Variability is the spice of learning, and
a crucial ingredient for detecting and generalizing in nonadjacent dependencies
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Abstract

An important aspect of language acquisition involves learning
the syntactic nonadjacent dependencies that hold between
words in sentences, such as subject/verb agreement or tense
marking in English. Despite successes in statistical learning of
adjacent dependencies, the evidence is not conclusive for
learning nonadjacent items. We provide evidence that
discovering nonadjacent dependencies is possible through
statistical learning, provided it is modulated by the variability
of the intervening material between items. We show that
generalization to novel syntactic-like categories embedded in
nonadjacent dependencies occurs with either zero or large
variability. In addition, it can be supported even in more
complex learning tasks such as continuous speech, despite
earlier failures.

Introduction

Statistical learning — the discovery of structural
dependencies through the probabilistic relationships
inherent in the raw input — has long been proposed as a
potentially important mechanism in language development
(e.g. Harris, 1955). Efforts to employ associative
mechanisms for language learning withered during
following decades in the face of theoretical arguments
suggesting that the highly abstract structures of language
could not be learned from surface level statistical
relationships (Chomsky, 1957). Recently, interest in
statistical learning as a contributor to language development
has reappeared as researchers have begun to investigate how
infants might identify aspects of linguistic units such as
words, and to label them with the correct linguistic abstract
category such as VERB. Much of this research has focused
on tracking dependencies between adjacent elements.
However, certain key relationships between words and
constituents are conveyed in nonadjacent (or remotely
connected) structure. In English, linguistic material may
intervene between auxiliaries and inflectional morphemes
(e.g., is cooking, has traveled) or between subject nouns and
verbs in number agreement (the books on the shelf are

dusty). The presence of embedding and nonadjacent
relationships in language was a point of serious difficulty
for early associationist approaches. It is easy to see that a
distributional mechanism computing solely neighbouring
information would parse the above sentence as ... *the shelf
is dusty. Despite the importance of detecting remote
dependencies, we know relatively little about the conditions
under which this skill may be acquired by statistical means.

In this paper, we present results using the Artificial
Language Learning (ALL) paradigm designed to test
learning of nonadjacent dependencies in adult participants.
We suggest that a single statistical mechanism might
underpin two language learning abilities: detection of
nonadjacencies and abstraction of syntactic-like categories
from nonadjacent distributional information.

Despite the fact that both infants and adults are
able to track transitional probabilities among adjacent
syllables (Saffran, Aslin, & Newport, 1996), tracking
nonadjacent probabilities, at least in uncued streams of
syllables, has proven elusive in a number of experiments
and the evidence is not conclusive (Newport & Aslin, 2004;
Onnis, Monaghan, Chater, & Richmond, submitted; Pefia,
Bonatti, Nespor, & Mehler, 2002). Thus, a serious empirical
challenge for statistical accounts of language learning is to
show that a distributional learner can learn dependencies at
a distance. Previous work using artificial languages (Gémez,
2002) has shown that the variability of the material
intervening between dependent elements plays a central role
in determining how easy it is to detect a particular
dependency. Learning improves as the variability of
elements that occur between two dependent items increases.
When the set of items that participate in the dependency is
small relative to the set of elements intervening, the
nonadjacent dependencies stand out as invariant structure
against the changing background of more varied material.
This effect also holds when there is no variability of
intervening material shared by different nonadjacent items,
perhaps because the intervening material becomes invariant
with respect to the variable dependencies (Onnis,



Christiansen, Chater, & Gomez, 2003). In natural language,
different structural long-distance relationships such as
singular and plural agreement between noun and verb may
in fact be separated by the same material (e.g. the books on
the shelf are dusty versus the book on the shelf is dusty). We
call the combined effects of zero and large variability the
variability hypothesis.

Very similar ALL experiments tested have failed to
show generalization from statistical information unless
additional perceptual cues such as pauses between words
were inserted, suggesting that a distributional mechanism
alone is too weak to support abstraction of syntactic-like
categories. On these grounds Pefa et al. (2002) have argued
that generalization necessitates a rule-based computational
mechanism, whereas speech segmentation relies on lower-
level statistical computations. However, these experiments
tested nonadjacency learning and embedding generalization
with low variability of embedded items, which we contend
is consistent with the variability hypothesis that learning
should be hard. Our aim is to show that at the end-points of
the variability continuum, i.e. with either no or large
variability, generalization becomes possible. In Experiment
1, we present results suggesting that both detection of
nonadjacent frames and generalization to the embedded
items are simultaneously achieved when either one or a
large number of different type items are shared by a small
number of highly frequent and invariant frames. In
Experiment 2 we also investigate whether tracking
nonadjacent dependencies can assist speech segmentation
and generalization simultaneously, given the documented
bias for segmenting speech at points of lowest transitional
probability (Saffran et al. 1996a,b).

We conclude that adult learners are able to track
both adjacent and nonadjacent structure, and the success is
modulated by variability. This is consistent with the
hypothesis that a learning mechanism uses statistical
information by capitalizing on stable structure for both
pattern detection and generalization (Gémez, 2002, Gibson,
1991).

Generalising under variability

The words of natural languages are organized into
categories such as ARTICLE, PREPOSITION, NOUN,
VERB, etc., that form the building blocks for constructing
sentences. Hence, a fundamental part of a language
knowledge is the ability to identify the category to which a
specific word, say apple, belongs and the syntactic
relationships it holds with adjacent as well as nonadjacent
words. Two properties of word class distribution appear
relevant for a statistical learner. First, closed class words
like articles and prepositions typically involve highly
frequent items belonging to a relatively small set (am, the, -
ing, -s, are) whereas open class words contain items
belonging to a very large set (e.g. nouns, verbs, adjectives).
Secondly, Gémez (2002) noted that sequences in natural
languages involve members of the two broad categories
being interspersed. Crucially, this asymmetry translates into
patterns of highly invariant nonadjacent items, or frames,

separated by highly variable material (am cooking, am
working, am going, etc.). Such sequential asymmetrical
properties of natural language may help learners solve two
complex tasks: a) building syntactic constructions that
sequentially span one or several words; b) building relevant
abstract syntactic categories for a broad range of words in
the lexicon that are distributionally embedded in such
nonadjacent relationships. Frequent nonadjacent
dependencies are fundamental to the process of
progressively building syntactic knowledge of, for instance,
tense marking, singular and plural markings, etc. For
instance, Childers & Tomasello (2001) tested the ability of
2-year-old children to produce a verb-general transitive
utterance with a nonce verb. They found that children were
best at generalizing if they had been mainly trained on the
consistent pronoun frame He's VERB-ingit (e.g., He's
kicking it, He's eating it) rather than on several utterances
containing unsystematic correlations between the agent and
the patient slots (Mary s kicking the ball, John's pushing the
chair, etc.).

Gomez (2002) found that the structure of sentences
of the form A4,X;B;, where there were three different 4; B,
pairs, could in fact be learned provided there was sufficient
variability of X; words. The structure was learned when 24
different Xs were presented, but participants failed to learn
when Xs varied from sets of 2, 4, 6, or 12, i.e. with low
variability. Onnis et al. (2003) replicated this finding and
also found that learning occurred with only one X being
shared, suggesting the nonadjacent structure would stand
out again, this time as variant against the invariant X.

While Gémez interpreted her results as a learning
bias towards what changes versus what stays invariant, thus
leading to “discard” the common embeddings in some way,
we argue here that there may be a reversal effect in noting
that common elements all share the same contextual frames.
If several words — whose syntactic properties and category
assignment are a priori unknown — are shared by a number
of contexts, then they will be more likely to be grouped
under the same syntactic label, e.g. VERB. For instance,
consider a child faced with discovering the class of words
such as break, drink, build. As the words share the same
contexts below, s/he may be driven to start extracting a
representation of the VERB class (Mintz, 2002):

I am-X-ing
dont-X-it
Lets-X-now!

Mintz (2002) argued that most importantly, in hearing a new
word in the same familiar contexts, for instance eat in am-
eat-ing, the learner may be drawn to infer that the new word
is a VERB. Ultimately, having categorized in such a way,
the learner may extend the usage of eaf as a VERB to new
syntactic constructions in which instances of the category
VERB typically occur. For instance s/he may produce a
novel sentence Lets-eat-now! Applying a category label to
an word (e.g. eat belongs to VERB) greatly enhances the
generative power of the linguist system, because the labeled
item can now be used in new syntactic contexts where the
category applies. In Experiment 1 we tested whether



generalization to new X items in the 4 X B artificial
grammar used by Gomez (2002) and Onnis et al. (2003) is
supported under the same conditions of no or large
variability that affords the detection of invariant structure.
Hence, if frames are acquired under the variability
hypothesis, generalization will be supported when there is
either zero or large variability of embeddings. Likewise,
because invariant structure detection is poor in conditions of
middle variability, generalization is expected to be equally
poor in those conditions too.

Experiment 1

Method

Subjects

Thirty-six undergraduate and postgraduate students at the
University of Warwick participated and were paid £3 each.
Materials

In the training phase participants listened to auditory strings
generated by one of two artificial languages (L1 or L2) of
the type A:.X;B;. Strings in L1 had the form 4,X;B,, A,X;B;,
and A;X;B;. L2 strings had the form 4 ,X;B,, 4,X;B;, A;X;B,.
Variability was manipulated in 3 conditions — zero, small,
and large— by drawing X from a pool of either 1, 2 or 24
elements. The strings, recorded from a female voice, were
the same that Gomez used in her study and were originally
chosen as tokens among several recorded sample strings in
order to eliminate talker-induced differences in individual
strings.

The elements 4;, A,, and A; were instantiated as
pel, vot, and dak; B;, B,, and Bj;, were instantiated as rud,
jic, tood. The 24 middle items were wadim, kicey, puser,
fengle, coomo, loga, gople, taspu, hiftam, deecha, vamey,
skiger, benez, gensim, feenam, laeljeen, chla, roosa, plizet,
balip, malsig, suleb, nilbo, and wiffle. The middle items
were stressed on the first syllable. Words were separated by
250-ms pauses and strings by 750-ms pauses. Three strings
in each language were common to all two groups and they
were used as test stimuli. The three L2 items served as foils
for the L1 condition and vice versa. The test stimuli
consisted of 12 strings randomized: six strings were
grammatical and six were ungrammatical. The
ungrammatical strings were constructed by breaking the
correct nonadjacent dependencies and associating a head to
an incorrectly associated tail, i.e. *4,XB;.. Six strings (three
grammatical and three ungrammatical) contained a
previously heard embedding, while 6 strings (again three
grammatical and three ungrammatical) contained a new,
unheard embedding. Note that correct identification could
only be achieved by looking at nonadjacent dependencies,
as adjacent transitional probabilities were the same for
grammatical and ungrammatical items.

Procedure

Six participants were recruited in each of 3 Variability
conditions (1, 2 and 24) and for each of two Language
conditions (L1, L2) resulting in 12 participants per
Variability condition. Learners were asked to listen and pay
close attention to sentences of an invented language and
they were told that there would be a series of simple

questions relating to the sentences after the listening phase.
During training, participants in the two conditions listened
to the same overall number of strings, a total of 432 token
strings. This way, frequency of exposure to the nonadjacent
dependencies was held constant across conditions.
Participants in set-size 24 heard six iterations of each of 72
type strings (3 dependencies x 24 middle items),
participants, in set-size 2 encountered each string 12 times
as often as those exposed to set size 24, and so forth. Hence,
whereas nonadjacent dependencies where held constant,
transitional probabilities of adjacent items decreased as set
size increased.

Training lasted about 18 minutes. Before the test,
participants were told that the sentences they had heard were
generated according to a set of rules involving word order,
and they would now hear 12 strings, 6 of which would
violate the rules. They were asked to give a “Yes/No”
answer. They were also told that the strings they were going
to hear may contain new words and they should base their
judgment on whether the sentence was grammatical or not
on the basis of their knowledge of the grammar. This is to
guarantee that participants did not select as ungrammatical
all the sentences with novel words simply because they
contained novel words.
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Figure 1. Generalisation under variability - Exp.1

Results and discussion

An analysis of variance with Variability (1 vs. 2 vs. 24) and
Language (L1 vs. L2) as between-subjects and
Grammaticality (Trained vs. Untrained strings) as a within-
subjects variable resulted in a main Variability effect,
F(2,30)=3.41, p< .05, and no other interaction. Performance
across the different variability conditions resulted in a U-
shaped function: a polynomial trend analysis showed a
significant quadratic effect, F(1, 35) =7.407, p <.01. Figure
1 presents the percentage of endorsements for total accuracy
in each of the three variability conditions. These results add
considerable power to the variability hypothesis: not only
can nonadjacencies be detected, but generalization too can
occur distributionally, and both processes seem to be
modulated by the same conditions of variability. In addition,
generalization with zero wvariability allows us to
disambiguate previous results, in that the high performance
obtained by Onnis et al. (2003) could have been due to a
simple memorization of the 3 strings repeated over and over



again during training. However, in Experiment 1 correct
classification of new strings as grammatical can only be
done on the basis of the correct nonadjacencies. Thus, it
seems that learning on zero or large variability conditions is
supported by a similar mechanism. Finally, we note that A
and B words are monosyllabic and X words are bysillabic,
participants could simply learn a pattern S-SS-S (where
S=syllable). However, because all sentences display such
pattern across conditions this cannot explain the U-shape of
the learning curve.

Experiment 2

In Experiment 1 the items of the grammar are
clearly demarcated by pauses. It can be argued that this
makes the task somewhat simplified with respect to real
spoken language, which does not contain for instance such
apparent cues at every word boundary. In addition, the
embedded item X was instantiated in bisyllabic words (as
opposed to monosyllabic 4 and B words), providing an extra
cue for category abstraction. In this context, Pefia et al.
(2002) have argued that generalization and speech
segmentation are separate processes underpinned by
separate computational mechanisms: statistical
computations are used in a segmentation task but this is not
performed simultaneously with algebraic computations that
would permit generalizations of the structure. Once the
segmentation task was solved by introducing small pauses
in the speech signal, their underlying structure was learned.
Hence it is important to test these claims in the light of the
variability hypothesis, which we argue might provide the
key to learning nonadjacencies and generalizing altogether,
even in connected speech, without invoking two separate
mechanisms.

Recent attempts to show statistical computations of
a higher order at work in connected speech with a similar
AXB language have met with some difficulty: Newport &
Aslin (2004), for instance, exposed adults to a continuous
speech stream, created by randomly concatenating 4XB
words with 3 A4 B syllable dependencies and with 2
different middle X syllables. A sample of the speech stream
obtained would be ...A1X3B1A2XQBQA3X1B3.... In this case
participants were unable to learn the nonadjacent
dependencies. Concatenating words seamlessly adds
considerable complexity to the task of tracking statistical
information in the input for two main reasons: first,
transitional probabilities between words of a language
containing, say 3 dependencies and 3 Xs, p(B|4)= 0.5 are
higher than within words, p(X]4) and p(B|X)= 0.33, and this
pressures for segmentation within words (Saffran, Aslin, &
Newport, 1996ab). Secondly, assuming the statistical
mechanism is sensitive to nonadjacent dependencies as
seems the case in Experiment 1, concatenating items entails
the additional burden of tracking nonadjacent transitional
probabilities across word boundaries, e.g. X; 4, B; X, and
dependencies spanning n words away can in principle also
be attended to, e.g. two items away (B, _A;...,etc.). One
can readily see that if all transitional probabilities of
different order were to be computed this scenario would
soon create a computational impasse. The insight from
Goémez (2002) and Experiment 1 is that variability plays a

key role, in that it allows adjacent dependencies to be
overcome in favour of nonadjacent ones, but it remains to be
seen whether this can be done in connected speech too.

Pena et al. (2002) tested participants on whether
they learned to generalize from the rules of an 4 XB
language very similar to Newport & Aslin (2004) in
unsegmented speech. Again AXB items were instantiated in
syllables and formed words concatenated one to the other
seamlessly. At test, participants demonstrated no preference
for so-called “rule-words”, new trigram sequences that
maintained the A4, B; nonadjacent dependencies but
contained a different 4 or B in the intervening position (e.g.,
A;B;3;B;), compared to part-words, i.e., sequences that
spanned word boundaries (e.g., X,B;A4;, or B3A4;X5). In a
further manipulation, 25-ms gaps were introduced between
words during the training phase of the experiment, and now
participants generalized as indicated by a preference for
rule-words over part-words. Pefa et al. claimed that altering
the speech signal resulted in a change in the computations
performed by their participants. Statistical computations
were used in a (previously successful) segmentation task but
this was not performed simultaneously with algebraic
computations that would permit generalizations of the
structure. They argued that once the segmentation task was
solved by introducing small gaps in the speech signal, the
underlying structure would be learned. However, using the
same stimuli and experimental conditions as Pefa et al.
Onnis, Monaghan, Chater & Richmond (submitted) found
that rule-words were preferred over part-words in both
segmentation and generalization tasks even when the
nonadjacent structure was eliminated: participants reliably
preferred incorrect rule-words *4;B3B; to part-words B;A4,.X,
due to preference for plosive sounds in word-initial position.
Hence such preference did not reflect learning of
nonadjacent dependencies. Although discouraging at first
sight, all these negative results are not inconsistent with the
variability hypothesis. In fact, they are all cases structurally
similar to the low-variability condition in Goémez (2002) and
Experiment 1. Thus, in Experiment 2 we tested whether
with sufficiently large variability:

a) tracking higher-order dependencies can be used to
segment speech. This is a difficult task because it implies
overriding even lower transitional probabilities p(X|4) than
previously tested and this pressures for segmentation within
word boundaries (Saffran et al. 1996);

b) generalization of the embeddings can occur
simultaneously to speech segmentation, i.e. on-line in
running speech, and can be done by statistical analysis of
the input alone, i.e. without additional perceptual cues such
as pauses. We tested this using the same material and
training conditions as Pefla et al. for their unsuccessful
pause-free generalization task, but increasing the variability
of the X syllables to 24 items as in Experiment 1.

Method

Subjects

20 undergraduate and postgraduate students at the
University of Warwick participated for £1. All participants
spoke English as a first language and had normal hearing.



Materials

We used the same nine word types from Pefia et al.’s
Experiment 2 to construct the training speech stream in our
Experiment 2. The set of nine words was composed of three
groups (A4; B;), where the first and the third syllable were
paired, with an intervening syllable (X) selected from one of
either three syllables (low variability condition) or 24
syllables (high variability condition). The syllables were
randomly generated from the following set of consonants:
/p/,/v/,/g/,/x/,/d/,/t/,/1/,/x/,/¢/,/¢/,/d3/,/n/,
/s/,/v/w/,/m/,/0/,/(/,/z/and the following vowels:
/€i/,/uw/,/a/,/iy/,/au/,/0i/,/ai/,/®/,/ce/.
Consonants and vowels were permuted, then joined
together. No syllables occurred more than once in the set of
33 generated. Each participant listened to a different
permutation of consonant-vowel pairings. Notice that the
language structure in the two conditions match very closely
those of small and large variability in Experiment 1. Unlike
Experiment 1 all items were monosyllabic and equally
stressed.

Words were produced in a seamless speech stream,
with no two words from the same set occurring adjacently,
and no same middle item occurring in adjacent words.
Hence, adjacent transitional probabilities were as follows:
for the small variability condition, and within words, p(X]|4)
and p(B|X)= 0.33; between adjacent words p( B;|4,)=0.5.
Nonadjacent transitional probabilities were p(B;|4;)= 1,
P(Ai| Xprevious)= 0.33, P(Xj|Bprevious)= 0.33. For the large
variability condition all probabilities were the same except
within word adjacent probabilities p(X]4) = 0.041.

Therefore, the predicition is that if learners
computed adjacent statistical probabilities they should
prefer part-words and perhaps significantly more in the
large variability condition. Conversely, if they computed
nonadjacent dependencies they would rely on the most
statistically reliable ones, namely p(B;|4;)= 1, i.e. they
would segment correctly at word boundary.

We used the Festival speech synthesizer using a
voice based on British-English diphones at a pitch of 120
Hz, to generate a continuous speech stream lasting
approximately 10 minutes. All syllables were of equal
duration, and were produced at a rate of 4.5
syllables/second. Words were selected randomly, except
that no 4; B, pair occurred twice in succession. The speech
stream was constructed from 900 words, in which each
word occurred approximately 100 times. The speech stream
faded in for the first 5 seconds, and faded out for the last 5
seconds, so there was no abrupt start or end to the stream. In
addition, and crucially, for each participant, we randomly
assigned the 9 syllables from the first experiment to the 4,
B; and X; positions. Thus, each participant listened to speech
with the same structure containing the nonadjacent
dependencies, but with syllables assigned to different
positions. This was to avoid any bias towards choosing a
rule-word because of a preference for plosive sounds, as
Onnis et al. (submitted) demonstrated. Part-words were
formed from the last syllable of one word and two syllables
from the following word (B;4;X), or from the last two
syllables of one word and the first syllable from the
following word (XB;4)).

Procedure

In the training phase, participants were instructed to listen to
continuous speech and try and work out the “words” that it
contained. They then listened to the training speech. At test
part-words were compared to “rule-words”, which were
composed of 4; B; pairs with an intervening item that was
either an 4; or a B; from another 4; B; pair. Participants
were requested to respond which of two sounds was a
“word” in the language they had listened to. They were then
played a “rule-word” and a part-word separated by 500 ms,
and responded by pressing either “1” on a computer
keyboard for the first sound a word, or “2” for the second
sound a word. After 2 seconds, the next rule-word and part-
word pair were played. In half of the test trials, the “rule-
words” occurred first. Five participants heard a set of test
trials with one set of words first, and the other 5 participants
heard the other set of words first.

Results

The results are shown in Figure 2. In line with the original
Pefia et al.’s experiment, we found no evidence for
participants learning to generalize from the nonadjacent
structure of the stimuli in the low-variability condition.
Participants responded with a preference for rule-words over
part-words 41.9% of the times, which was significantly
lower than chance, #9) = -2.73, p < .05. Conversely, in the
high-variability condition participants preferred rule-words
63.3% of the times, significantly higher than chance, #(9)= -
3.80, p = .0042. In addition, there was a significant
difference between the low variability and the high
variability condition, #(18) = -4.68, p <.001.
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Figure 2. Generalisation in unsegmented speech - Exp. 2

General Discussion

Statistical learning of dependencies between adjacent
elements in a sequence is fast, robust, automatic and general
in nature. In contrast, although the ability to track remote
dependencies is a crucial linguistic ability, relatively little
research has been directed toward this problem.
Nonadjacent structure in sequential information seems
harder to learn, possibly because learners have to overcome
the bias toward adjacent transitional probabilities. In fact, a
statistical learning mechanism that kept track of all possible
adjacent and nonadjacent regularities in the input, including
syllables one, two, three away, etc., would quickly



encounter a computationally intractable problem of
exponential growth. It would seem that either statistical
learning is limited to sensitivity to adjacent items, or there
may be statistical conditions in which adjacencies become
less relevant in favour of nonadjacencies. It has been
suggested that this applies under conditions of large
variability of the intervening material (Gémez, 2002) or
zero variability (Onnis et al., 2003). This paper contributes
some steps forward: first, Experiment 1 shows that
variability is the key not only for detection of remote
dependencies but also for generalization of embedded
material, fostering the creation of abstract syntactic-like
classes, which is often assumed to require higher-level
algebraic computation. Secondly, in Experiment 2
segmentation and generalization are achieved
simultaneously, without the assist of pauses (a difference in
signal) as Pena et al. claimed. Consequently, rather than
supporting a statistical/algebraic distinction our results
suggest specific selectivities in learning patterned
sequences. The specific characterization of such selectivities
may not be simple to identify: Newport & Aslin (2004)
found that nonadjacent segments (consonants and vowels)
could be learned but not nonadjacent syllables, and
proposed that this accounts for why natural languages
display nonadjacent regularities of the former kind but not
of the latter. Experiment 2, however, shows that with large
variability nonadjacent syllabic patterns can in fact be
learned. The key factor for success is again variability.
Experiment 2 also shows that learners are indeed able to
track nonadjacent dependencies in running speech, despite
the well documented bias for adjacent associations and the
preference for segmenting continuous speech at points of
lowest transitional probabilities.

Overall, the results suggest that the learning
mechanism entertains several statistical computations and
implicitly “tunes in” to statistical relations that yield the
most reliable source of information. This hypothesis was
initiated by Gémez (2002) and is consistent with several
theoretical formulations such as reduction of uncertainty
(Gibson, 1991) and the simplicity principle (Chater, 1996)
that the cognitive system attempts to seek the simplest
hypothesis about the data available. In the face of
performance constraints and way too many statistical
computations, the cognitive system may be biased to focus
on data that will be likely to reduce uncertainty.
Specifically, whether the system focuses on transitional
probabilities or nonadjacent dependencies may depend on
the statistical properties of the environment that is being
sampled.

Our work ties in with recent acquisition literature
that has emphasized the constructive role of syntactic
frames as the first step for building more abstract syntactic
representations (Tomasello, 2003 for an overview).
Children’s syntactic development would build upon several
consecutive stages from holophrases such as I-wanna-see-it
(at around 12 months), to pivot-schemas (throw-ball, throw-
can, throw-pillow, at about 18 months), through item-based
constructions (John hugs Mary, Mary hugs John, at about
24 months), to full abstract syntactic constructions (a X, the
Xs, Eat a X).

Statistical learning seems, at least in adults,
powerful enough to allow the discovery of complex
nonadjacent structure, but simply not any condition will do:
we have suggested that variability such as that emerging
from the asymmetry between open and closed class words
may be a crucial ingredient for understanding the building
of language.
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