORKS AND WORD RECOGNITION), and to later aspects of language
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processing, where the main issues concern syntactic and semantic (see CONSTITUENCY

AND RECURSION IN CONNECTIONIST NETWORKS). A critical issue for

connectionist modeling is how or whether accounts of different aspects of the speech

processing problem might ultimately be integrated into an overall model of speech

processing. Presently, such an integration is a long way off—indeed, although progress has

been substantial, connectionist and other models of speech perception are still some way

from being able to identify words reliably in fluent continuous speech (and are not used, for

example, in state-of-the-art automatic speech recognition), and work on syntactic and

semantic analysis is still extremely preliminary.

Connectionist models appear, though, to provide a promising research direction, for

a number of reasons. First, they provide a natural framework for modeling empirical

psycholinguistic data. Second, learning is intrinsic to most connectionist networks, and

hence the approach provides a natural source of developmental models (see COGNITIVE

DEVELOPMENT). Third, connectionist models have provided a means of theoretical

integration across different language processing domains. For example, interactive and

bottom-up models of speech recognition as described here are closely analogous to

interactive and bottom-up models of single word reading. Fourth, it is widely argued that

connectionist networks capture some aspects of the computational ‘style’ of the brain---

going at least some way to bridge between psycholinguistics and brain theory.

The potential implications of the connectionist approach to language processing are

enormous, raising the possibility of a radical rethinking not just of language processing, but

of language structure itself.  Perhaps the ultimate description of language resides in the

structure of complex networks, and can only be approximately expressed in terms of rigid,

grammatical rules.  Or perhaps connectionist models can only succeed to by building in

standard linguistic constructs; or perhaps connectionist learning methods do not scale up at

all (see Seidenberg’s and Smolensky’s contributions to Christiansen, Seidenberg and

Chater, 1999 for opposing perspectives).  The future of connectionist models of language
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processing may therefore have important implications for the theory of language processing

and language structure, and the neural machinery underlying speech processing.
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Figure 1: Illustrations of a bottom-up model (top) and an interactive model (bottom). The

links in the bottom-up model can be either excitatory or inhibitory and only allow for

information to flow upwards from the phonetic features through the hidden units to the

phonemes on the output. In the interactive activation model, the links are bi-directional and

allow information to flow both bottom-up from the phonetic features through the letter units

to the word units and top-down. Arrows denote excitatory links whereas filled circles

denote inhibitory links.
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