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1. Introduction 

Considerable research in language acquisition has addressed the 
extent to which basic aspects of linguistic structure might be 
identified on the basis of probabilistic cues in caregiver speech to 
children. In this chapter, we examine systems that have the capacity 
to extract and store various statistical properties of language. In 
particular, groups of overlapping, partially predictive cues are 
increasingly attested to in research on language development (e.g., 
Morgan and Demuth, 1996). Such cues tend to be probabilistic and 
violable, rather than categorical or rule-governed. Importantly, these 
systems incorporate mechanisms for integrating different sources of 
information, including cues that may not be very informative when 



2 Language Acquisition, Change and Emergence 

considered in isolation. We explore the idea that conjunctions of 
these cues provide evidence about aspects of linguistic structure that 
is not available from any single source of information, and that this 
process of integration reduces the potential for making false 
generalizations. Thus, we argue that there are mechanisms for 
efficiently combining cues of even very low validity, that such 
combinations of cues are the source of evidence about aspects of 
linguistic structure that would be opaque to a system insensitive to 
such combinations, and that these mechanisms are used by children 
acquiring languages (for a similar view, see Bates and MacWhinney, 
1987). These mechanisms also play a role in skilled language 
comprehension and are the focus of so-called constraint-based 
theories of sentence processing (Cottrell, 1989; MacDonald, 
Pearlmutter and Seidenberg, 1994; Trueswell and Tanenhaus, 1994) 
that emphasize the use of probabilistic sources of information in the 
service of computing linguistic representations. Since the learners of 
a language grow up to use it, investigating these mechanisms 
provides a link between language learning and language processing 
(Seidenberg, 1997). 

In the standard learnability approach, language acquisition is 
viewed in terms of the task of acquiring a grammar (e.g., Pinker, 
1994; Gold, 1967). This type of learning mechanism presents classic 
learnability issues: there are aspects of language for which the input 
is thought to provide no evidence, and the evidence that does exist 
tends to be unreliable. Following Christiansen, Allen and Seidenberg 
(1998), we propose an alternative view in which language 
acquisition can be seen as involving several simultaneous tasks. The 
primary task — the language learner’s goal — is to comprehend the 
utterances to which she is exposed for the purpose of achieving 
specific outcomes. In the service of this goal the child attends to the 
linguistic input, picking up different kinds of information, subject to 
perceptual and attentional constraints. There is a growing body of 
evidence that as a result of attending to sequential stimuli, both 
adults and children incidentally encode statistically salient 
regularities of the signal (e.g., Cleeremans, 1993; Saffran, Aslin and 
Newport, 1996; Saffran, Newport and Aslin, 1996). The child’s 
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immediate task, then, is to update its representation of these 
statistical aspects of language. Our claim is that knowledge of other, 
more covert aspects of language is derived as a result of how these 
representations are combined through multiple cue integration. 
Linguistically relevant units (e.g., words, phrases, and clauses) 
emerge from statistical computations over the regularities induced 
via the immediate task. On this view, the acquisition of knowledge 
about linguistic structures that are not explicitly marked in the 
speech signal — on the basis of information that is — can be seen as 
a third derived task. We address these issues in the specific context 
of learning to identify individual words in speech. In the research 
reported below, the immediate task is to encode statistical 
regularities concerning phonology, lexical stress and utterance 
boundaries. The derived task is to integrate these regularities in 
order to identify the boundaries between words in speech. 

The remainder of this chapter presents our work on the 
modeling of early infant speech segmentation in connectionist 
networks trained to integrate multiple probabilistic cues. We first 
describe past work exploring the segmentation abilities of our model 
(Allen and Christiansen, 1996; Christiansen, 1998; Christiansen et 
al., 1998). Although we concentrate here on the relevance of 
combinatorial information to this specific aspect of acquisition, our 
view is that similar mechanisms are likely to be relevant to other 
aspects of acquisition and to skilled performance. Next, we present 
results from a new set of simulations1 that extends the coverage of 
the model to include recent controversial data on purported 
rule-learning by infants (Marcus, Vijayan, Rao and Vishton, 1999). 
New empirical predictions concerning the role of segmentation in 
rule-like behavior is derived from the model, and confirmed by 
artificial language learning experiments with adult participants. 
Finally, we discuss how multiple cue integration works and how this 
approach may be extended beyond speech segmentation. 

                                                      
1  Parts of the simulation results have previously been reported in conference 

proceedings: Christiansen, Conway and Curtin (2000). 
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2. The Segmentation Problem 

Before an infant can even start to learn how to comprehend a 
spoken utterance, the speech signal must first be segmented into 
words. Thus, one of the initial tasks that the child is confronted with 
when embarking on language acquisition involves breaking the 
continuous speech stream into individual words. Discovering word 
boundaries is a nontrivial problem as there are no acoustic 
correlates in fluent speech to the white spaces that separate words in 
written text. There are however a number of sub-lexical cues which 
could potentially be integrated in order to discover word 
boundaries. The segmentation problem therefore provides an 
appropriate domain for assessing our approach insofar as there are 
many cues to word boundaries, including prosodic and 
distributional information, none of which is sufficient for solving the 
task alone. 

Early models of spoken language processing assumed that word 
segmentation occurs as a byproduct of lexical identification (e.g., 
Cole and Jakimik, 1978; Marslen-Wilson and Welsh, 1978). More 
recent accounts hold that adults use segmentation procedures in 
addition to lexical knowledge (Cutler, 1996). These procedures are 
likely to differ across languages, and presumably include a variety of 
sublexical skills. For example, adults tend to make consistent 
judgements about possible legal sound combinations that could 
occur in their native language (Greenburg and Jenkins, 1964). This 
type of phonotactic knowledge may aid in adult segmentation 
procedures (Jusczyk, 1993). Additionally, evidence from perceptual 
studies suggests that adults know about and utilize language specific 
rhythmic segmentation procedures in processing utterances (Cutler, 
1994). 

The assumption that children are not born with the knowledge 
sources that appear to subserve segmentation processes in adults 
seems reasonable since they have neither a lexicon nor knowledge of 
the phonological or rhythmic regularities underlying the words of 
the particular language being learned. Therefore, one important 
developmental question concerns how the child comes to achieve 
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steady-state adult behavior. Intuitively, one might posit that children 
begin to build their lexicon by hearing words in isolation. A 
single-word strategy whereby children adopted entire utterances as 
lexical candidates would appear to be viable very early in 
acquisition. In the Bernstein-Ratner (1987) and the Korman (1984) 
corpora, 22–30% of child-directed utterances are made up of single 
words. However, many words, such as determiners, will never occur 
in isolation. Moreover, this strategy is hopelessly underpowered in 
the face of the increasing size of utterances directed toward infants 
as they develop. Instead, the child must develop viable strategies that 
will allow her to detect utterance internal word boundaries 
regardless of whether or not the words appear in isolation. A more 
realistic suggestion is that a bottom-up process exploiting sub-lexical 
units allows the child to bootstrap the segmentation process. This 
bottom-up mechanism must be flexible enough to function despite 
cross-linguistic variation in the constellation of cues relevant for the 
word segmentation task. 

Strategies based on prosodic cues (including pauses, segmental 
lengthening, metrical patterns, and intonation contour) have been 
proposed as a way of detecting word boundaries (Cooper and 
Paccia-Cooper, 1980; Gleitman, Gleitman, Landau and Wanner, 
1988). Other recent proposals have focused on the statistical 
properties of the target language that might be utilized in early 
segmentation. Considerable attention has been given to lexical stress 
and sequential phonological regularities — two cues also utilized in 
the Christiansen et al. (1998) segmentation model. In particular, 
Cutler and her colleagues (e.g., Cutler and Mehler, 1993) have 
emphasized the potential importance of rhythmic strategies to 
segmentation. They have suggested that skewed stress patterns (e.g., 
the majority of words in English have strong initial syllables) play a 
central role in allowing children to identify likely boundaries. 
Evidence from speech production and perception studies with 
preverbal infants supports the claim that infants are sensitive to 
rhythmic structure and its relationship to lexical segmentation by 
nine months (Jusczyk, Cutler and Redanz, 1993). A potentially 
relevant source of information for determining word boundaries is 
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the phonological regularities of the target language. A recent study 
by Jusczyk, Friederici and Svenkerud (1993) suggests that, between 
6 and 9 months, infants develop knowledge of phonotactic 
regularities in their language. Furthermore, there is evidence that 
both children and adults are sensitive to and can utilize such 
information to segment the speech stream. Work by Saffran, 
Newport and Aslin (1996) shows that adults are able to use 
phonotactic sequencing to determine possible and impossible words 
in an artificial language after only 20 minutes of exposure. They 
suggest that learners may be computing the transitional probabilities 
between sounds in the input and using the strengths of these 
probabilities to hypothesize possible word boundaries. Further 
research provides evidence that infants as young as 8 months show 
the same type of sensitivity after only three minutes of exposure 
(Saffran, Aslin and Newport, 1996). Thus, children appear to have 
sensitivity to the statistical regularities of potentially informative 
sublexical properties of their languages such as stress and 
phonotactics, consistent with the hypothesis that these cues could 
play a role in bootstrapping segmentation. The issue of when infants 
are sensitive to particular cues and how strong a particular cue is to 
word boundaries has been addressed by Mattys, Jusczyk, Luce and 
Morgan (1999). They examined how infants would respond to 
conflicting information about word boundaries. Specifically, Mattys 
et al. (Experiment 4) found that when sequences which had good 
prosodic information but poor phonotactic cues where tested 
against sequences that had poor prosodic information but good 
phonotactic cues, the 9-month-old infants gave greater weight to the 
prosodic information. Nonetheless, the integration of these cues 
could potentially provide reliable segmentation information since 
phonotactic and prosodic information typically align with word 
boundaries thus strengthening the boundary information. 

2.1 Segmenting using multiple cues 

The input to the process of language acquisition comprises a 
complex combination of multiple sources of information. Clusters of 
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such information sources appear to inform the learning of various 
linguistic tasks (see contributions in Morgan and Demuth, 1996). 
Each individual source of information, or cue, is only partially 
reliable with respect to the particular task in question. In addition to 
previously mentioned cues — phonotactics and lexical stress — 
utterance boundary information has also been hypothesized to 
provide useful information for locating word boundaries (Aslin et 
al., 1996; Brent and Cartwright, 1996). These three sources of 
information provide the learner with cues to segmentation. As an 
example consider the two unsegmented utterances (represented in 
orthographic format): 

Therearenospacesbetweenwordsinfluentspeech# 
Yeteachchildseemstograspthebasicsquickly# 

There are sequential regularities found in the phonology (here 
represented as orthography) which can aid in determining where 
words may begin or end. The consonant cluster sp can be found 
both at word beginnings (spaces and speech) and at word endings 
(grasp). However, a language learner cannot rely solely on such 
information to detect possible word boundaries. This is evident 
when considering that the sp consonant cluster also can straddle a 
word boundary, as in cats pajamas, and occur word internally as in 
respect.  

Lexical stress is another useful cue to word boundaries. For 
example, in English most disyllabic words have a trochaic stress 
pattern with a strongly stressed syllable followed by a weakly 
stressed syllable. The two utterances above include four such words: 
spaces, fluent, basics, and quickly. Word boundaries can thus be 
postulated following a weak syllable. However, this source of 
information is only partially reliable as is illustrated by the iambic 
stress pattern found in the word between from the above example. 

The pauses at the end of utterances (indicated above by #) also 
provide useful information for the segmentation task. If children 
realize that sound sequences occurring at the end of an utterance 
always form the end of a word, then they can utilize information 
about utterance final phonological sequences to postulate word 
boundaries whenever these sequences occur inside an utterance. 
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Thus, knowledge of the rhyme eech# from the first example 
utterance can be used to postulate a word boundary after the similar 
sounding sequence each in the second utterance. As with 
phonological regularities and lexical stress, utterance boundary 
information cannot be used as the only source of information about 
word boundaries because some words, such as determiners, rarely, if 
ever, occur at the end of an utterance. This suggests that 
information extracted from clusters of cues may be used by the 
language learner to acquire the knowledge necessary to perform the 
task at hand. 

3. A Computational Model of Multiple-cue 
Integration in Speech Segmentation.  

Several computational models of word segmentation have been 
implemented to address the speech segmentation problem. However, 
these models tend to exploit solitary sources of information. For 
example, Cairns, Shillcock, Chater and Levy (1997) demonstrated 
that sequential phonotactic structure was a salient cue to word 
boundaries while Aslin, Woodward, LaMendola and Bever (1996) 
illustrated that a back-propagation model could identify word 
boundaries fairly accurately based on utterance final patterns. 
Perruchet and Vinter (1998) demonstrated that a memory-based 
model was able to segment small artificial languages, such as the one 
used in Saffran, Aslin and Newport (1996), given phonological 
input in syllabic format. More recently, Dominey and Ramus (2000) 
found that recurrent networks also show sensitivity to serial and 
temporal structure in similar miniature languages. On the other 
hand, Brent and Cartwright (1996) have shown that segmentation 
performance can be improved when a statistically-based algorithm is 
provided with phonotactic rules in addition to utterance boundary 
information. Along similar lines, Allen and Christiansen (1996) 
found that the integration of information about phonological 
sequences and the presence of utterance boundaries improved the 
segmentation of a small artificial language. Based on this work, we 
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suggest that the integration of multiple probabilistic cues may hold 
the key to solving the word segmentation problem, and discuss a 
computational model that implements this solution. 
 

 
Figure 1 

Illustration of the SRN used in Christiansen et al. (1998).  
Arrows with solid lines indicate trainable weights, whereas the arrow with 

the dashed line denotes the copy-back weights (which are always 1).  
UB refers to the unit coding for the presence of an utterance boundary. 

The presence of lexical stress is represented in terms of two units,  
S and P, coding for secondary and primary stress, respectively.  

(Adapted from Christiansen et al., 1998). 

 
 
 

Christiansen et al. (1998) provided a comprehensive 
computational model of multiple cue integration in early infant 
speech segmentation. They employed a Simple Recurrent Network 
(SRN; Elman, 1990) as illustrated in Figure 1. This network is 
essentially a standard feed-forward network equipped with an extra 
layer of so-called context units. At a particular time step, t, an input 
pattern is propagated through the hidden unit layer to the output 
layer (solid arrows). At the next time step, t+1, the activation of the 
hidden unit layer at the previous time step, t, is copied back to the 
context layer (dashed arrow) and paired with the current input 
(solid arrow). This means that the current state of the hidden units 
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can influence the processing of subsequent inputs, providing a 
limited ability to deal with integrated sequences of input presented 
successively. 

The SRN model was trained on a single pass through a corpus 
consisting of 8181 utterances of child directed speech. These 
utterances were extracted from the Korman (1984) corpus (a part of 
the CHILDES database, MacWhinney, 1991) consisting of speech 
directed at pre-verbal infants aged 6–16 weeks. The training corpus 
consisted of 24,648 words distributed over 814 types and had an 
average utterance length of 3.0 words (see Christiansen et al. (1998) 
for further details). A separate corpus consisting of 927 utterances 
and with the same statistical properties as the training corpus was 
used for testing. Each word in the utterances was transformed from 
its orthographic format into a phonological form and lexical stress 
assigned using a dictionary compiled from the MRC 
Psycho-linguistic Database available from the Oxford Text 
Archive2. 

As input the network was provided with different combinations 
of three cues dependent on the training condition. The cues were (a) 
phonology represented in terms of 11 features on the input and 36 
phonemes on the output 3  (b) utterance boundary information 
represented as an extra feature (UB) marking utterance endings, and 
(c) lexical stress coded over two units as either no stress, secondary 
or primary stress (see Figure 1). The network was trained on the 
immediate task of predicting the next phoneme in a sequence as well 
as the appropriate values for the utterance boundary and stress 
units. In learning to perform this task it was expected that the 
network would also learn to integrate the cues such that it could 
carry out the derived task of segmenting the input into words.  

With respect to the network, the logic behind the derived task is 

                                                      
2  Note that these phonological citation forms were unreduced (i.e., they do not 

include the reduced vowel schwa). The stress cue therefore provides 
additional information not available in the phonological input. 

3  Phonemes were used as output in order to facilitate subsequent analyses of 
how much knowledge of phonotactics the net had acquired. 
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that the end of an utterance is also the end of a word. If the network 
is able to integrate the provided cues in order to activate the 
boundary unit at the ends of words occurring at the end of an 
utterance, it should also be able to generalize this knowledge so as 
to activate the boundary unit at the ends of words which occur 
inside an utterance (Aslin et al., 1996). Figure 2 shows a snapshot of 
SRN segmentation performance on the first 37 phoneme tokens in 
the training corpus. Activation of the boundary unit at a particular 
position corresponds to the network’s hypothesis that a boundary 
follows this phoneme. Black bars indicate the activation at lexical 
boundaries, whereas the grey bars correspond to activation at word 
internal positions. Activations above the mean boundary unit 
activation for the corpus as a whole (horizontal line) are interpreted 
as the postulation of a word boundary. As can be seen from the 
figure, the SRN performed well on this part of the training set, 
correctly segmenting out all of the 12 words save one (/slipI/ = 
sleepy). 

 
 

Figure 2 
The activation of the boundary unit during the processing of the first 37 

phoneme tokens in the Christiansen et al. (1998) training corpus.  
A gloss of the input utterances is found beneath the input phoneme 

tokens. (Adapted from Christiansen et al., 1998). 
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In order to provide a more quantitative measure of 
performance, accuracy and completeness scores (Brent and 
Cartwright, 1996) were calculated for the separate test corpus 
consisting of utterances not seen during training: 

Hits
Accuracy

Hits FalseAlarms
=

+
 

Hits
Completeness

Hits Misses
=

+
 

Accuracy provides a measure of how many of the words that the 
network postulated were actual words, whereas completeness 
provides a measure of how many of the actual words that the net 
discovered. Consider the following hypothetical example: 

# t h e # d o g # s # c h a s e # t h e c # a t # 

where # corresponds to a predicted word boundary. Here the 
hypothetical learner correctly segmented out two words, the and 
chase, but also falsely segmented out dog, s, thec, and at, thus 
missing the words dogs, the, and cat. This results in an accuracy of 

2
2 4 33.3%

+
=  and a completeness of 2

2 3 40.0%+ = . 
 
 

Figure 3 
Word accuracy (left) and completeness (right) scores 

for the net trained with three cues (phon-ub-stress — white bars)  
and the net trained with two cues (phon-ub — grey bars). 
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With these measures in hand, we compare the performance of 
nets trained using phonology and utterance boundary information 
— with or without the lexical stress cue — to illustrate the 
advantage of getting an extra cue. As illustrated by Figure 3, the 
phon-ub-stress network was significantly more accurate (42.71% vs. 
38.67%: χ2 = 18.27, p < .001) and had a significantly higher 
completeness score (44.87% vs. 40.97%: χ2 = 11.51, p < .001) than 
the phon-ub network. These results thus demonstrate that having to 
integrate the additional stress cue with the phonology and utterance 
boundary cues during learning provides for better performance. 

To test the generalization abilities of the networks, segmentation 
performance was recorded on the task of correctly segmenting novel 
words. The three cue net was able to segment 23 of the 50 novel 
words, whereas the two cue network only was able to segment 11 
novel words. Thus, the phon-ub-stress network achieved a word 
completeness of 46% which was significantly better (χ2 = 4.23, p < 
.05) than the 22% completeness obtained by the phon-ub net. These 
results therefore support the supposition that the integration of three 
cues promotes better generalization than the integration of two cues. 
Furthermore, the three cue net also developed a trochaic bias, and 
was nearly twice as good at segmenting out novel bisyllabic words 
with a trochaic stress pattern in comparison to novel words with an 
iambic stress pattern. 

Overall, the simulation results from Christiansen et al. (1998) 
show that the integration of probabilistic cues forces the networks 
to develop representations that allow them to perform quite reliably 
on the task of detecting word boundaries in the speech stream4. This 
result is encouraging given that the segmentation task shares many 
properties with other language acquisition problems which have 
been taken to require innate linguistic knowledge for their solution, 
and yet it seems clear that discovering the words of one’s native 
language must be an acquired skill. The simulations also 

                                                      
4  These results were replicated across different initial weight configurations 

and with different input/output representations. 
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demonstrated how a trochaic stress bias could emerge from the 
statistics in the input, without having anything like the “periodicity 
bias” of Cutler and Mehler (1993) built in. Below, we take our 
approach one step further demonstrating how our model can 
accommodate recent evidence regarding rule-like behavior in 
infancy. 

4. Simulation 1:  
A Multiple-cue Integration Account  
of Rule-like Behavior 

The nature of the learning mechanisms that infants bring to the task 
of language acquisition is a major focus of research in cognitive 
science. With the rise of connectionism, much of the scientific debate 
surrounding this research has focused on whether rules are necessary 
to explain language acquisition. All parties in the debate 
acknowledge that statistical learning mechanisms form a necessary 
part of the language acquisition process (e.g., Christiansen and 
Curtin, 1999; Marcus et al., 1999; Pinker, 1991). However, there is 
much disagreement over whether a statistical learning mechanism is 
sufficient to account for complex rule-like behavior, or whether 
additional rule-learning mechanisms are needed. In the past this 
debate has primarily taken place within specific areas of language 
acquisition, such as inflectional morphology (e.g., Pinker, 1991; 
Plunkett and Marchman, 1993) and visual word recognition (e.g., 
Coltheart, Curtis, Atkins and Haller, 1993; Seidenberg and 
McClelland, 1989). More recently, Marcus et al. (1999) have 
presented results from experiments with 7-month-olds, apparently 
showing that the infants acquire abstract algebraic rules after two 
minutes of exposure to habituation stimuli. The algebraic rules are 
construed as representing an open-ended relationship between 
variables for which one can substitute arbitrary values, “such as ‘the 
first item X is the same as the third item Y,’ or more generally, that 
‘item I is the same as item J’” (Marcus et al., 1999:79). Marcus et al. 
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further claim that a connectionist single-mechanism approach based 
on statistical learning is unable to fit their experimental data. In 
Simulation 1, we present a detailed connectionist model of these 
infant data, supporting a single-mechanism approach employing 
multiple-cue integration while undermining the dual-mechanism 
account. 

Marcus et al. (1999) used an artificial language learning 
paradigm to test their claim that the infant has two mechanisms for 
learning language. The subjects were seven-month old infants 
randomly placed in one of two experimental conditions. In the first 
two experiments, the conditions were ABA or ABB. Each word in 
the sentence frame ABA or ABB consisted of a consonant and vowel 
sequence (e.g., ‘li wi li’ or ‘li wi wi’). During a two-minute long 
familiarization phase the infants were exposed to three repetitions of 
each of 16 three-word sentences. The test phase in both experiments 
consisted of 12 sentences made up of words the infants had not 
previously been exposed to. The test items were broken into 2 
groups for both experiments: consistent (items constructed with the 
same sentence frame as the familiarization phase) and inconsistent 
(constructed from the sentence frame the infants were not trained 
on) — see Table 1. In the second experiment the test items were 
altered in order to control for an overlap of phonetic features found 
in the first experiment. This was to prevent the infants from using 
this type of statistical information. The results of the first and 
second experiments showed that the infants preferred the 
inconsistent test items to the consistent ones. In the third 
experiment, which we focus on in this paper, the ABA grammar was 
replaced with an AAB grammar. The rationale was to ensure that 
infants could not distinguish between grammars based solely on 
reduplication information. Once again, the infants preferred the 
inconsistent items to the consistent items.  

The conclusion drawn by Marcus et al. (1999) was that a single 
mechanism that relied on only statistical information could not 
account for the results because none of the test items appeared in the 
habituation part of the experiment. Instead they suggested that a 
dual mechanism was needed, comprising a statistical learning 
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Table 1 

The Habituation and Test Stimuli for the Two Conditions 
in Marcus et al. (1999). 

  Test Stimuli 

AAB Condition Habituation Stimuli Consistent Inconsistent

 de de di, de de je, de de li, de de we ba ba po  ba po po 

 ji ji di, ji ji je, ji ji li, ji ji we ko ko ga  ko ga ga 

 le le di, le le je, le le li, le le we    

 wi wi di, wi wi je, wi wi li, wi wi we    

     

ABB Condition de di di, de je je, de li li, de we we ba po po  ba ba po 

 ji di di, ji je je, ji li li, ji we we ko ga ga  ko ko ga 

 le di di, le je je, le li li, le we we   

 wi di di, wi je je, wi li li, wi we we   

 
 

component and an algebraic rule learning component. In addition, 
they claimed that a SRN would not be able to model their data 
because of the lack of phonological overlap between habituation 
and test items. Specifically, they state, 

Such networks can simulate knowledge of grammatical 
rules only by being trained on all items to which they 
apply; consequently, such mechanisms cannot account 
for how humans generalise rules to new items that do 
not overlap with the items that appeared in training 
(p.79). 

We demonstrate that SRNs can indeed fit the data from Marcus et 
al. Other researchers have constructed neural network models 
specifically to simulate the Marcus et al. results (Altmann and 
Dienes, 1999; Elman, 1999; Shastri and Chang, 1999; Shultz, 1999). 
In contrast, we do not build a new model to accommodate the 
results but take the existing SRN model of speech segmentation 
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presented above and show how this model — without additional 
modification — provides an explanation for the results.  

The Christiansen et al. (1998) model acquired distributional 
knowledge about sequences of phonemes, the associated stress 
patterns, and the occurrence of utterance boundaries. This 
knowledge allowed it to perform well on the task of segmenting the 
speech stream into words. We suggest that this knowledge can be 
put to use in secondary tasks not directly related to speech 
segmentation — including artificial tasks used in psychological 
experiments such as Marcus et al. (1999). This suggestion resonates 
with similar perspectives in the word recognition literature 
(Seidenberg, 1995) where knowledge acquired for the primary task 
of learning to read can be used to perform other secondary tasks 
such as lexical decision. 

Marcus et al. (1999) state that they conducted simulations in 
which SRNs were unable to fit the experimental data. As they do 
not provide any details of the simulations, we assume (based on 
other simulations reported by Marcus, 1998) that these focused on 
some kind of phonological output that the SRNs produced. Given 
our characterization of the experimental task as a secondary task, 
we do not think that the basis for the infants’ differentiation 
between consistent and inconsistent stimuli should be modeled using 
the phonological output of an SRN. Instead, we focus on the 
model’s ability to integrate the phonological input with utterance 
boundary information in order to segment out the individual words 
in the test items. 

4.1 Method 

Networks. Corresponding to the 16 infants in the Marcus et al. 
study, we used 16 networks similar to the SRN used in Christiansen 
et al. (1998) with the exception that the original phonetic feature 
geometry was replaced by a new representation using 18 features 
(see Appendix). Each of the 16 SRNs had a different set of initial 
weights, randomized within the interval [–0.25, 0.25]. The learning 
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rate was set to 0.1 and the momentum to 0.95. These training 
parameters were identical to those used in the original Christiansen 
et al. model. The networks were trained using the standard 
back-propagation learning algorithm (Rumelhart, Hinton and 
Williams, 1986) to predict the next constellation of cues given the 
current input segment. 

Materials. The materials from Experiment 3 in Marcus et al. 
(1999) were transformed into the phoneme representation used by 
Christiansen et al. (1998). Two habituation sets were created: one 
for AAB items and one for ABB items (see Table 1). The habituation 
sets used here, and in Marcus et al., consisted of three blocks of 16 
sentences in random order, yielding a total of 48 sentences in each 
habituation condition. As in Marcus et al. there were four different 
test sentences: ‘ba ba po’, ‘ko ko ga’ (consistent with AAB); ‘ba po 
po’ and ‘ko ga ga’ (consistent with ABB). The test set consisted of 
three blocks of randomly ordered test sentences, totaling 12 test 
items. Both the habituation and test sentences were treated as a 
single utterance with no explicit word boundaries marked between 
the individual words. The end of each utterance was marked by 
activating the utterance boundary unit. All habituation and test 
items were assigned the same level of primary stress. 

Procedure. The networks were first trained on a single pass 
through the Korman (1984) corpus as in the original Christiansen et 
al. model. This corresponds to the fact that the 7-month-olds in the 
Marcus et al. study already have had a considerable exposure to 
language, and have begun to develop their speech segmentation 
abilities (Jusczyk, 1997, 1999). Next, the networks were habituated 
on a single pass through one of the habituation corpora — one 
phoneme at a time — with learning parameters identical to the ones 
used during the pre-training on the Korman corpus.  

The networks were then tested on the test set (with the weights 
“frozen”) and the activation of the utterance boundary unit was 
recorded for every phoneme input in the test set for the purpose of 
scoring the network performance on the derived task. The boundary 
unit activations across the seven input tokens for each item were 
separated into two groups according to whether they were recorded 
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for test sentences consistent or inconsistent with the habituation 
pattern.  

For the purpose of measuring word segmentation performance, 
the mean utterance boundary activation was calculated across all the 
habituation items for each network. Following Christiansen et al. 
(1998), a network was said to have postulated a word boundary 
whenever the boundary unit activation in a test sentence was above 
its habituation mean cut-off. The word segmentation performance 
for consistent and inconsistent sentences was then quantified in 
terms of accuracy and completeness scores (Brent and Cartwright, 
1996; Christiansen et al., 1998). 

4.2 Results 

For each of the sixteen networks, accuracy and completeness scores 
were computed across all test items, and submitted to the same 
statistical analyses as used by Marcus et al. for their infant data. The 
accuracy scores were submitted to a repeated measures ANOVA 
with condition (AAB vs. ABB) as between network factor and test 
pattern (consistent vs. inconsistent) as within network factor. The 
left-hand side of Figure 4 shows the accuracy scores for the 
consistent and inconsistent items pooled across conditions. There 
was a main effect of test pattern (F(1,14) = 4.78, p < .05), indicating 
that the networks segmented significantly more actual words out 
from the inconsistent items (49.55%) compared to the consistent 
items (39.44%). Similarly to the infant data, neither the main effect 
of condition, nor the condition × test pattern interaction were 
significant (F's < 1). The completeness scores were submitted to a 
similar analysis, and the results are shown in the right-hand side of 
Figure 4. Again, there was a main effect of test pattern (F(1,14) = 
5.76, p < .04), indicating that the networks were significantly better 
at segmenting out the words in the inconsistent items (35.76%) 
compared to the consistent items (28.82%). Neither the main effect 
of condition, nor the condition × test pattern interaction were 
significant (F's < 1). The higher accuracy and completeness scores 
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for the inconsistent items suggest that they would stand out more 
clearly in comparison with the consistent items, and thus explain 
why the infants looked longer towards the speaker playing the 
inconsistent items in the Marcus et al. study. 
 
 

Figure 4 
Word accuracy (left) and completeness (right) scores in Simulation 1  
for the inconsistent (white bars) and the consistent test (grey bars) 

 
 
 

Marcus et al. claim that a dual-mechanism system — involving a 
statistical learning mechanism and a rule-learning mechanism — is 
needed to account for the infant data. In contrast, Simulation 1 
shows that a separate rule-learning component is not necessary to 
account for the data. This simulation shows how our SRN model of 
word segmentation can fit the data from Marcus et al. (1999) 
without invoking explicit rules. The pre-training allowed the SRNs 
to learn to integrate the regularities governing the phonological, 
lexical stress, and utterance boundary information in child-directed 
speech. We suggest that during the habituation phase, the networks 
then developed weak attractors specific to the habituation pattern 
and the phonology of the syllables used. These attractors will at the 
same time both attract a consistent item (because of pattern 
similarity) and repel it (because of phonological dissimilarity), 
causing interference with the derived task of word segmentation. 
The inconsistent items, on the other hand, will tend to be repelled by 
the habituation attractors and therefore do not suffer from the same 
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kind of interference, making them easier for the network to process. 
Multiple-cue integration learning enabled the SRN model to fit 

the infant data. Importantly, the model — as a statistical learning 
mechanism — can explain both the distinction between consistent 
and inconsistent items as well as the preference for the inconsistent 
items. Note that a rule-learning mechanism by itself only can 
explain how infants may distinguish between items, but not why 
they prefer inconsistent over consistent items. Extra machinery is 
needed in addition to the rule-learning mechanism to explain the 
preference for inconsistent items. Thus, the most parsimonious 
explanation is that only a statistical learning device is necessary to 
account for the infant data. The addition of a rule-learning device 
does not appear to be necessary. 

5. Simulation 2:  
The Role of Segmentation in Rule-like Behavior 

Segmentation plays a crucial role in our multiple-cue integration 
model of the Marcus et al. data. In contrast, the previous accounts 
of the infants' rule-like behavior do not couch their explanation in 
terms of such basic components of speech processing. Nevertheless, 
the previous connectionist models implicitly rely on pre-segmented 
input to model the infant data. All the models use syllabic input 
representations, and require that the input be segmented into 
three-syllable sentences. Sentential segmentation is accomplished 
outside of the models by way of marking the beginnings and endings 
of sentences (Altmann and Dienes, 1999; cf. Dienes et al., 1999), by 
resetting the network before each sentence (Dominey and Ramus, 
2000), by only doing error correction after every third syllable 
(Elman, 1999), or by only having three nodes to encode variable 
position (Shastri and Chang, 1999) or syllable input (Shultz, 1999). 
The importance of this pre-segmentation is highlighted if we make 
the pauses between words (250 ms) the same length as the pauses 
between sentences (1000 ms). Leaving sentential segmentation aside, 
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an increase in the time between syllables should have little effect on 
the performance of the models — except perhaps for the Dominey 
and Ramus model in which the increased time between syllables 
may result in an inability to distinguish between consistent and 
inconsistent items (Dominey, personal communication). However, 
having same-length gaps between words and sentences is likely to 
make sentential segmentation harder. If this affects rule-like 
behavior then it has to be explained outside the models by some 
kind of segmentation device. 

Similar considerations apply to learning mechanisms that 
acquire explicit symbolic rules. Marcus et al. (1999) characterized 
algebraic rules as representing an open-ended relationship between 
variables for which one can substitute arbitrary values. Their 
Experiment 3 was designed to demonstrate that rule-learning is 
independent of the physical realization of variables in terms of 
phonological features. The same rule, AAB, applies to — and can be 
learned from — ‘le le we’ and ‘ko ko ga’ (with ‘le’ and ‘ko’ filling 
the same A slots and ‘we’ and ‘ga’ the same B slot). As the abstract 
relationships that this rule represents only pertain to the value of the 
three variables, the amount of time between them should not affect 
the application of the rule. Thus, just as the physical realization of a 
variable does not matter for the learning or application of a rule, 
neither should the time between variables. The same rule AAB, 
applies to — and can be learned from — ‘le [250ms] le [250ms] we’ 
and ‘le [1000ms] le [1000ms] we’ (the ‘le’s should still fill the A slots 
and the ‘we’s the B slot despite the increased duration of time 
between the occurrence of these variables). Nevertheless, even 
though the rule should in principle apply, performance constraints 
arising outside the rule-learning component may prevent it from 
being retrieved (Marcus, personal communication). Thus, if rule-like 
behavior is affected by same-length gaps between words and 
sentences, then a separate segmentation component will be needed. 

We expect, however, that this pause manipulation can be 
accommodated by our multiple-cue integration mechanism model — 
without any need for pre-segmentation machinery. In the model, the 
preference for inconsistent items is explained in terms of differential 
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segmentation performance. Lengthening the pauses between words, 
as indicated above, would in effect solve the derived task for the 
model, and should result in a disappearance of the preference for 
inconsistent items. Thus, we predict that the model should show no 
difference between the segmentation performance on the consistent 
and inconsistent items when pauses between words have the same 
length as pauses between sentences. To test this prediction, we 
carried out a new set of simulations. 

5.1 Method 

Networks. Sixteen SRNs as in Simulation 1. 
Materials. Same materials as in Simulation 1 except that utterance 
boundaries were inserted between the words in the habituation and 
test sentences, simulating a lengthening of pauses between words 
(from 250 ms to 1000 ms) such that they have the same length as 
the pauses between utterances. 
Procedure. Same procedure as in Simulation 1. 

5.2 Results 

The completeness scores were submitted to the same analyses as in 
Simulation 2. As illustrated by Figure 5, the segmentation 
performance on the test items was improved considerably by the 
inclusion of utterance boundary-length pauses between words. As 
predicted, there was no difference between accuracy scores for 
consistent (74.43%; SE: 6.92) and inconsistent items (72.26%; SE: 
7.86) (F(1,14) = .71). Neither was there a difference between the 
completeness scores for consistent (70.14%; SE: 7.622) and 
inconsistent items (70.49%; SE: 7.966) (F(1,14) = .02). As before 
there were no other effects or interactions (F’s < 1), save for an 
interaction between condition and test pattern for accuracy (F(1,14) 
=5.55, p < .04). This interaction was due to somewhat lower 
accuracy scores for the inconsistent condition in the AAB 
habituation pattern. 
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Figure 5 
Word accuracy (left) and completeness (right) scores in Simulation 2  

for the inconsistent (white bars) and the consistent test items (grey bars). 

 
 
 
Simulation 2 thus confirms the predicted effect of same-length 

pauses between words and sentences in the dual-task 
single-mechanism model. Without including an additional 
segmentation component, the previous connectionist models would 
suggest that the pause manipulation should not affect the rule-like 
behavior5 . Similarly, learning mechanisms that acquire explicit 
symbolic rules would need to appeal to segmental performance 
constraints outside the rule component, in order to make the same 
predictions; otherwise, the pause manipulation would not be 
expected to affect rule-learning. To corroborate our model's 
predictions for the role of segmentation in rule-like behavior, we 
conducted an artificial language learning experiment using adult 
subjects. 

                                                      
5  Even though the Dominey and Ramus (2000) model is predicted to display 

similar behavior to our dual-task model (Dominey, personal communication), 
it is nevertheless still vulnerable to this problem because it requires 
pre-segmented input (i.e., resetting of internal states at the start of each 
sentence) to account for the original Marcus et al. (1999) results 
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6. Experiment 1: Replicating the Marcus et al. 
(1999) Results 

Before investigating the role of segmentation in rule-like behavior, 
we need to first establish whether adults in fact exhibit the same 
pattern of behavior as the infants in the Marcus et al. study. The 
first experiment therefore seeks to replicate Experiment 3 from 
Marcus et al. using adult subjects. 

6.1 Method 

Participants. Sixteen undergraduate students were recruited from 
introductory Psychology classes at Southern Illinois University. The 
participants earned course credit for their participation. 

Materials. We used the original stimuli that Marcus et al. (1999) 
created for their Experiment 3. Each word in a sentence was 
separated by 250 ms. The 16 habituation sentences for each 
condition were created by Marcus et al. using the Bell Labs speech 
synthesizer. The original habituation stimuli were limited to two 
predetermined sentence orders. To avoid potential order effects, we 
used the SoundEdit 16 version 2 software for the Macintosh to 
isolate each sentence as a separate sound file. This allowed us to 
present the habituation sentences in a random order for each 
subject. 

The stimuli for the test phase consisted of four additional 
sentences that were either consistent or inconsistent with the 
training grammar. As mentioned earlier, these sentences contained 
no phonological overlap with the habituation sentences. Like the 
habituation stimuli, each word in a sentence was separated by a 250 
ms interval. As before, we stored the test stimuli as separate 
SoundEdit 16 version 2 sound files to allow a random presentation 
order for each subject. 
Procedure. The participants were seated in front of a Macintosh G3 
PowerPC equipped with a New Micros button box. Participants 
were randomly assigned to one of two conditions, AAB or ABB. The 
experiment was run using the PsyScope presentation software 
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(Cohen, MacWhinney, Flatt, and Provost, 1993) with all stimuli 
played over stereo loudspeakers at 75dB. The participants were 
instructed that they were taking part in a pattern recognition 
experiment. They were told that in the first part of the experiment 
their task was to listen carefully to sequences of sounds and that 
their knowledge of these sound sequences would be tested 
afterwards. Participants listened to three blocks of the 16 randomly 
presented habituation sentences corresponding either to the AAB or 
the ABB sentence frame. A 1000 ms interval separated each sentence 
as was the case in the Marcus et al. experiment. 

After habituation, the participants were instructed that they 
would be presented with new sound patterns that they had not 
previously heard. They were asked to judge whether a pattern was 
“similar” or “dissimilar” to what they had been exposed to in the 
training phase by pressing an appropriately marked button. The 
instructions emphasized that because the sounds were novel, they 
should not base their decision on the sounds themselves but instead 
on the patterns derived from the sounds. The participants listened to 
three blocks of the four randomly presented test sentences. After the 
presentation of each test sentence, the participants were prompted 
for their response. Participants were allowed to take as long as they 
needed to respond. Each test trial was separated by a 1000 ms 
interval. 

6.2 Results 

For the purpose of our analyses, the correct response for consistent 
items is “similar” while the correct response for inconsistent items is 
“dissimilar”. The mean overall score for correct classification of test 
items was 8.81 (SE: 0.63) out of a perfect score of 12. A 
single-sample t-test showed that this classification performance was 
significantly better than the chance level performance of 6 (t(15) = 
4.44, p < .0005). The participants’ responses were then submitted to 
the same statistical analysis as the infant data in Marcus et al. (and 
Simulation 1 and 2 above). Figure 6 (left) shows the mean number 
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of consistent and inconsistent test items that were rated as dissimilar 
to the habituation items. As expected, there was a main effect of test 
pattern (F(1,14) = 18.98, p < .001), such that significantly more 
inconsistent items were judged as dissimilar (4.5; SE: 0.40) than 
consistent items (1.69; SE: 0.40). Neither the main effect of 
condition, nor the condition × test pattern interaction were 
significant (F’s < 1). 
 

Figure 6 
The mean proportion of inconsistent (white bars)  

and consistent (grey bars) test items rated as dissimilar  
to the habituation pattern in Experiments 1 (left) and 2 (right). 

 
 

Experiment 1 shows that adults perform similarly to the infants 
in Marcus et al.’s Experiment 3, thus demonstrating that it is 
possible to replicate their findings using adult participants instead of 
infants. This result is perhaps not surprising given that Saffran and 
colleagues were able to replicate statistical learning results obtained 
using adults participants (Saffran, Newport and Aslin, 1996) in 
experiments with 8-month-olds (Saffran, Aslin, et al., 1996). More 
generally, their results and ours suggest that despite small differences 
in the experimental methodologies used in infant and adult artificial 
language learning studies, both methodologies appear to tap into the 
same learning mechanisms. More generally, one would expect that 
the same learning mechanisms — statistical or rule-based — would 
be involved in both infancy and adulthood, and that similar results 
should be expected in both infant and adult studies with the kind of 
material used here. 
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7. Experiment 2:  
Segmentation and Rule-like Behavior 

Having replicated the Marcus et al. (Experiment 3) infant data with 
adult participants, we now turn our attention to the effect of 
same-length pauses between words and sentences on the learning of 
rule-like behavior. 

7.1 Method 

Participants. Sixteen additional undergraduate students were 
recruited from introductory Psychology classes at Southern Illinois 
University. The participants earned course credit for their 
participation. 

Materials. The training and test stimuli were the same as in 
Experiment 1 except that the 250 ms interval between words in a 
sentence was replaced by a 1000 ms interval using the SoundEdit 16 
version 2 software. The 1000 ms interval between sentences 
remained the same as before. 

Procedure. The procedure and instructions were identical to 
those used for Experiment 1. 

7.2 Results 

The mean overall classification score was 5.75 (SE: 0.32) out of 12. 
This was not significantly different from a chance level performance 
of 6 (t < 1). The responses of the participants were submitted to the 
same further analysis as in Experiment 1. Figure 6 (right) shows the 
mean number of consistent and inconsistent items rated as 
dissimilar. As predicted by Simulation 3, there was no main effect of 
test pattern in this experiment (F(1,14) = .56), suggesting that the 
participants were unable to distinguish between consistent (2.75; SE: 
0.17) and inconsistent (2.5; SE: 0.24) items. As in Experiment 1, 
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both the main effect of condition and the interaction between 
condition and test pattern interaction were not significant (F's = 0). 

These results show that preference for inconsistent items 
disappears when the pauses between words and sentences have the 
same length. This corroborates the prediction from the dual-task, 
single-mechanism model, underscoring the role of segmentation in 
rule-like behavior. Crucially, our approach to the Marcus et al. 
(1999) study as tapping into the derived task of word segmentation, 
allows the model to make the correct predictions without requiring 
additional machinery to perform sentential segmentation. The 
previous connectionist models, on the other hand, appear to require 
additional sentential segmentation components to account for the 
results from Experiment 2. This is also true for learning mechanisms 
that acquire explicit symbolic rules as suggested by Marcus et al. 
Without appealing to performance limitations arising from 
processing devices external to the rule-learning component, the lack 
of difference between consistent and inconsistent items in our 
artificial learning study cannot be explained. The combination of 
simulation and experimental results presented here suggest that the 
multiple-cue integration model provides a compelling account of 
rule-like behavior in infants and adults. 

8. General Discussion 

In this chapter, we have suggested that the integration of multiple 
probabilistic cues may be one of the key elements involved in 
children’s acquisition of language. To support this suggestion, we 
have discussed the Christiansen et al. (1998) computational model 
of multiple cue integration in early infant speech segmentation. We 
have also shown through simulations and experiments that the 
model provides a single mechanism for learning the statistical 
structure of the speech input, while the representations acquired 
through multiple cue integration at the same time also allow the 
model to exhibit rule-like behavior, previously thought to be beyond 
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the scope of SRNs (cf. Marcus et al., 1999). Taken together, we find 
that the Christiansen et al. model in combination with the 
simulations and experiments reported here provide strong evidence 
in support of multiple cue integration in language acquisition. In the 
final part of this chapter, we discuss two outstanding issues with 
respect to multiple cue integration: how it works and how it can be 
extended beyond speech segmentation. 

8.1 What makes multiple-cue integration work? 

We have seen that integrating multiple probabilistic cues in a 
connectionist network results in more than a just a sum of unreliable 
parts. But what is it about multiple cue integration that facilitates 
learning? The answer appears to lie in the way in which multiple cue 
integration can help constrain the search through weight space for a 
suitable set of weights for a given task (Christiansen, 1998; 
Christiansen et al., 1998). We can conceptualize the effect that the 
cue integration process has on learning by considering the following 
illustration. In Figure 7, each ellipse designates for a particular cue 
the set of weight configurations that will enable a network to learn 
the function denoted by that cue. For example, the ellipse marked A 
designates the set of weight configurations that allow for the 
learning of the function A described by the A cue. With respect to 
the simulations reported above, A, B and C can be construed as the 
phonology, utterance boundary, and lexical stress cues, respectively. 

If a network using gradient descent learning (e.g., the 
back-propagation learning algorithm) was only required to learn the 
regularities underlying, say, the A cue, it could settle on any of the 
weight configurations in the A set. However, if the net was also 
required to learn the regularities underlying cue B, it would have to 
find a weight configuration which would accommodate the 
regularities of both cues. The net would therefore have to settle on a 
set of weights from the intersection between A and B in order to 
minimize its error. This constrains the overall set of weight 
configurations that the net has to choose between — unless the cues 
are entirely overlapping (in which case there would not be any 
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added benefit from learning this redundant cue) or are disjoint (in 
which case the net would not be able to find an appropriate weight 
configuration). If the net furthermore had to learn the regularities 
associated with the third cue C, the available set of weight 
configurations would be constrained even further. 

 
Figure 7 

An abstract illustration of the reduction in weight configuration space  
that follows as a consequence of accommodating several partially 

overlapping cues within the same representational substrate.  
(Adapted from Christiansen et al., 1998). 

 
 

Turning to the engineering literature on neural networks, it is 
possible to provide a mathematical basis for the advantages of 
multiple cue integration. Here multiple cue integration is known as 
“learning with hints”, where hints provide additional information 
that can constrain the learning process (e.g., Abu-Mostafa, 1990; 
Omlin and Giles, 1992; Suddarth and Holden, 1991). The type of 
hint most relevant to the current discussion is the so-called “catalyst 
hint”. This involves adding extra units to a network such that 
additional correlated functions can be encoded (in much the same 
way as the lexical stress units encode a function correlated with the 
information provided by the phonological input with respect to the 
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derived task of word segmentation). Thus, catalyst hints are 
introduced to reduce the overall weight configuration space that a 
network has to negotiate. This reduction is accomplished by forcing 
the network to acquire one or more additional related functions 
encoded over extra output units. These units are often ignored after 
they have served their purpose during training (hence the name 
“catalyst” hint). The learning process is facilitated by catalyst hints 
because fewer weight configurations can accommodate both the 
original target function as well as the additional catalyst function(s). 
As a consequence of reducing the weight space, hints have been 
shown to constrain the problem of finding a suitable set of weights, 
promoting faster learning and better generalization. 

Mathematical analyses in terms of the Vapnik-Chervonenkis 
(VC) dimension (Abu-Mostafa, 1993) and vector field analysis 
(Suddarth and Kergosien, 1991) have shown that learning with hints 
may reduce the number of hypotheses a learning system has to 
entertain. The VC dimension establishes an upper bound for the 
number of examples needed by a learning process that starts with a 
set of hypotheses about the task solution. A hint may lead to a 
reduction in the VC dimension by weeding out bad hypotheses and 
reduce the number of examples needed to learn the solution. Vector 
field analysis uses a measure of “functional” entropy to estimate the 
overall probability for correct rule extraction from a trained 
network. The introduction of a hint may reduce the functional 
entropy, improving the probability of rule extraction. The results 
from this approach demonstrate that hints may constrain the 
number of possible hypotheses to entertain, and thus lead to faster 
convergence. 

In sum, these mathematical analyses have revealed that the 
potential advantage of using multiple cue integration in neural 
network training is twofold: First, the integration of multiple cues 
may reduce learning time by reducing the number of steps necessary 
to find an appropriate implementation of the target function. 
Second, multiple cue integration may reduce the number of 
candidate functions for the target function being learned, thus 
potentially ensuring better generalization. As mentioned above, in 
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neural networks this amounts to reducing the number of possible 
weight configurations that the learning algorithm has to choose 
between.6 Thus, because the phonology, utterance boundary and 
lexical stress cues designate functions that correlate with respect to 
the derived task of word segmentation in our simulations, the 
reduction in weight space not only resulted in a better 
representational basis for solving this task, but also lead to better 
learning and generalization. However, the mathematical analyses 
provide no guarantee that multiple cue integration will necessarily 
improve performance. Nevertheless, this is unlikely to be a problem 
with respect to language acquisition because, as we shall see next, 
the input to children acquiring their first language is filled with cues 
that reflect important and informative aspects of linguistic structure. 

8.2 Multiple cue integration beyond word segmentation 

Recent research in developmental psycholinguistics have shown that 
there is a variety of probabilistic cues available for language 
acquisition (for a review, see contributions in Morgan and Demuth, 
1996). These cues range from cues relevant to speech segmentation 
(as discussed above) to the learning of word meanings and to the 
acquisition of syntactic structure. We briefly discuss the two latter 
types of cues here. 

Golinkoff, Hirsh-Pasek and Hollich (1999) studied word 
learning in children of 12, 19 and 24 months of age. They found 
that perceptual salience and social information in the form of eye 
gaze are important cues for learning the meaning of words. The 
study also provided some insights into the developmental dynamics 
of multiple-cue integration. In particular, individual cues are 
weighted differently at different stages in development, changing the 

                                                      
6  It should be noted that the results of the mathematical analyses apply 

independently of whether the extra catalyst units are discarded after training 
(as is typical in the engineering literature) or remain a part of the network as 
the simulations presented here. 
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dynamics of the multiple cue integration process across time. At 12 
months, perceptual salience dominates — only names for interesting 
objects are learned — other cues need to correlate considerably for 
successful learning. Seven months later, eye gaze cues come into 
play, but the children have problems when eye gaze and perceptual 
salience conflict with each other (e.g., when the experimenter is 
naming and looking at a perceptually uninteresting object). Only at 
24 months has the child’s lexical acquisition system developed 
sufficiently so that it can deal with conflicting cues. From the 
viewpoint of multiple cue integration, this study thus demonstrates 
how correlated cues are needed early in acquisition to build a basis 
for later performance based on individual cues. 

There are a variety of cues available for the acquisition of 
syntactic structure. Phonology not only provides information helpful 
for word segmentation, but also includes important probabilistic 
cues to the grammatical classes of words. Lexical stress, for 
example, can be used to distinguish between nouns and verbs. In a 
3,000 word sample, Kelly and Bock (1988) found that 90% of the 
bisyllabic trochaic words were nouns whereas 85% of the bisyllabic 
iambic words were verbs (e.g., the homograph record has stress on 
the first syllable when used as a noun and stress on the second 
syllable when used as a verb). They furthermore demonstrated that 
people are sensitive to this cue. More recent evidence shows that 
people are faster and more accurate at classifying words as nouns or 
verbs if the words have the prototypical stress patterns for their 
grammatical class (Davis and Kelly, 1997). The number of syllables 
that a word contains also provides information about its 
grammatical class. Cassidy and Kelly (1991) showed that 
3-year-olds are sensitive to the probabilistic cue that English nouns 
tend to have more syllables than verbs (e.g., gorp tended to be used 
as a verb, whereas gorpinlak tended to be used as noun). Other 
important cues to noun-hood and verb-hood in English include 
differences in word duration, consonant voicing, and vowel types — 
and many of these cues have also been found in other languages, 
such as Hebrew, German, French, and Russian (see Kelly, 1992, for 
a review).  
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Sentence prosody can also provide important probabilistic cues 
to the discovery of grammatical word class. Morgan, Shi and 
Allopenna (1996) demonstrated using a multivariate procedure that 
content and function words can be differentiated with 80% 
accuracy by integrating distributional, phonetic and acoustic cues. 
More recently, Shi, Werker and Morgan (1999) found that infants 
are sensitive to such cue differences. Sentence prosody also provides 
cues to the acquisition of syntactic structure. Fisher and Tokura 
(1994) used multivariate analyses to integrate information about 
pauses, segmental variation and pitch and obtained 88% correct 
identification of clause boundaries. Other studies have shown that 
infants are sensitive to such cues (see Jusczyk, 1997, for a review). 
Additional cues to syntactic structure can be derived through 
distributional analyses of word combinations in everyday language 
(e.g., Redington, Chater and Finch, 1998), and from semantics (e.g., 
Pinker, 1989). 

As should be clear from this short review, there are many types 
of probabilistic information readily available to the language 
learner. We suggest that integrating these different types of 
information similarly to how the segmentation model was able to 
integrate phonology, utterance boundary and lexical stress 
information is also likely to provide a solid basis for learning aspects 
of language beyond speech segmentation. Indeed, a recent set of 
simulations inspired by the one described here has demonstrated 
that the learning of syntactic structure by an SRN is facilitated when 
it is allowed to integrate phonological and prosodic information in 
addition to distributional information (Christiansen and Dale, 
2001). Specifically, an analysis of network performance revealed 
that learning with multiple-cue integration resulted in faster, better, 
and more uniform learning. The SRNs were also able to distinguish 
between relevant cues and distracting cues, and performance did not 
differ from networks that received only reliable cues. Overall, these 
simulations offer additional support for the multiple-cue integration 
hypothesis in language acquisition. They demonstrate that learners 
can benefit from multiple cues, and are not distracted by irrelevant 
information. 
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9. Conclusion 

In this chapter, we have presented a number of simulation results 
that demonstrate how multiple cue integration in a connectionist 
network, such as the SRN, can provide a solid basis for solving the 
speech segmentation problem. We have also discussed how the 
process of integrating multiple cues may facilitate learning, and have 
reviewed evidence for the existence of a plethora of probabilistic 
cues for the learning of word meaning, grammatical class and 
syntactic structure. We conclude by drawing attention to the kind of 
learning mechanism needed for multiple cue integration.  

It seems clear that connectionist networks are well suited for 
accommodating multiple cue integration. First, our model of the 
integration of multiple cues in speech segmentation was 
implemented as an SRN. Second, and perhaps more importantly, the 
mathematical results regarding the advantages of multiple cue 
integration were couched in terms of neural networks (though they 
may also hold for certain other, non-connectionist statistical 
learning devices). Third, in the service of immediate tasks, such as 
encoding phonological information, connectionist networks can 
develop representations that can then form the basis for solving 
derived tasks, such as word segmentation. Symbolic, rule-based 
models, on the other hand, would appear to be ill equipped for 
accommodating the integration of multiple cues. First, the 
probabilistic nature of the various cues is not readily captured by 
rules. Second, the tendency for symbolic models to separate 
statistical and rule-based knowledge in dual-mechanism models is 
likely to hinder integration of information across the two types of 
knowledge. Third, the inherent modular nature of the symbolic 
approach to language acquisition further blocks the integration of 
multiple cues across different representational levels (e.g., preventing 
symbolic models from taking advantage of phonological cues to 
word class).  

Connectionism has shown itself to be a very fruitful — albeit 
controversial — paradigm for research on language (see, e.g., 
Christiansen and Chater, 2001b, for a review, or contributions in 
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Christiansen, Chater and Seidenberg, 1999; Christiansen and 
Chater, 2001a). Based on our work reported here, we further argue 
that connectionist networks may also hold the key to a better and 
more complete understanding of language acquisition because they 
allow for the integration of multiple probabilistic cues.  
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