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Abstract
Recent work in developmental psycholinguistics suggests that
children may bootstrap grammatical categories and basic
syntactic structure by exploiting distributional, phonological,
and prosodic cues. Previous connectionist work has indicated
that multiple-cue integration is computationally feasible for
small artificial languages. In this paper, we present a series of
simulations exploring the integration of distributional and
phonological cues in a connectionist model trained on a full-
blown corpus of child-directed speech. In the first simulation,
we demonstrate that the connectionist model performs very
well when trained on purely distributional information
represented in terms of lexical categories. In the second
simulation we demonstrate that networks trained on
distributed vectors incorporating phonetic information about
words also achieve a high level of performance. Finally, we
employ discriminant analyses of hidden unit activations to
show that the networks are able to integrate phonological and
distributional cues in the service of developing highly reliable
internal representations of lexical categories.

Introduction
Mastering natural language syntax may be one of the most
difficult learning tasks that children face. This achievement
is especially impressive given that children acquire most of
this syntactic knowledge with little or no direct instruction.
In adulthood, syntactic knowledge can be characterized by
constraints governing the relationship between grammatical
categories and words (such as noun and verb) in a sentence.
The syntactic constraints presuppose the grammatical
categories in terms of which they are defined; but the
validity of grammatical categories depends on how far they
support syntactic constraints. Thus, acquiring syntactic
knowledge presents the child with a “bootstrapping”
problem.

Bootstrapping into language seems to be vastly
challenging, both because the constraints governing natural
language are so intricate, and because young children do not
have the intellectual capacity or explicit instruction
available to adults. Yet, children solve this “chicken-and-
egg” problem surprisingly well: Before they can tie their
shoes they have learned a great deal about how words are
combined to form complex sentences.  Determining how
children accomplish this challenging task remains an open
question in cognitive science.

Some, perhaps most, aspects of syntactic knowledge
have to be acquired from mere exposure. Acquiring the
specific words and phonological structure of a language
requires exposure to a significant corpus of language input.
In this context, distributional cues constitute an important
source of information for bootstrapping language structure
(for a review, see Redington & Chater, 1998). By eight
months, infants have access to powerful mechanisms to
compute the statistical properties of the language input
(Saffran, Aslin and Newport, 1996). By one year, children’s
perceptual attunement is likely to allow them to use
language-internal probabilistic cues (for reviews, see e.g.
Jusczyk, 1997). For example, children appear to be sensitive
to the acoustic differences reflected by the number of
syllables in isolated words (Shi, Werker & Morgan, 1999),
and the relationship between function words and prosody in
speech (Shafer, Shucard, Shucard & Gerken, 1998).
Children are not only sensitive to distributional information,
but they also are capable of multiple-cue integration
(Mattys, Jusczyk, Luce & Morgan, 1999).

The multiple-cue integration hypothesis (e.g.,
Christiansen & Dale, 2001; Gleitman & Wanner, 1982;
Morgan, 1996) suggests that integrating multiple
probabilistic cues may provide an essential scaffolding for
syntactic learning by biasing children toward aspects of the
input that are particularly informative for acquiring
grammatical structure. In the present study we focus on the
integration of distributional and phonological cues using a
connectionist approach.

In the remainder of this paper, we first provide a review
of the empirical evidence suggesting that infants may use
several different phonological cues to bootstrap into
language. We then present a series of simulations
demonstrating the efficacy of distributional cues for the
acquisition of syntactic structure. In previous research
(Christiansen & Dale, 2001), we have shown the advantages
of multiple-cue models for the acquisition of grammatical
structure in artificial languages. In this paper we are seeking
to scale up this model, by training it on a complex corpus of
child-directed speech. In the first simulation we show that
simple recurrent networks trained on lexical categories are
able to predict grammatical structure from the corpus. In the
second simulation, we show that a network trained with
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phonetic information about the words in the corpus
performed better in bootstrapping syntactic structure than a
control network trained on random inputs. Finally, we
analyze the networks’ internal representations for lexical
categories, and find that the networks are capable of
integrating both phonetic and distributional information in
the service of developing reliable representations for nouns
and verbs.

Phonological cues to lexical categories
There are several phonological cues that individuate lexical
categories. Nouns and verbs are the largest such categories,
and consequently have been the focus of many proposals for
distinctions in terms of phonological cues. Distinctions have
also been made between function words and content words.
Table 1 summarizes a variety of phonological cues that have
been proposed to distinguish between different syntactic
categories.

Corpus-based studies of English have indicated that
distinctions between lexical categories based on each of
these cues considered independently are statistically
significant (Kelly, 1992). Shi, Morgan and Allopenna
(1998) assessed the reliability of several cues when used
simultaneously in a discriminant analysis of
function/content words from small corpora of child-directed
speech. They used several cues at the word level (e.g.,
frequency), the syllable level (e.g., number of consonants in
the syllable), and the acoustic level (e.g., vowel duration)
and produced 83%-91% correct classification for each of the
mothers in the study. Durieux and Gillis (2001) considered a
number of phonological cues for distinguishing nouns and
verbs and, with an instance-based learning system correctly
classified approximately 67% of nouns and verbs from a
random sample of 5,000 words from the CELEX database
(Baayen, Pipenbrock & Gulikers, 1995).

Cassidy and Kelly (1991) report experimental data
indicating that phonological cues are used in lexical
categorization. Participants were required to listen to a
nonword and make a sentence including the word. The
nonword stimuli varied in terms of syllable length. They
found that longer nonwords were more likely to be placed in
noun contexts, whereas shorter nonwords were produced in
verb contexts.

Monaghan, Chater and Christiansen (in press) have
shown that sets of phonological cues, when considered
integratively, can predict variance in response times on
naming and lexical decision for nouns and verbs. Words that
are more typical of the phonological characteristics of their
lexical category have quicker response times than words
that share few cues with their category.

We accumulated a set of 16 phonological cues, based
on the list in Table 1. Some entries in the Table generated
more than one cue. For example, we tested whether reduced
vowels occurred in the first syllable of the word, as well as
testing for the proportion of reduced vowels throughout the
word. We tested each cue individually for its power to
discriminate between nouns and verbs  from  the  1000 most

Table 1:  Phonological cues that distinguish between
 lexical categories.

Nouns and Verbs
Nouns have more syllables than verbs (Kelly, 1992)

Bisyllabic nouns have 1st syllable stress, verbs tend to have 2nd

syllable stress (Kelly & Bock, 1988)

Inflection -ed is pronounced /d/ for verbs, /@d/ or /Id/ for
adjectives (Marchand, 1969)

Stressed syllables of nouns have more back vowels than front
vowels. Verbs have more front vowels than back vowels
(Sereno & Jongman, 1990)

Nouns have more low vowels, verbs have more high vowels
(Sereno & Jongman, 1990)

Nouns are more likely to have nasal consonants (Kelly, 1992)

Nouns contain more phonemes per syllable than verbs (Kelly,
1996)

Function and Content words
Function words have fewer syllables than content words
(Morgan, Shi & Allopenna, 1996)

Function words have minimal or null onsets (Morgan, Shi &
Allopenna, 1996)

Function word onsets are more likely to be coronal (Morgan,
Shi & Allopenna, 1996)

/D/ occurs word-initially only for function words (Morgan, Shi
& Allopenna, 1996)

Function words have reduced vowels in the first syllable
(Cutler, 1993)

Function words are often unstressed (Gleitman & Wanner,
1982)

frequent words in a child-directed speech database
(CHILDES, MacWhinney, 2000). There were 402 nouns
and 218 verbs in our analysis. We conducted discriminant
analyses on each cue individually, and found that correct
classification was only just above chance for each cue. The
best performance was for syllable length, with correct
classification of 41.0% of nouns and 74.8% of verbs
(overall, with equally weighted groups, 57.4% correct
classification). When the cues were considered jointly,
92.5% of nouns and 41.7% of verbs were correctly
classified (equal-weighted-group accuracy was 74.7%). The
cues, when considered together resulted in accurate
classification for nouns, but many verbs were also
incorrectly classified as nouns (see Monaghan, Chater &
Christiansen, submitted).

The discriminant analysis indicates that phonological
information is useful for lexical categorization, but not
sufficient without integration with cues from other sources.
In the following simulations, we first show how a
connectionist model is capable of learning aspects of
syntactic structure from the distributional information
derived from a corpus of child-directed speech. The
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subsequent simulation and hidden unit analyses then explore
how networks may benefit from integrating the kind of
phonetic cues described above with distributional
information.

Simulation 1:
Learning syntactic structure using SRNs

We trained simple recurrent networks (SRN; Elman, 1990)
to learn the syntactic structure present in a child-directed
speech corpus. Previous research has shown that SRNs are
able to acquire both simple (Christiansen & Chater, 1999;
Elman, 1990) and slightly more complex and
psychologically motivated artificial languages (Christiansen
& Dale, 2001). An important outstanding question is
whether these artificial-language models can be scaled up to
deal with the full complexity and the general disorderliness
of speech directed at young children. Here, we therefore
seek to determine whether the advantages of distributional
learning in the small-scale simulations will carry over to the
learning of a natural corpus. Our simulations demonstrate
that these networks are indeed capable of acquiring
important aspects of the syntactic structure of realistic
corpora from distributional cues alone.

Method
Networks   Ten SRNs were used with an initial weight
randomization in the interval [-0.1; 0.1]. A different random
seed was used for each simulation. Learning rate was set to
0.1, and momentum to 0.7. Each input to the network
contained a localist representation of the lexical category of
the incoming word. With a total of 14 different lexical
categories and a pause marking boundaries between
utterances, the network had 15 input units. The network was
trained to predict the lexical category of the next word, and
thus the number of output units was 15. Each network had
30 hidden units and 30 context units.

Materials   We trained and tested the network on a corpus
of child-directed speech (Bernstein-Ratner, 1984). This
corpus contains speech recorded from nine mothers
speaking to their children over a 4-5 month period when the
children were between the ages of 1 year and 1 month to 1
year and 9 months. The corpus includes 1,371 word types
and 33,035 tokens distributed over 10,082 utterances. The
sentences incorporate a number of different types of
grammatical structures, showing the varied nature of the
linguistic input to children. Utterances range from
declarative sentences ('Oh you need some space') to wh-
questions ('Where's my apple') to one-word utterances ('Uh'
or 'hello'). Each word in the corpus corresponded to one of
the 14 following lexical categories: nouns (19.5%), verbs
(18.5%), adjectives (4%), numerals (<0.1%), adverbs
(6.5%), articles (6.5%), pronouns (18.5%), prepositions
(5%), conjunctions (4%), interjections (7%), complex
contractions (8%), abbreviations (<0.1%), infinitive markers
(1.2%) and proper names (1.2%). Each word in the original
corpus was replaced by a vector encoding the lexical

category to which it belonged. The training set consisted of
9,072 sentences (29,930 word tokens) from the original
corpus. A separate test set consisted of 963 additional
sentences (2,930 word tokens).

Procedure  The ten SRNs were trained on the corpus
described above. Training consisted of 10 passes through
the training corpus. Performance was assessed based on the
networks ability to predict the next set of lexical categories
given the prior context.

Results and discussion
Each lexical category was represented by the activation of a
single unit in the output layer. After training, SRNs trained
with localist output representations will produce a
distributional pattern of activation closely corresponding to
a probability distribution of possible next items.

In order to assess the overall performance of the SRNs,
we made comparisons between network output probabilities
and the full conditional probabilities given the prior
occurrence of lexical categories within an utterance
(Christiansen & Chater, 1999). Thus, with ci denoting the
lexical category of ith word in the sentence we have the
following relation:

P(cp 
  c1 , c2 , . . . cp-1) =

Freq (c1 , c2, . . . , cp-1, cp) / Freq (c1 , c2, . . . , cp-1)

where the probability of getting some member of a lexical
category is conditional on the previous p-1 categories.

To provide a statistical benchmark with which to
compare the network performance, we “trained” bigram and
trigram models on the Bernstein-Ratner corpus. These
finite-state models borrowed from computational linguistics,
provide a simple prediction method based on strings of two
(bigrams) or three (trigrams) consecutive words.

We compared the full conditional probabilities with the
network output probabilities and also with bigram and
trigram predictions. The mean cosine between the full
conditional probabilities for the test set and the predictions
of the finite-state models were 0.81 for trigrams and 0.79 for
bigrams. We found that the mean cosine between the full
conditional probabilities and network output probabilities
were comparable to the finite-state models’ predictions
(mean cosine: 0.86 for the training set and mean cosine:
0.79 for the test set). Network predictions for the training set
were better than bigram predictions (p's < .00005) and
trigram predictions (p's < .00005). For the test set we found
that the trigram model performed better than the networks
(p's < .00005), but there was no difference between the
performance of the bigram model and that of the networks
(p's < .52).

Despite the complexity of child-directed speech –
including the many false starts and other ‘ungrammatical’
constructions – Simulation 1 demonstrates that the SRN
model is able to acquire much of the syntactic structure in
the corpus from a single cue: distributional information.
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Although these results fit with results from computational
linguistics where models are often trained on corpora
encoded in the form of lexical categories, it is also clear that
children are not provided directly with such “tagged” input.
Rather, the child has to bootstrap both lexical categories and
syntactic constraints concurrently. One way of doing this
may be to combine distributional information with other
kinds of cues. Therefore in the next simulation we trained
the same type of network but with each word encoded not
simply by fifteen lexical categories but instead by more than
a thousand different vectors encompassing different types of
phonological information.

Simulation 2:
Phonological cues for syntactic acquisition

We here take a further step towards providing a more solid
computational foundation for multiple-cue integration. In
Simulation 1 we provided evidence of the efficacy of using
SRNs for learning syntactic structure from the corpus. Our
next aim is to determine the extent to which these networks
are sensitive to the lexical category information present in a
set of phonological cues. To accomplish this task we set up
two identical groups of networks, each provided with a
different encoding of the corpus. The encoding of the first
corpus was based on 16 phonological cues mentioned above
(Table 1). The second set of input was encoded using a
random encoding. Possible performance differences in
networks trained with these different input sets would be
due to lexical category information available in the
phonological cues.

Method
Networks   Ten SRNs were used for the phonetic-input
condition and the random-input condition, with an initial
weight randomization in the interval [-0.1;0.1]. We used the
same values for learning rate and momentum as in
Simulation 1. Each input to the network contained a
thermometer encoding for each of the 16 phonological cues.
This encoding required 43 units (each of them in a range
from 0 to 1) and a pause marking boundaries between
utterances, resulting in the networks having 44 input units.
Each output was encoded using a localist representation for
the different lexical categories similarly to Simulation 1.
With the 14 different lexical categories and a pause marking
boundaries between utterances, the networks had 15 output
units. Each network furthermore was equipped with 88
hidden units and 88 context units.

Materials   We used the same training and test corpora as in
Simulation 1. Each word was encoded according to the
following sixteen phonological cues: number of phonemes
(1-11), number of syllables (1-5), stress position (0 = no
stress, 1 = 1st syllable stressed, etc.), proportion of reduced
vowels (0-1), proportion of coronal consonants (0-1),
number of consonants in onset (1-3), consonant complexity
(0-1), initial /D/ (1 if begins /D/, 0 otherwise), reduced first
vowel (1 if first vowel is reduced, 0 otherwise), any stress (0

if no stress, 1 otherwise), final inflection (0 if none, /@d/ or
/Id/, 1 if present), stress vowel position (from front to back,
1-3), vowel position (mean position of vowels, from front to
back, 1-3), final consonant voicing (0: vowel, 1: voiced, 2:
unvoiced), proportion of nasal consonants (0-1) and mean
height of vowels (0-3). The cues that assume only binary
values were encoded using a single unit (e.g., “any stress”,
“initial /D/”). The cues that take on values between 0 and 1
(e.g., proportion of vowel consonants) were also encoded
using a single unit with a decimal number, whereas the cues
that assume values in a broader range (e.g., number of
syllables) were represented using a thermometer encoding
- for example, one unit would be on for monosyllabic
words, two for bisyllabic words, and so on. Finally we used
a single unit that would be activated at utterance boundaries.

The random-input networks were trained using input
for which we randomly permuted the multiple-cue vectors
among all the words in the corpus. Thus, the random vector
encoding a given word would be reassigned to an arbitrary
word in the corpus regardless of its lexical category. Each
phonological vector was assigned to only one word.
Moreover, each token of a word was represented using the
same random vector for all occurrences of that word in the
test and training sets.

Procedure  Ten networks were trained on phonological
cues and ten control networks were trained on the random
vectors. The training consisted of a pass through the training
corpus. We used the same ten random seeds for both
simulation conditions. As in Simulation 1, the networks
were trained to predict the lexical category of the next word.
The task of mapping phonological cues onto lexical
categories may seem somewhat artificial because children
are not provided directly with the lexical categories of the
words to which they are exposed. However, children do
learn early on to use pragmatic and other cues to discover
the meaning of words. Given that the networks in our
simulations only have access to linguistic information, we
see lexical categories as a “stand-in” for more ecologically
valid cues that we hope to be able to include in future work.

Results and discussion
As in Simulation 1, we recorded the networks’ output
probabilities and computed the full conditional probability
vectors for the two groups of networks. We compared the
predictions of the phonetic-input networks with those of the
random-input networks1. The mean cosine between the full
conditional probabilities and the phonetic-input networks’
output probabilities was 0.75 for the training set and 0.69
for the test set. For the random-input networks, we found
that the mean cosine was 0.73 for the training set, and 0.67
                                                  
1 Given the absence of explicit lexical category information in the
input combined with the complexity and nature of the phonetic
encoding in Simulation 2, network performance is not directly
comparable with that of the bigram/trigram models. Thus, the
seemingly better performance of the finite-state models (in terms
of mean cosine) is somewhat deceptive.
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for the test set. The phonetic-input networks were
significantly better than the random-input networks at
predicting the next combination of lexical categories, both
for the training set (p's < .00005) and the test set (p's <
.00005). These results suggest that distributional
information is generally a stronger cue than phonological
information, even though the latter does lead to better
learning overall. However, phonological information may
provide the networks with a better basis for processing
novel lexical items. Next, we probe the internal
representations of the two sets of networks in order to gain
further insight into their performance differences.

Probing the internal representations
Simulation 2 indicated that the phonetic-input networks did
not benefit as much as one perhaps would have expected
from the information provided by the phonological cues.
However, the networks may nonetheless use this
information to develop internal representations that better
encode differences between lexical categories.  This may
allow them to go beyond the phonetic input and integrate it
with the distributional information derived from the
sequential order in which these vectors were presented. To
investigate these possibilities, we carried out a series of
discriminant analyses of network hidden unit activations as
well as of the phonetic input vectors, focusing on the
representations of nouns and verbs.

Method
Informally, a linear discriminant analysis allows us to
determine the degree to which it is possible to separate a set
of vectors into two (or more) groups based on the
information contained in those vectors. In effect, we attempt
to use a linear plane to split the hidden unit space into a
group of noun vectors and a group of verb vectors. Using
discriminant analyses, we can statistically estimate the
degree to which this split can be accomplished given a set of
vectors.

We recorded the hidden unit activations from the two
sets of networks in Simulation 2. The hidden unit
activations were recorded for 200 novel nouns and 200
novel verbs occurring in unique sentences taken from other
CHILDES corpora. The hidden unit activations were labeled
such that each corresponded to the particular lexical
category of the input presented to the network (though the
networks did not receive this information as input). For
example, a vector would be labeled a noun vector when the
hidden unit activations were recorded for a noun (phonetic)
input vector. We also included a condition in which the
noun/verb labels were randomized with respect to the
hidden unit vectors for both sets of networks, in order to
establish a random control.

Results and Discussion
We first compared the two sets of networks. The phonetic-
input networks had developed hidden unit representations
that allowed them to correctly separate 80.30% of the 400

nouns and verbs. This was significantly better than the
random-input networks, which only achieved 73.15%
correct separation (t(8) = 5.89, p < .0001). Both sets of
networks surpassed their respective randomized controls
(phonetic-input control: 69.05% – t(8) =11.51, p < .0001;
random-input control: 68.20% – t(8 )= 3.92, p < .004). The
controls for the two sets of networks were not significantly
different from each other (t(8) = 0.82, p > .43). As indicated
by our previous analyses of phonetic cue information in
child-directed speech (Monaghan et al., submitted), the
phonetic input vectors contained a considerable amount of
information about lexical categories, allowing for 67.25%
correct separation of nouns and verbs, but still significantly
below the performance of the phonetic-input networks (t(4)
= 25.97, p < .0001). The random-input networks also
surpassed the level of separation afforded by their input
vectors (59.00% – t(4) = 12.80, p < .0001).

The results of the hidden-unit discriminant analyses
suggest that not only did the phonetic-input networks
develop internal representations better suited for
distinguishing between nouns and verbs, but they also went
beyond the information afforded by the phonetic input and
integrate it with distributional information. Crucially, the
phonetic-input vectors were able to surpass the random-
input networks, despite that the latter was also able to use
distributional information to go beyond the input. Consistent
phonological information thus appears to be important for
network generalization to novel nouns and verbs2.

Conclusions
A growing bulk of experimental evidence from
developmental cognitive science has indicated that children
are sensitive to and able to combine a host of different
sources of information, and that this may help them
overcome the syntactic bootstrapping problem. However,
one important caveat regarding such multiple-cue
integration is that the various sources of information are
highly probabilistic, and each is unreliable when considered
in isolation. Although some headway has been made in the
investigation of possible computational mechanisms that
may be able to integrate multiple probabilistic cues, this
work has primarily been small in scale (e.g., Christiansen &
Dale, 2001).

In this paper, we have presented two series of
simulations aimed at taking the first steps towards scaling
up connectionist models of multiple-cue integration to deal
with the full complexity of natural speech directed at
children. The results of Simulation 1 demonstrated that
SRNs are capable of taking advantage of distributional
information – despite the many grammatical inconsistencies
found in child-directed speech. In Simulation 2, we
                                                  
2 It is possible to object that children do not only get cues that are
relevant for syntactic acquisition. Christiansen and Dale (2001)
specifically addressed this issue by providing networks with
additional cues that did not correlate with syntax. They found that
the networks were able to ignore such “distractor” cues and focus
on the relevant cues.
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expanded these results by showing that SRNs are also able
to utilize the highly probabilistic information found in the
16 phonological cues in the service of syntactic acquisition.
Our probing of the networks’ hidden unit activations
provided further evidence that the integration of
phonological and distributional cues during learning leads to
more robust internal representations of lexical categories, at
least when it comes to distinguishing between the two major
categories of nouns and verbs. Overall the results presented
here underscore the computational feasibility of the
multiple-cue integration hypothesis, in particular within a
connectionist framework.
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