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Abstract

The poverty of stimulus argument is one of the most controversial arguments in the study of language
acquisition. Here we follow previous approaches challenging the assumption of impoverished primary
linguistic data, focusing on the specific problem of auxiliary (AUX) fronting in complex polar interroga-
tives. We develop a series of corpus analyses of child-directed speech showing that there is indirect sta-
tistical information useful for correct auxiliary fronting in polar interrogatives and that such information
is sufficient for distinguishing between grammatical and ungrammatical generalizations, even in the ab-
sence of direct evidence. We further show that there are simple learning devices, such as neural net-
works, capable of exploiting such statistical cues, producing a bias toward correct AUX questions when
compared to their ungrammatical counterparts. The results suggest that the basic assumptions of the
poverty of stimulus argument may need to be reappraised.

Keywords: Poverty of stimulus; Distributional information; Corpus analysis; Neural networks;
Language acquisition

1. Introduction

How do children learn aspects of their language for which there appears to be no evidence in
the input? This question lies at the heart of the most enduring and controversial debates in cog-
nitive science. Ever since Chomsky (1965), it has been argued that the information in the lin-
guistic environment is too impoverished for a human learner to attain adult competence in lan-
guage without the aide of innate linguistic knowledge. Although this poverty of the stimulus
argument (Chomsky, 1980a, 1980b; Crain & Pietroski, 2001) has guided most research in lin-
guistics, it has proved to be much more contentious within the broader context of cognitive
science.

The poverty of stimulus argument rests on specific assumptions about the nature of the
input to the child, the properties of computational learning mechanisms, and the learning
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abilities of young infants. A growing bulk of research in cognitive science has begun to call
each of these three assumptions into question. Thus, whereas the traditional nativist perspec-
tive suggests that statistical information may be of little use for syntax acquisition (e.g.,
Chomsky, 1957), recent research indicates that distributional regularities may provide an im-
portant source of information for bootstrapping syntax (e.g., Mintz, 2002; Redington,
Chater, & Finch, 1998)—especially when integrated with prosodic or phonological informa-
tion (e.g., Christiansen & Dale, 2001; Morgan, Meier & Newport, 1987; Reali, Christiansen,
& Monaghan, 2003). And although the traditional approach only tends to consider learning
in highly simplified forms, such as “move the first occurrence of X to Y,” progress in statisti-
cal natural language processing and connectionist modeling has revealed much more com-
plex learning abilities of potential relevance for language acquisition (e.g., Christiansen &
Chater, 1999; Elman, 1993; Lewis & Elman, 2001; Manning & Schütze, 1999). Finally, lit-
tle attention has traditionally been paid to what young infants may be able to learn, perhaps
because it has implicitly been assumed that such learning would be negligible. However, re-
cent research has demonstrated that young infants are quite competent statistical learners
(e.g., Gómez, 2002; Saffran, Aslin, & Newport, 1996; Saffran & Wilson, 2003; for reviews,
see Gómez & Gerken, 2000; Saffran, 2003).

These research developments suggest the need for a reappraisal of the poverty of stimulus
argument, centered on whether they can answer the question of how a child may be able to
learn aspects of linguistic structure. In this article, we approach this question in the context of
structure dependence in language acquisition, specifically in relation to auxiliary fronting in
polar interrogatives. We first outline the poverty of stimulus debate, describing how it has
played out with respect to forming grammatical questions with auxiliary fronting. Second, we
conduct a corpus analysis to show that there is sufficiently rich statistical information available
in child-directed speech for differentiating between correct and incorrect auxiliary (AUX)
questions—even in the absence of any such constructions in the corpus. We additionally dem-
onstrate how the same approach is consistent with results from studies of auxiliary fronting in
children ages 3.0 to 5.0 years (Crain & Nakayama, 1987). Finally, we address the issue of
whether simple learning devices are capable of utilizing such information. We therefore con-
duct a set of connectionist simulations to illustrate that neural networks are capable of using
statistical information to distinguish between correct and incorrect AUX questions. Further
analysis of the networks’ patterns of prediction provides insights into the nature of statistical
learning that are consistent with production data from children. Finally, we consider our results
in the broader context of theories of language acquisition.

1.1. Poverty of stimulus argument and auxiliary fronting

The poverty of stimulus argument suggests that learning a language requires arriving at the
correct generalization of grammatical structure given insufficient data. The logic of the argu-
ment is powerful: If the premises are granted, the conclusion seems airtight. If the data in the
primary linguistic input are too impoverished to allow correct generalization, then conver-
gence to adult grammatical competence requires a more endogenous, biological explanation:
innateness of linguistic knowledge (e.g., Boeckx & Hornstein, 2004; Chomsky, 1980a, 1980b;
Crain & Pietroski, 2001; Fodor & Crowther, 2002; Hornstein & Lightfoot, 1981; Laurence &
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Margolis, 2001; Yang, 2002). Thus, the following question arises: How good are the premises?
We suggest that the weakness of the argument lies in the difficulty of assessing the input, and in
the imprecise and intuitive definition of “insufficient data.”

One of the often-used examples to support the poverty of stimulus argument concerns auxil-
iary fronting in polar interrogatives (e.g., Boeckx & Hornstein, 2004; Chomsky, 1980a; Crain
& Nakayama, 1987; Crain & Pietroski, 2001; Legate & Yang, 2002). In most generative gram-
mar frameworks, declaratives are turned into questions by fronting the correct auxiliary. For
example, in the declarative form The man who is hungry is ordering dinner, it is correct to front
the main clause auxiliary as in (1a), but fronting the subordinate clause auxiliary produces an
ungrammatical sentence as in (1b) (Chomsky, 1965).

(1a) Is the man who is hungry ordering dinner?
(1b) *Is the man who hungry is ordering dinner?

It has been suggested that children can generate two types of rules: a structure-independent
rule where the first is is moved, or the correct structure-dependent rule, where only the move-
ment of the is from the main clause is allowed (Chomsky, 1980a). Crucially, children do not
appear to go through a period when they erroneously move the first is to the front of the sen-
tence (Crain & Nakayama, 1987). It has moreover been asserted that a person might go through
much of his or her life without ever having been exposed to the relevant evidence for inferring
correct auxiliary fronting (e.g., Chomsky, 1980a; Crain & Pietroski, 2001; Legate & Yang,
2002).

The purported absence of evidence in the primary linguistic input regarding auxiliary front-
ing is not without debate. Intuitively, as suggested by Lewis and Elman (2001), it is perhaps un-
likely that a child would reach kindergarten without being exposed to sentences such as (2a)
to (2c).

(2a) Is the boy who was playing with you still there?
(2b) Will those who are hungry raise their hand?
(2c) Where is the little girl full of smiles?

These examples have an auxiliary verb within the subject noun phrase, and thus the auxil-
iary that appears initially would not be the first auxiliary in the declarative, providing evidence
for correct auxiliary fronting. Pullum and Scholz (2002) explored the presence of relevant ex-
amples for auxiliary fronting including wh questions similar to (2b) and (2c) in the Wall Street
Journal corpus and found that at least five crucial examples occur in the first 500 interrogatives
in the Wall Street Journal. They also analyzed two corpora from the CHILDES database
(MacWhinney, 2000), reporting two relevant wh-question examples in a transcript from TV
programs aimed at children and three additional examples in a corpus of utterances addressed
to a girl when she was between 1 year 11 months and 3 years 3 months of age. These results
suggest that the assumption of complete absence of evidence for correct auxiliary fronting is
overstated (see also Cowie, 1998; Lewis & Elman, 2001). However, in defense of the poverty
of stimulus argument, it has been argued that the positive evidence that young children could
encounter in the primary linguistic data might not be considered sufficient to support
data-driven learning theories. Indeed, more comprehensive studies of CHILDES corpora show
that even though interrogatives constitute a large percentage of the corpus, relevant examples
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of auxiliary fronting in polar interrogatives represent less than 1% of them (Legate & Yang,
2002; but see Scholz & Pullum, 2002, for discussion). However, it is worth reappraising the
notion of relevant evidence that was entailed in this literature: Only explicit examples of partic-
ular grammatical constructions are being considered as evidence. We want to argue that this
notion of “relevant evidence” is too narrow. Our claim is that, although direct examples of cor-
rect auxiliary fronting in complex polar interrogatives may be too infrequent to be helpful in
acquisition—as suggested by Legate & Yang (2002)—other more indirect sources of statisti-
cal information may provide an additional cue for making the appropriate grammatical gener-
alizations.

Recent connectionist simulations provide preliminary data in this regard. Lewis and
Elman (2001) trained simple recurrent networks (SRN; Elman, 1990) on data from an artifi-
cial grammar that generated questions of the form “AUX NP ADJ?” and sequences of the
form “Ai NP Bi” (where Ai and Bi represent a variety of different material) but no relevant
examples of polar interrogatives. The SRNs were better at making predictions for multi-
clause questions involving correct auxiliary fronting compared to those involving incorrect
auxiliary fronting.

However, the SRNs in the Lewis and Elman (2001) simulation studies were exposed to an
artificial grammar without the complexity and noisiness that characterize actual child-directed
speech. The question thus remains whether the indirect statistical regularities in an actual cor-
pus of child-directed speech are strong enough to support grammatical generalizations over in-
correct ones. Next, in our first experiment, we conduct a corpus analysis to address this
question.

2. Experiment 1: Measuring indirect statistical information

We trained simple statistical models based on pairs (bigrams) and triples (trigrams) of
words drawn from the Bernstein-Ratner (1984) corpus of child-directed speech. After training,
the models were tested on sentences that consisted of correct polar interrogatives (e.g., Is the
man who is hungry ordering dinner?) and incorrect ones (e.g., Is the man who hungry is order-
ing dinner?)—neither of which was present in the training corpus. We reasoned that if indirect
statistical information—in the form of co-occurrences of pairs–triples of words—provides a
possible cue for generalizing correctly to the grammatical AUX questions, then we should find
a difference in the likelihood of these two alternative hypotheses.

Bigram–trigram models are simple statistical models that use the previous one or two words
to predict the next one. Given a string of words, or a sentence, the associated cross-entropy for
that string of words is a simple measure of probability according to the bigram–trigram model
trained on a particular corpus (from Chen & Goodman, 1999). Cross-entropy is used for com-
paring the likelihood of test sentences in computational linguistics (Jurafsky & Martin, 2000),
and it is inversely correlated to co-occurrence of the words in the sentences found in the train-
ing corpus. Thus, given two competing sentences, we can compare the probability of each of
them as indicated by their associated cross-entropy, within the context of a particular corpus.
Specifically, we can contrast the two alternative generalizations of AUX questions by compar-
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ing the cross-entropy associated with grammatical (e.g., Is the man who is in the corner smok-
ing?) and ungrammatical forms (e.g., Is the man who in the corner is smoking?). This will al-
low us to determine whether there may be sufficient indirect statistical information available in
actual child-directed speech to decide between these two forms. More important, the
Bernstein-Ratner (1984) corpus contains no explicit examples of auxiliary fronting in polar in-
terrogatives.

The intuitive idea is to first break down a sentence into word chunks—that is, bigrams and
trigrams—and then determine their frequency of occurrence in the corpus. The probability of a
sentence can then be calculated as a product of its component word-chunk frequencies. The
higher the frequencies are of the component word chunks, the more probable the sentence will
be. For example, in Sentences (1a) and (1b), the number of occurrences of the component word
chunks in each sentence is first counted across the corpus (i.e., Is the, the man, man who … and
so on, according to the bigram model, and Is the man, the man who, man who is … and so on,
according to the trigram model). The overall probability of each sentence is then computed,
and we can thus directly compare the grammatical (1a) and ungrammatical (1b) and choose the
most probable of the two.

2.1. Method

2.1.1. Models
For the corpus analysis, we used bigram and trigram models (see, e.g., Jurafsky & Mar-

tin, 2000) to measure how frequently pairs or triples of adjacent words occur in a corpus.
Based on the probability of its fragments, the probability of a sentence, p(s), was expressed
as the product of the probabilities of the words (wi) that compose the sentence, with each
word probability conditional to the last n – 1 words. Then, if s = w1 … wk we have p(s) as in
Equation 1:

As defined in Equation 2, we used maximum likelihood to estimate p(wi|wi – 1) (here consid-
ering the bigram model):

PML(wi|wi-1) = P(wi-1wi) /P(wi-1) = (c(wi-1wi)/Ns)/(c(wi-1)/Ns) (2)

where Ns denote the total number of tokens and c(α) is the number of times the string α occurs
in the corpus. In this context, maximum likelihood provides a measure of how often frag-
ments—triples of words in the case of trigrams, and pairs of words in the case of bigrams—oc-
cur in a corpus.

The Bernstein-Ratner (1984) corpus is small, thus, sometimes two or three words never oc-
cur together. We therefore used the interpolation smoothing technique defined in Chen and
Goodman (1999). This method ensures that those pairs or triples of words in test sentences that
never co-occur in the corpus receive a positive probability based on the probability of pairs of
words or isolated words or both. The smoothing technique consists of the interpolation of the
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bigram model with the unigram model, and the trigram model with the bigram model. Thus, if
the probability of a word (wi) (or unigram model) is defined as in Equation 3:

PML(w1) = c(wi)/Ns (3)

for the bigram model we calculate the interpolated probability in Equation 4:

Pinterp(wi|wi-1) = λPML(wi|wi-1) + (1-λ)PML(wi) (4)

Accordingly for trigram models, the interpolated probability is computed as in Equation 5:

Pinterp(wi|wi-1wi-2) = λPML(wi|wi-1wi-2) + (1-λ)(λPML(wi|wi-1) + (1-λ)PML(wi)) (5)

where λ is a value between 0 and 1 that determines the relative importance of each term in the
equation. We used a standard λ = 0.5 so that all terms are equally weighted. We measured the
likelihood of a given set of sentences using the measure of cross-entropy (Chen & Goodman,
1999). The cross-entropy of a set of sentences is defined in Equation 6:

1/NT Σi -log2 P(si) (6)

where NT is the total number of words in the set of sentences and si is the ith sentence. Thus, the
cross-entropy value is inversely correlated with the likelihood of the test sentences. For exam-
ple, given a training corpus and two sentences “A” and “B,” we can compare the cross-entropy
of both sentences to estimate which one is more probable according to the statistical informa-
tion inherent in the corpus.1

2.1.2. Materials
The Bernstein-Ratner (1984) corpus contains speech from nine mothers addressing their

children and recorded over a 4- to 5-month period when children were between the ages 1 year
1 month and 1 year 9 months. This is a relatively small and very noisy corpus, mostly contain-
ing short sentences with simple grammatical structure. The sentences incorporate a number of
different types of grammatical structures, showing the varied nature of the linguistic input to
children. Utterances range from declarative sentences to wh questions to one-word utterances.
Representative sample sentences are shown in (3a) to (3c).

(3a) Oh you need some space.
(3b) Where is my apple?
(3c) Oh. That’s it.

2.1.3. Procedure
The bigram–trigram models were trained on 10,705 sentences from the Bernstein-Ratner

(1984) corpus. The sentences contained 35,505 word tokens distributed over 1,856 word types.
To compare the cross-entropy of grammatical and ungrammatical polar interrogatives, we cre-
ated two novel sets of sentences. The first set contained grammatically correct multiclause po-
lar interrogatives generated using an algorithm that randomly selected words from the corpus
and created sentences according to syntactic and semantic constraints. The test sets only con-
tained polar interrogatives of the form “Is NP (who/that) is Ai Bi?,” where Ai denotes the re-
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maining material in the relative clause (e.g., PNP, ADJP, ADVP, NP, VPG), and Bi the remain-
ing material in the main clause (e.g., PNP, ADJP, ADVP, NP, VPG). Sentences (4a) to (4c)
provide examples of the grammatical test sentences.

(4a) Is the lady who is there eating?
(4b) Is the dog that is on the chair black?
(4c) Is the goose that is hungry smelling?

A second set of matching ungrammatical sentences was created by moving the incorrect aux-
iliary to the frontof the sentence.Forexample, for thegrammatical sentence (4a) thecorrespond-
ingungrammatical sentence is“*Is the ladywhothere iseating?”Wegenerated100of thesesen-
tence pairs and computed the mean cross-entropy per sentence across the 100 sentences in each
set. Finally, we contrasted the likelihood of pairs of grammatical and ungrammatical sentences
by comparing their cross-entropy and choosing the version with the lowest value.

2.2. Results

We found that the mean cross-entropy of grammatical sentences was lower than the mean
cross-entropy of ungrammatical sentences. As paired t-test comparisons revealed, the
cross-entropy difference between the two sentence types was highly significant, t(99) = 15.03,
p = .0001 for the bigram model, and t(99) = 11.74, p = .0001 for the trigram model (see Table
1). These results indicate that grammatical sentences have a higher probability than ungram-
matical ones.

The probability of a sentence is inversely correlated with its cross-entropy value (see Equa-
tion 6). Fig. 1 shows the comparison of mean probability of grammatical and ungrammatical
sentences. We found that the mean probability of grammatical polar interrogatives was almost
twice as high as the mean probability of ungrammatical polar interrogatives, according to the
bigram model, and it was more than twice as high according to the trigram model.

To compare each grammatical–ungrammatical pair of sentences, we defined the following
criterion: When deciding between each grammatical versus ungrammatical polar interrogative
example, choose the one that has lower cross-entropy (the most probable one). A sentence is de-
fined as correctly classified if the chosen form is grammatical. Using that criterion, we found that
thepercentageofcorrectlyclassifiedsentencesusing thebigramand trigrammodels is96%.Fig.
2 shows the performance of the models according to the defined classification criterion.
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Table 1
Comparison of mean cross-entropy in Experiment 1

Mean Cross-Entropy

Grammatical Ungrammatical Mean Difference t(99)

Bigram 22.42 23.24 0.82 15.03*
Trigram 21.29 22.50 1.21 11.75*

*p < .0001.



Of the 100 test sentences, the bigram and trigram model only misclassified the four sen-
tences in (5a) to (5d).

(5a) Is the jacket that is on the chair lovely?
(5b) Is the lady who is here drinking?
(5c) Is the alligator that is standing there red?
(5d) Is the dog that is on the chair black?

These results indicate that it is possible to distinguish between grammatical and ungram-
matical AUX questions based on the indirect statistical information in a noisy child-directed
speech corpus containing no explicit examples of such constructions.

These results are based on the combined input from nine different mothers, but the question
remains whether similar results can be obtained if the analyses focus on the input to individual
children.2 To explore this question, we repeated our analyses by conducting individual analy-
ses for each child.

To compute the bigram and trigram analyses, it is necessary that the words in the sentences
are included in the corpus. Thus, for each individual corpus analysis we only used test sen-
tences that were supported by the relevant corpus in the sense that all words were present
therein. Due to variability in word use by different mothers, the number of supported test sen-
tences therefore varies across each of the nine individual child-directed speech corpora. Table
2 shows the number of test sentences supported by each child corpus and how many of these
were misclassified, along with the mean cross-entropy for the grammatical and ungrammatical
test sentence, and whether the difference between these two was significant. In all cases, even
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Fig. 1. Mean probability of grammatical sentences versus ungrammatical sentences estimated by the trigram (left)
and bigram (right) models trained on the corpus.

Fig. 2. Number of sentences classified correctly (white bars) and incorrectly as grammatical (black bars).



when the analyses were conducted with the quite small individual child corpora, the models
only misclassified a small fraction of the test sentences. Thus, these additional analyses indi-
cate that the statistical pattern found in our first analyses is stable across input to different indi-
vidual children. Of course, under natural circumstances the primary linguistic input to each
child will surpass the size of our combined corpus by orders of magnitude, and this is likely to
lead to even more robust indirect statistical information.

3. Experiment 2: Testing sentences produced by children

Although Experiment 1 shows that there is sufficient indirect statistical information
available in child-directed speech to differentiate reliably between the grammatical and un-
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Table 2
Comparison of mean cross-entropy across individual-child corpora

Sentences Mean Cross-Entropy

Total MC G UG Mean Difference t

Dale
Bigram 43 7 22.23 22.68 0.49 5.99**
Trigram 43 7 21.32 21.93 0.75 5.31**

Marie
Bigram 3 2 18.90 18.91 < 0.1 < 1
Trigram 3 1 17.72 18.20 0.75 1.06

Cindy
Bigram 52 2 22.13 22.82 0.61 8.24**
Trigram 52 7 21.07 22.08 1.00 6.10**

Gail
Bigram 38 6 22.06 22.47 0.45 5.59**
Trigram 38 6 21.14 21.72 0.58 4.91**

Anne
Bigram 10 0 19.95 20.41 0.45 3.00*
Trigram 10 0 19.17 19.63 0.45 3.00*

Lena
Bigram 11 3 20.74 20.74 < 0.001 < 1
Trigram 11 3 19.79 20.03 0.23 < 1

Amelia
Bigram 1 0 15.25 15.62 0.37 —
Trigram 1 0 15.25 15.62 0.37 —

Kay
Bigram 1 0 16.50 17.02 0.52 —
Trigram 1 0 16.50 17.02 0.52 —

Note. Total = total of sentences available for comparison in individual corpora; MC = misclassified; G = gram-
matical; UG = ungrammatical. The Alice corpus did not support any test sentences and could therefore not be
analyzed.

*p < .05. **p < .0001.



grammatical AUX questions that we had generated, it could be argued that the real test for
our approach is whether it works for actual sentences produced by children. We therefore
tested our models on a small set of sentences elicited from children under experimental
conditions.

Crain and Nakayama (1987) conducted an experiment designed to elicit complex AUX
questions from children between 3 and 5 years of age. The participants were involved in a
game in which they asked questions of Jabba the Hutt, a creature from Star Wars. During the
task the experimenter gives an instruction to the child: Ask Jabba if the boy who is watching
Mickey Mouse is happy. Children produced sentences such as (7a), but they never produced
sentences such as (7b):

(7a) Is the boy who is watching Mickey Mouse happy?
(7b) Is the boy who watching Mickey Mouse is happy?

The authors concluded that the lack of structure-independent errors suggested that
children entertain only structure-dependent hypotheses, supporting the existence of innate
grammatical structure. Here we explore whether our model is capable of distinguishing be-
tween structure-dependent and structure-independent hypotheses in Crain and Nakayama’s
(1987) study, based purely on the statistical information of the Bernstein-Ratner (1984)
corpus.

3.1. Method

3.1.1. Models
Same as in Experiment 1.

3.1.2. Materials
Six example pairs were derived from the declarative sentences used in Crain and Nakayama

(1987)3:

(8a) The ball that the girl is sitting on is big
(8b) The boy who is unhappy is watching Mickey Mouse
(8c) The boy who is watching Mickey Mouse is happy
(8d) The boy who is being kissed by his mother is happy
(8e) The boy who was holding the plate is crying
(8f) The dog that is sleeping is on the blue bench

The grammatical and ungrammatical AUX questions were derived from the declaratives in
(8a) to (8f). Thus, the sentence Is the ball that the girl is sitting on big? belonged to the gram-
matical test set, whereas the sentence *Is the ball that the girl sitting on is big? belonged to the
ungrammatical test set. Consequently, grammatical and ungrammatical test sets contained 6
sentences each.

3.1.3. Procedure
The bigram–trigram models were trained on the Bernstein-Ratner (1984) corpus, as in Ex-

periment 1, and tested on the material derived from Crain and Nakayama (1987).
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3.2. Results

Consistent with Experiment 1, we found that the mean cross-entropy of grammatical sen-
tences was significantly lower than the mean cross-entropy of ungrammatical sentences both
for bigram, t(5) = 3.88, p = .011, and trigram models, t(5) = 2.97, p = .031. Table 3 summarizes
these results.

Using theclassificationcriteriondefined inExperiment1,wefound thatall sixsentenceswere
correctly classified using the bigram model. When using the trigram model, we found that five
out of six sentences were correctly classified, and only Sentence (8f) was misclassified.

As in Experiment 1, we repeated the analysis for each of the individual-child corpora. Only
five out of the nine individual corpora contained the appropriate words to support a subset of
the test sentences in 8. Table 4 shows the results of these analyses in terms of mean
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Table 3
Comparison of mean cross-entropy in Experiment 2

Mean Cross-Entropy

Grammatical Ungrammatical Mean difference t(5)

Bigram 27.13 28.00 0.87 3.88*
Trigram 26.15 26.96 0.81 2.97*

*p < .05.

Table 4
Experiment 2: Comparison across individual-child corpora

Sentences Mean Cross-Entropy

Total MC G UG Mean difference t(5)

Dale
Bigram 3 0 26.31 26.95 0.63 1.21
Trigram 3 0 25.68 26.31 0.63 1.21

Marie
Bigram 2 0 25.50 25.50 — —
Trigram 2 0 25.50 25.50 — —

Cindy
Bigram 5 0 27.69 28.56 0.87 3.31*
Trigram 5 0 27.15 28.03 0.87 3.31*

Gail
Bigram 3 0 26.00 26.64 0.64 1.22
Trigram 3 0 25.35 25.99 0.64 1.22

Lena
Bigram 3 0 25.25 25.92 0.67 < 1
Trigram 3 0 24.88 25.55 0.23 < 1

Note. Total = total of sentences available for comparison in individual corpora; MC = misclassified; G = gram-
matical; UG = ungrammatical. The Alice, Anne, Amelia, and Kay corpora did not support any test sentences and
could therefore not be analyzed.

*p < .05.



cross-entropy and classification. For each individual-child analysis, every test sentence was
classified correctly (i.e., the grammatical sentence had a higher probability than the ungram-
matical version).

4. Experiment 3: Learning to produce correct sentences

Previous simulations by Lewis and Elman (2001) showed that SRNs trained on data from an
artificial grammar were better at predicting the correct auxiliary fronting in AUX questions.
Here, we explore whether the results shown using artificial-language models will scale up to
deal with the full complexity and the general disorderliness of speech directed at young chil-
dren. It is not clear whether a simple learning device may be able to exploit the statistical infor-
mation established in Experiments 1 and 2 to develop an appropriate bias toward the grammati-
cal forms. To investigate this question, we took a previously developed SRN model of
language acquisition (Reali et al., 2003), which had also been trained on the same corpus, and
tested its ability to deal with AUX questions.

SRNs have been used widely as a psychological model of human learning (e.g., Botvinick &
Plaut, 2004; Christiansen & Chater, 1999; Cleeremans, 1993; Elman, 1990). This type of net-
work is well suited for our simulations because it has previously been successfully applied to
the modeling of language learning (e.g., Elman, 1990, 1993) and has been shown to be sensi-
tive to bigram–trigram information (Christiansen & Chater, 1999; Reali et al., 2003). More im-
portant, neural networks are not simply lookup tables; instead, they are statistically driven
function approximators capable of complex generalization in a human-like fashion (Elman,
1993).

4.1. Method

4.1.1. Networks
We used the same 10 SRNs that Reali et al. (2003) had trained to predict the next lexical cat-

egory given this one. An SRN is essentially a standard feed-forward neural network equipped
with an extra layer of so-called context units. At a particular time step, t, an input pattern is
propagated through the hidden unit layer to the output layer. At the next time step, t + 1, the ac-
tivation of the hidden unit layer at time t is copied back to the context layer and paired with this
input. This means that this state of the hidden units can influence the processing of subsequent
inputs, providing a limited ability to deal with integrated sequences of input presented succes-
sively.

The initial weights of the networks were randomized within the interval (–0.1; 0.1). A dif-
ferent random seed was used for each network. Learning rate was set to 0.1, and momentum to
0.7. Each input to the network contained a localist representation of the lexical category of the
incoming word. With a total of 14 different lexical categories and a pause marking boundaries
between utterances, the network had 15 input units. The network was trained to predict the lex-
ical category of the next word, and thus the number of output units was 15. Each network had
30 hidden units and 30 context units. Fig. 3 provides an illustration of the network used in the
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simulations. No changes were made to the original networks from Reali et al. (2003) and their
parameters.4

4.1.2. Materials
We trained and tested the networks on the Bernstein-Ratner (1984) corpus similarly to the

bigram–trigram models. Each word in the corpus was assigned one of the 14 following lexical
categories from CELEX database (Baayen, Pipenbrock & Gulikers, 1995): nouns (N: 19.5%),
verbs (including auxiliaries; V: 18.5%), adjectives (ADJ: 4%), numerals (NUM: < 0.1%), ad-
verbs (ADV: 6.5%), determiners (DET: 6.5%), pronouns (PRON: 18.5%), prepositions
(PREP: 5%), conjunctions (CONJ: 4%), interjections (INTJ: 7%), complex contractions (CC:
8%), abbreviations (ABB: < 0.1%), infinitive markers (IM: 1.2%), and proper names (PN:
1.2%). Each word in the corpus was replaced by a vector encoding the lexical category to
which it belonged. We used the two sets of test sentences used in Experiment 1, containing
grammatical and ungrammatical polar interrogatives, respectively. However, due to replacing
each of the individual words with their respective lexical categories, some of the original test
sentences from Experiment 1 ended up mapping onto the same string of lexical categories. For
simplicity, we only considered unique strings, resulting in 30 sentences in each test set (gram-
matical and ungrammatical).

4.1.3. Procedure
The 10 SRNs (with different random weight initializations) from Reali et al. (2003) were

trained on one pass through the Bernstein-Ratner (1984) corpus and tested on the AUX ques-
tions described previously. To compare network predictions for the ungrammatical versus the
grammatical AUX questions, we measured the networks’ mean square error (MSE) recorded
during the presentation of each test sentence pair. The MSE is calculated by measuring the dif-
ference between the network’s output activity for the next lexical category and the target out-
put (i.e., N, ADJ), given the previous sentential context. Because the MSE is measured for each
word in the sentence, we calculate the average MSE per sentence, by averaging the MSE value
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Fig. 3. Network configuration. The arrows indicate full connectivity between layers. Dashed lines indicate fixed
connection weights (with a value of 1), and solid lines indicate learnable connection weights.



across all words. Then we can compare the average MSE elicited by grammatical versus un-
grammatical sentences.

4.2. Results

We found that in all 10 simulations, the grammatical set of AUX questions produced a lower
average MSE compared to the ungrammatical ones. As illustrated by Fig. 4a, when network
predictions for the next lexical class were averaged across sentences, the MSE for the gram-
matical set was significantly lower than the MSE for the ungrammatical set (0.80 vs. 0.83; t(9)
= 11.93, p < .0001). Because the MSE is averaged across all the words in a sentence, the small
numerical difference between grammatical and ungrammatical sentences is partly explained
by the fact that the two test sets form minimal pairs in that they are almost identical save for the
position of the fronted is. Fig. 4b shows the difference in MSE for predicting the next lexical
category at the crucial point where grammatical and ungrammatical test sentences diverge af-
ter the string of lexical categories corresponding to Is NP who/that … , indicating a signifi-
cantly lower error for the grammatical continuations compared to the ungrammatical ones
(0.82 vs. 1.02; t(9) = 13.08, p < .0001).

To further elucidate why the networks produced more accurate predictions for the grammat-
ical test sentences, we looked at the networks’ predictions of the different lexical categories at
the point of grammatical–ungrammatical divergence. For example, consider the sentences in
(9a) and (9b):

(9a) Is the boy who is hungry nearby?
(9b) *Is the boy who hungry is nearby?

Fig. 5 shows the mean activation of the 14 lexical output units averaged across the 10 net-
works after being presented with the sequence of lexical categories corresponding to Is the boy
who … The prediction of the well-formed relative clause continuation, V (i.e., is), is highly
preferred over the ill-formed version, ADJ (i.e., hungry).5 This pattern of predictions reflects
the networks’ sensitivity to the statistical properties of the corpus. The networks are capable of
distinguishing chunks of lexical categories that are more frequent in the training input from
less frequent ones (that is, the lexical categories corresponding to PRON V ADJ [who is hun-
gry] versus PRON ADJ V [who hungry is]).
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Fig. 4. (a) Left side: Average MSE across sentences in the grammatical set (white bar) and ungrammatical set
(black bar). (b) Right side: Average MSE elicited after the sequence of lexical categories corresponding to Is NP
that/who … in the grammatical set (white bar) and the ungrammatical set (black bar).



As a further indication of the networks’ correct generalizations to grammatical AUX ques-
tions, we found that out of the 30 test sentences, 27 grammatical sentences produced a lower
error than their ungrammatical counterparts (Fig. 6). Thus, on the assumption that sentences
with lower error would be preferred, the SRNs showed a bias toward the grammatical forms in
90% of the test cases.

These results show that SRNs are able to pick up on the implicit statistical regularities dem-
onstrated in Experiment 1. Moreover, in contrast to Experiment 1, the networks were only ex-
posed to the distributional information of the lexical categories and not to the potentially richer
distributional information present in word co-occurrences. Yet, it is also clear that children are
not provided with input “tagged” for lexical categories. Rather, the child has to bootstrap both
lexical categories and syntactic constraints concurrently. Fortunately, recent research has dem-
onstrated that lexical categories can be learned from a combination of distributional patterns of
word co-occurrence (e.g., Mintz, 2002, 2003; Mintz, Newport, & Bever, 2002; Redington et
al., 1998), the phonological properties of words (e.g., Kelly, 1992; Monaghan, Chater, &
Christiansen, 2005; Reali et al., 2003) as well as other cues (see Christiansen & Monaghan, in
press, for discussion). Consequently, we hypothesize that the kind of learning modeled in our
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Fig. 5. Network prediction after the presentation of the lexical classes corresponding to: “Is he boy who …” The
prediction of the well-formed relative clause continuation, V (i.e., is), is highly preferred over the ill-formed ver-
sion, ADJ (i.e., hungry).

Fig. 6. Number of sentences classified correctly by the SRNs (white bars) and incorrectly as grammatical (black
bars).



connectionist simulations is building on top of already learned lexical category information ac-
quired through such multiple-cue integration.

5. General discussion

The corpus analyses indicate that there is sufficiently rich statistical information available
indirectly in child-directed speech for making appropriate generalizations about complex
AUX questions. Therefore, our results challenge the classic notion of evidence in the primary
linguistic input, which presupposes that only explicit examples of a certain grammatical con-
struction constitute useful evidence for its correct generalization (Boeckx & Hornstein, 2004;
Chomsky, 1965; Crain & Pietroski, 2001; Legate & Yang, 2002).

Previous results suggest that children are sensitive to the same kind of statistical evidence
that we found in this study. Saffran et al. (1996) demonstrated that 8-month-old children are
particularly sensitive to transitional probabilities (similar to our bigram model). Sensitivity to
transitional probabilities seems to be present across different domains, for instance in the seg-
mentation of streams of tones (Saffran, Johnson, Aslin, & Newport, 1999) and visual se-
quences (Kirkham, Slemmer, & Johnson, 2002). These and other results on infant statistical
learning (for reviews, see Gómez & Gerken, 2000; Saffran, 2003) suggest that children have
mechanisms for relying on implicit statistical information.

This type of statistical learning is also evident in SRNs whose learning properties have been
shown to be consistent with human learning abilities (e.g., Christiansen, Conway, & Curtin,
2005; Elman, 1990; see Christiansen & Chater, 2001, for a review). Even though the SRN
model in Experiment 3 was originally developed in a different context (Reali et al., 2003), it
proved to develop an appropriate bias toward the correct forms of AUX questions. Moreover,
because the networks were trained to predict the next lexical category in a sentence, the pattern
of network predictions (Fig. 5) can be construed as providing statistical constraints on produc-
tion as well. Christiansen and Chater (1999) showed how output predictions could be con-
strued as a set of possible sentence continuations. Similarly, we envisage that the output pre-
dictions of our SRN model could be used as a probabilistic basis for sentence production—
when combined with other sources of constraints from semantics, and so on. The AUX ques-
tions generated in this fashion would be consistent with children’s production data (Crain &
Nakayama, 1987).

More important, this account of production does not require children to generate and subse-
quently choose between grammatical and ungrammatical versions of AUX-fronting construc-
tions. Rather, this kind of statistically driven production would result in a single construction
that would tend to be the most probable one (as illustrated by Fig. 5). However, it makes sense
to evaluate the usefulness of this statistical knowledge by adopting the traditional linguistic
paradigm of minimal pair comparison—in this case between grammatical and ungrammatical
AUX questions. Consequently, the specific entropy values are therefore not important in an ab-
solute sense but only in a relative sense inasmuch as they reflect what may be more likely to be
produced given the underlying statistical information.

More generally, the statistical knowledge acquired by the networks is learned from positive
examples only. There is no need for “negative” evidence in the form of ungrammatical sen-
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tences explicitly marked as such. During learning, the networks adjust their weights to best re-
flect the statistical properties of the input, creating a bias toward the positive examples but at
the same time biasing the network against other (ungrammatical) responses that are not likely
to occur. Similarly, Schütze (1997) demonstrated how a connectionist model can learn verb
subcategorization information from positive evidence alone (e.g., in contrast to prior assertions
by Pinker, 1989). Of course, this emphasis on positive evidence underscores the importance of
ensuring that the input provides a reasonably accurate reflection of the statistics governing the
linguistic phenomena being modeled.6

Both bigram–trigram models and SRNs are sensitive to the probability of co-occurrence of
sequences of words found in the training corpus. The grammatical and ungrammatical sen-
tences used to test generalizations to AUX questions were almost identical, only differing in
the position of the fronted is. Because the sequences of words in grammatical relative clauses,
such as who is hungry or that is there, tend to occur frequently as chunks of words in
child-directed speech, the model is able to distinguish between grammatical and ungrammati-
cal polar interrogatives. From this we can predict that children may also be more likely to make
errors involving frequently co-occurring chunks when producing complex sentences, includ-
ing AUX questions. This prediction is consistent with both types of errors produced by the
children in the Crain and Nakayama (1987) study. Thus, the “prefix” errors (which account for
58% of the children’s errors) in, for example, *Is the boy who is being kissed by his mother is
happy? may be explained by the frequent occurrence in the input of chunks such as mother is
happy. Similarly, the “restarting” errors (accounting for 22% of errors) as in *Is the boy that is
watching Mickey Mouse, is he happy? may derive from often-heard questions such as Is he
happy?

This partial account of children’s errors in production depends on the theoretical notion that
young learners to a large degree rely on word chunks to organize their early language. This is
supported by recent studies showing that much of young children’s language is organized in
terms of item-based linguistic schemas (e.g., Bybee, 2002; Cameron-Faulkner, Lieven, &
Tomasello, 2003; Lieven, Pine, & Baldwin, 1997; Pine & Lieven, 1997; Tomasello, 1992),
suggesting that children might construct their early language system around chunks of words.
For example, Lieven et al. (1997) found that children between 2 and 3 years of age use virtually
all their verbs and predicative terms in a unique sentence frame in early language development
(for a review, see Tomasello, 2000, 2003). The results we have presented here can thus be seen
as building on, as well as contributing to, the item-based approach to language acquisition.

Given a statistically based approach to language acquisition, an important remaining issue
is where universal patterns of language structure and use may derive from. Indeed, a language
without reliable structural regularities would be unlearnable from a statistical perspective be-
cause it is exactly the constituent properties of well-formed sentences that make distributional
cues useful in the first place. It seems clear that such linguistic universals are likely to be due to
innate constraints. However, it is an open question whether such innate constraints have to be
specifically linguistic in nature, or whether they may derive from more general learning con-
straints not specific to language. Our view is consistent with the latter perspective and sup-
ported by recent work in language evolution demonstrating how language universals can
emerge through processes of cultural transmission across many generations of learners (e.g.,
Batali, 2002; Brighton, 2002; Christiansen, Dale, Ellefson, & Conway, 2002; Kirby &
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Christiansen, 2003) and through grammaticalization in diachronic change (e.g., Bybee, 2002;
Givón, 1998; Heine & Kuteva, 2002). For example, Christiansen and Devlin (1997) demon-
strated how constraints on the learning of sequential structure in an SRN may explain the emer-
gence of word order universals. Ellefson and Christiansen (2000) further demonstrated that
limitations on SRN learning of sequential material can help explain certain subjacency con-
straints on complex question formation. Thus, from our perspective the linguistic universals
that make language learnable by statistical means derive from innate nonlinguistic constraints
on the statistical learning mechanisms themselves and from general functional properties of
communicative interactions.

6. Conclusion

Our corpus analyses and connectionist simulations have underscored the importance of sta-
tistical properties of word co-occurrences in the process of grammatical generalization. How-
ever, a complete model of language acquisition cannot be developed on the basis of this distri-
butional cue alone. Young learners are likely to rely on many additional sources of information
(e.g., semantic, phonological, prosodic) to be able to infer different aspects of the structure of
the target language. Previous work has shown that syntactic acquisition is greatly facilitated
when distributional information is integrated with other sources of probabilistic information
(e.g., Christiansen & Monaghan, in press; Monaghan et al., 2005; Morgan et al., 1987). More
important, the SRN has been shown to provide a useful powerful basis for such multiple-cue
integration (Christiansen & Dale, 2001; Reali et al., 2003), suggesting that these results can be
incorporated into a more comprehensive computational account of language acquisition.

On the theoretical side, our results indicate that the poverty of stimulus argument may not
apply to the classic case of auxiliary fronting in polar interrogatives, previously a cornerstone
in the argument for the innateness of grammar. Although this study only pertains to a single
construction—AUX fronting in polar interrogatives—we anticipate that there are likely to be
other cases in which indirect statistical information (and/or other cues) can lead to correct gen-
eralization of structure. This highlights the important issue of what counts as sufficient evi-
dence for learning a particular linguistic structure, and it suggests that the general assumptions
of the poverty of stimulus argument may need to be reappraised in the light of the statistical
richness of language input to children.

Notes

1. We used PERL programming in a UNIX environment to implement the corpus analysis.
This includes the simulation of bigram and trigram models and cross-entropy calcula-
tion and comparisons.

2. We thank an anonymous reviewer for raising this question and Eve Clark for urging that
we pursue it.

3. As some of the words in the examples were not present in the Bernstein-Ratner (1984)
corpus, we substituted them for semantically related ones: Thus, the words mother,
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plate, watching, unhappy, and bench were replaced, respectively, by mommy, ball, look-
ing at, crying, and chair.

4. All networks were simulated using the Lens simulator (Rohde, 1999) in a UNIX envi-
ronment.

5. The relatively high activation of the noun and adverb lexical categories—N and ADV—
is due to the relatively frequent occurrence of lexical category fragments such as N
PRON N (boy whose father) and N PRON ADV (boy who happily). In the context of this
sequence of lexical categories—V DET N PRON N—this would be consistent with the
sentence fragments such as Is the boy whose father came … and Is the boy who happily
ate his … We note here that the latter two AUX question examples did not appear in the
corpus.

6. In this context, it is important to note that all languages differ considerably in terms of
their distributional characteristics. Thus, one cannot draw any conclusions about how
our approach may generalize to other languages by simply changing a few lexical items
to introduce a specific aspect of some other language. Rather, to apply our approach to
other languages it is crucial that appropriate corpora of child-directed speech be used;
otherwise no conclusions can be drawn.
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