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Abstract

In the present study we provide empirical evidence that
human learners succeed in an artificial-grammar learning task
that involves recognizing grammatical sequences whose
bigram frequencies from the training corpus are zero. This
result begs explanation: Whatever strategy is being used to
perform the task, it cannot rely on the simple co-occurrence of
elements in the training corpus. While rule-based mechanisms
may offer an account, we propose that a statistical learning
mechanism is able to capture these behavioral results. A
simple recurrent network is shown to learn sequences that
contain null-probability bigram information by simply relying
on distributional information in a training corpus. The present
results offer a simple but stark challenge to previous
objections to statistical learning approaches to language
acquisition that are based on sparseness of the primary
linguistic data.

Introduction

The importance of statistical structure in language learning
and processing has been a matter of intense debate. Initial
data-driven empirical approaches embraced the idea that
word co-occurrences are important sources of information in
language processes (e.g., Harris, 1951). This approach fell
out of favor in the 1950’s, in part due to the influential work
of Noam Chomsky (1957) who believed that language
behavior should be analyzed at a much deeper level than its
surface statistics. In one of his most famous examples, he
pointed out that it is reasonable to assume that neither the
sentence (1) Colorless green ideas sleep furiously nor (2)
Furiously sleep ideas green colorless has ever occurred, and
yet (1), though nonsensical, is grammatical, while (2) is not.
Therefore, a common argument against statistical
approaches to language is that there are sentences
containing low or zero probability sequences of words that
can nonetheless be judged as grammatical. As Chomsky
remarked, ““... we are forced to conclude that ... probabilistic
models give no particular insight into some of the basic
problems of syntactic structure" (Chomsky, 1957, p. 17).
Most theoretical linguists have accepted this argument,
developing little interest in the role of statistical approaches
to language.

Recently there has been a reappraisal of statistical
approaches, partly motivated by research indicating that

distributional regularities may provide an important source
of information for bootstrapping syntax (e.g., Redington,
Chater & Finch, 1998; Mintz, 2002)—especially when
integrated with prosodic or phonological information (e.g.,
Morgan, Meier & Newport, 1987; Monaghan, Chater &
Christiansen, in press). Moreover, statistical approaches
have been supported by recent research demonstrating that
young infants are sensitive to statistical information inherent
in bigram transitional probabilities (e.g., Saffran, Aslin &
Newport, 1996; —for a review, see Gomez & Gerken, 2000).
These studies demonstrate that at least some learning
mechanisms employed by infants are statistical in nature.
However, as suggested by the perceived grammaticality of
sentences like (1), human learning capacities certainly need
to go beyond the information conveyed by item co-
occurrences. In the present study we explore the extent to
which humans are capable of learning the regularities of an
artificial grammar, and generalizing them to new sentences
in which transitional probabilities are completely
uninformative. The task involves “discovering” the
underlying regularities and using them to recognize
sequences in which the bigram transitions are completely
novel. We find that humans perform well in this task.

Two possible explanations could account for these
results. First, as previously suggested (Marcus, Vijayan,
Bandi Rao & Vishton, 1999), it could be that humans
possess at least two learning mechanisms, one for learning
statistical information and another for learning “algebraic”
rules. Thus, regardless of available statistics, we could rely
on open-ended abstract relationships into which we
substitute arbitrary items. In an artificial-grammar learning
scenario, we could know the structure or rules underlying a
grammar and substitute variables with specific examples by
mechanisms independent of the surface statistical
information. This rule-based mechanism could therefore
account for our ability to successfully generalize to
sequences with uninformative bigram probabilities.
Alternatively, we suggest that there is a second and equally
plausible account. In this paper we demonstrate that this
generalization can be accounted for on the basis of
distributional learning. In the second part of this paper, we
show that a simple connectionist model, trained purely on
distributional information, is capable of simulating correct
grammaticality judgments of test sentences that comprise
bigram transitions absent in the training corpus. These



results build on previous work showing that lexical
categories can emerge naturally from learning processes
inherent to the SRN’s distributionally driven internal
representations (Elman, 1990). They also demonstrate that
the distributed nature of SRNs’ storage allows
generalization that goes beyond traditional computational
models (such as simple n-gram models) whose limitations
motivated a historical shift away from statistical approaches.
While these models are sensitive only to the information in
the co-occurrence of word sequences, SRNs go beyond co-
occurrence information, being capable of forming useful
representations of lexical classes. This study is therefore
important in demonstrating the need to look deeper at
learning properties of more sophisticated distributional
models, such as connectionist networks, in order to reassess
the claims of weakness many cast onto a statistical approach
to language learning and processing.

Experiment 1: Learning Null-Probability
Sequences

In this experiment, we explore whether learners are capable
of generalizing to novel sequences after being exposed to
examples from a constrained subset of all possible
grammatical sequences. Crucially, participants will be asked
to recognize sequences whose bigram transitions did not
occur the training corpus.

Method

Subjects  Forty-nine undergraduate participants were
recruited at Cornell University in exchange for extra credit
in psychology classes.

Materials The stimuli were sequences of capital letters
generated from a simple artificial phrase-structure grammar
defined as follows:

S > Adj NV Adv
Adj > {adj, adj, adj;}
N > {n; np n3}

\Y% > V1 va v}

Adv -> {adVl ade adV3}

Note that the vocabulary of the grammar consists of 12
words, 3 in each of lexical categories of adjective (adjy,),
noun (n,), verb (v,), and adverb (adv,). The stimuli we used
consisted of twelve consonants, C, Q, M, P, X, S, W, Z, K,
H, T and L, which represented each of the twelve words of
the vocabulary respectively (adj;, adj,, and adj; = C, Q, and
M;n;, n, and n; =P, X, and S; vy, v», and v = W, Z, and K
advy, adv,, and adv; = H, T and L). Grammatical sequences
consisted of a four letters string where the first one is an
adjective, followed by noun, a verb and an adverb in that
order.

Participants were presented with sixty grammatical
sequences in a training phase. The test session comprised a
set of nine grammatical and nine ungrammatical sequences.
Both grammatical and ungrammatical sequences in the test

set contained at /east one bigram transition (co-occurrence
of two letters) that had never been presented in the training
set. To accomplish that, strings containing the following
bigram transitions were excluded from the training set: adj;
n; (C P), n; v (P W), A% adv1 (W H)

Grammatical sequences in the test set fell under
one of three categories: The first category included
sentences with just one null-probability transition ([adj; ny]
X advy; X [ vq] X; adj; X [vy advy], where “X” represents
some arbitrary grammatical word); the second set contained
two null-probability transitions ([adj; n; v;] X; X [n; vy
adv;]) and the third category sentences had sentences
containing three null-probability transitions ([adj; n; v,
adv,]). The latter category represents the artificial version of
“colorless green ideas sleep furiously”. The test set itself
contained six grammatical sequences of the first category,
two sequences of the second category and one sequence of
the third category. However, each sequence was presented
twice in random order, thus, participants saw a total of
eighteen grammatical sequences in the test session.

Ungrammatical sequences fell under one of two
categories: In the first category two words were
interchanged (n; adj; v, advy; adj; vq n; advy; adj; n; adv
v1; v ny adj; advy; advy ny vy adjy; adj; advy vi n)); and in
the second category all words were interspersed (n; adjy
adv; vq; vy advy adj; ny; advy vy ny adj;). Each sequence
was presented twice in random order, thus, a total of
eighteen ungrammatical sequences comprised the test
session.

Procedure The experiment was conducted using the
Psyscope experimental software package (Cohen,
MacWhinney, Flatt, & Provost, 1993) with stimuli
presented on a computer monitor. Participants were
instructed that they were participating in a memory
experiment. They were told that in the first part of the
experiment they would see sequences of letters displayed on
the screen and had to type the sequence they just saw. Each
sequence was presented individually for a period of 4
seconds. The 60 sequences of the training set were
presented twice, for a total of 120 input exposures,
presented in random order. Immediately after seeing each
sequence, participants typed it using the computer keyboard,
before going to the next one.

After the training phase, participants were
instructed that they would be exposed to a new set of
sequences some of which were “similar” to the ones they
saw in the first part of the experiment and some
“dissimilar.” They were instructed to press a button marked
“YES” or “NO” according to whether they thought a
presented string was similar to the ones they saw in the
previous phase. The participants were instructed that they
would probably find the task difficult and therefore they
should follow their first impression without spending too
much time thinking about each sequence. Each of the 18
sequences comprising the test set (9 grammatical and 9



ungrammatical) was presented twice, and all of them were
randomly interspersed.

Results and discussion

The mean number of correct endorsements on the 36 test
items was 25.30 (70.28%). A one-way t-test indicates that
this performance is significantly above chance (#(48) =
10.32, p < .0001). We explored the percentage of correct
endorsements across grammatical and ungrammatical
categories. As illustrated in Fig. 1, the grammatical
sequences containing one, two and three novel bigram
transitions were correctly recognized as grammatical 72.2%,
64.9% and 59.2 % of the time respectively, whereas
ungrammatical sequences with two or all letters
interchanged, were incorrectly labeled as grammatical
28.8% and 27.9% of the time respectively. We also
computed planned comparisons between the number of yes-
responses (grammatical-labeling) elicited by each of the
three grammatical categories vs. the number of yes-
responses elicited by the ungrammatical sentences. We
found that each of the three different types of grammatical
sentences elicited significantly more yes-responses than the
ungrammatical sentences (all p’s < .001). These results
indicate that grammatical sequences with one, two or three
null-probability bigram transitions are successfully
distinguished from ungrammatical sequences. Importantly,
subjects are capable of learning the pattern after being
exposed to only a small number of examples.
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Fig. 1: Percentage of elicited yes-responses across subjects. G3,
G2, Gl = Grammatical sentences comprising three, two and one
probability-cero transitions respectively; UGI, UG2 =
Ungrammatical sentences comprising two words interchanged and
all words interspersed respectively.

These results are not necessarily surprising: We know
humans are good at making grammaticality judgments of
sentences they have not previously encountered. Thus, the
crucial question is what kind of learning mechanism
underlies success in this task. In particular, it is not clear
whether these results reflect the manifestation of rule-based
learning mechanism of the kind proposed by Marcus et al.
(1999), or alternatively, whether these results might reflect
emergent learning resulting from acquisition processes that
rely only on statistical information.

In order to address this question we performed a
series of computational simulations in which SRNs were
trained using purely distributional cues, and without any
labeling of lexical categories. After the training of the
network, we tested sentences in which bigram frequencies
were zero in the training corpus.

Experiment 2: Connectionist Learning of Null-
Probability Sequences.

In this simulation, simple recurrent networks (SRN; Elman,
1990) are trained to predict the next word in a sentence
given a corpus of sentences generated by an artificial
grammar. Each word was assigned a unique vector
consisting of 0s and a single 1 in a so-called /localist
representation. The representation deliberately deprives the
network of any information about grammatical category,
such as its syntactic distribution or semantics, etc. This type
of input and output representation is the same as the one
originally used by Elman (1990), and is often employed in
connectionist simulations. It is important to note that the
only type of information the network can rely on to learn the
grammar is the distribution of these localist representations
presented sequentially. As a new word is input, the
network’s task is to predict the next word in the sentence.
As in the experiment, we prevented the network from being
exposed to certain sequences of words during training. This
constraint allowed us to create grammatical test sentences in
which all transitions had null probability, that is, sentences
in which consecutive words never co-occur in the training
set.

While we are not postulating SRNs as exact
emulators of human learning mechanisms here, we argue
that they can be viewed as a model of what can be acquired
by a system that is not dependent on rule-based
mechanisms. Indeed, the SRN is well suited for such
simulations, and has been successfully applied to a wide
range of language learning and processing phenomena (e.g.,
Elman, 1990; Cleeremans, 1993; Christiansen & Chater,
1999). Importantly, neural networks are not simply lookup
tables; instead, they are statistically-driven function
approximators capable of complex generalization in a
human-like fashion (Elman, 1993).

Additionally, although the task performed in
Experiment 1 is not identical to the SRN’s prediction task,
they share the fact that both involve learning an artificial
grammar and generalizing to new sentences in which
transitional probabilities are uninformative.

Method

Networks The SRNs were used with initial weight
randomizations in the interval [-0.1; 0.1]. Learning rate was
set to 0.1, and momentum to 0.9. Each input to the network
contained a localist representation of the incoming word.
With a total of 36 different words and a pause marking
boundaries between utterances, the network had 37 input
units. The network was trained to predict the next word in a
sequence, and thus the number of output units was 37. Each



network additionally had 40 hidden units and 40 context
units.

Materials We trained and tested the network on an
artificial grammar, containing a vocabulary composed of 8
adjectives, 12 nouns, 10 verbs, 6 adverbs. While we have
equal numbers of category members in Experiment 1, we
chose this distribution to meet loosely the distribution of
such classes in a natural language such as English. The
training corpus contained 500 sentences. Sentences were
generated from a simple artificial grammar defined as
follows:

S > Adj Adj N V Adv
S > Adj NV Adv

S > AdNV

S > NV Adv

S > NV

Adf > fadj, ..., adjs}

N > {Ill, ey Illz}

Vv -> {Vl, ey VIO}

Adv -> {advy, ..., advs}

Ten different training sets were generated using a random
algorithm to create sentences. Importantly, all sentences
were created according to the following restriction: Some of
the words from each lexical category were prevented from
occurring next to other ones. Specifically, the following
sequences were not allowed to co-occur in the training set:
Adj, never occurred after to Adj;, N; never occurred after
Adj,, V| never occurred after N, and Adv, never occurred
after V,. This generation constraint allowed us to produce
the following grammatical test sentence in which all
transitional probabilities (bigram frequencies) had null
probability in the training corpus: Adj; Adj, Ny V; Adv,.
This test sentence represents is a toy-model version of the
famous “Colorless green ideas sleep furiously”.

The test set consisted in three target sentences, all
of which had probability-zero transitions but varied in
degree of grammaticality:

1) Grammatical: Adj, Adj; Ny Vy Adv,y
2) Ungrammatical type I: *Adj; N; Adj, V|, Adv,
3) Ungrammatical type II: *Adv; V; N; Adj, Adj;

Note that in 2) the ungrammatical sentence consists in only
a single interchange of words with respect to Sentence 1,
while in 3) the ungrammatical sentence consists in the
complete reversal of Sentence 1. Thus, 3) corresponds to a
toy-model version of the famous “Furiously sleep ideas
green colorless”. We want to explore whether the network is
sensitive to distances between the grammatical sentence 1)
and the two ungrammatical versions 2) and 3). We therefore
expect that sentence 3) elicits a higher error than sentence
2), and conversely, we expect that sentence 2) elicits a
higher error than sentence 1).

Procedure An SRN was trained on a single training set and
tested. The training consisted of 5 passes through the
training corpus. Performance was assessed based on the
networks’ ability to predict the next word given the prior
context. In order to compute statistical comparisons we
repeated the procedure with the ten different training
corpora using different initial connection weights.

Results and discussion

Each word was represented by the activation of a single unit
in the output layer. After training, SRNs trained with
localist output representations will produce a distributional
pattern of activation closely corresponding to a probability
distribution of possible next items. In order to assess the
overall performance of the SRNs, we computed the average
mean square error (MSE) in predicting the next word across
each test sentence.

Results are displayed in Fig. 2: The average MSEs were
0.75, 0.82, and 0.95 for grammatical, ungrammatical type I,
and ungrammatical type II respectively. We found that the
difference between the MSE elicited by grammatical
sentences was significantly lower than the MSE elicited by
ungrammatical type I (#(9) = 4.66, p < 0.005) and
ungrammatical type II (2(9) = 13.15, p < 0.001). To establish
a baseline, we also computed the average MSE elicited
across all the sentences contained in the training set after the
training stage. Interestingly the difference of MSE between
the grammatical test sentence comprising null-probability
bigram transitions and the MSE elicited by grammatical
sentences contained in the training set was not statistically
significant (t(9) = 0.13; p = 0.84), suggesting that the
network recognized the novel sentence as one of the training
set.
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Fig. 2: Mean square error across words in four type of sentences:
Striped pattern: average across all words in the training sent;
White: grammatical test sentence comprising null-probability
transitions; Light gray: ungrammatical type I test sentence; Dark
gray: ungrammatical type II test sentence. Displayed values result
from the average across the five simulations using different
training sets.

But how do the SRNs stack up against more traditional
statistical models whose weaknesses compelled Chomsky
(1957) to abandon probabilistic methods? N-gram models
are standard statistical models used in psycholinguistics that



are based on co-occurrences of words in natural language
corpora. Traditional n-gram models trained on the same
corpus here would therefore assign equal probability to test
sentences (1), (2), and (3) above. The results obtained here
demonstrate that SRNs are capable of going beyond n-gram
models in generalizing to new input.

As an illustration, Figure 3 shows the mean
activation of the output units at different points in the
sequence. The graph in Fig. 3A shows the averaged mean
activation of the SRNs after being presented with the test
sequences of words: “Adj; Adj, N; ...”. The figure shows
the averaged mean activation of the units corresponding to
adjectives (ADJ), noun (N), and adverbs (ADV), while the
activations for each of the individual verb units (V; through
Vi) are shown in detail. Even though V; never occurred
after N, in the training set, the activation of V, elicited by
the string “Adj; Adj, N; ...” is comparable to the activation
of other verbal verbs, such as Vs. Fig. 3B shows the
averaged mean activation of the SRNs after being presented
with the test sequences of words: “Adj; Adj, N; V; ...”. The
activation of adjective, noun, and verbs units are shown
averaged, while the activations of each of the adverb-units
(Adv, through Adve) are shown in detail. The activation of
Advl elicited by the string “Adj; Adj, N; V,...” is
comparable to (and in some cases higher than) the activation
of other adverbial units, despite the fact that Adv, never
occurred after V.
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Fig. 3: Mean activation across different units elicited by previous
context. A) Activation elicited by the word substring: “Adj1 Adj2
N1 ...”. B) Activation elicited by the word substring: “Adjl Adj2
N1 VI1...”. ADJ, N, V, ADV: mean activation across adjective,
noun, verb, and adverb units respectively. v1, v2,...,v10, advl,
adv2,...,adv6: Individual activation of verbal and adverb units
respectively.

The activation values displayed in Fig. 3 illustrate that the
networks are successfully learning to predict the next lexical
class. These results demonstrate that SRNs trained purely on
distributional information are sensitive to grammaticality
differences between different sentences in which bigram
transitions have null probabilities.

General Discussion

Even among the billions of words in available databases,
innumerable reasonable sentences remain absent. This so-
called sparse data problem continues to be a serious
challenge not only for the study of human language
acquisition and processing, but also in the area of artificial
intelligence devoted to natural language processing (see
Lee, 2004). The results of Experiment 1 reveal that humans
become sufficiently sensitive to the regularities of training
examples to recognize novel sequences whose bigram
transitions are absent in training. Therefore, subjects must
be relying on something other than co-occurrence of
consecutive elements to generalize from our experimentally
induced sparse sentence samples. The remaining question
concerns what type of cognitive mechanism can accomplish
this task. One such mechanism might be the rule-based
learning mechanism recommended by Marcus et al. (1990)
and others (e.g., Pefia, Bonatti, Nespor, & Mehler, 2002),
which does not rely on statistical learning. Alternatively, the
implicit knowledge of the underlying regularities needed to
succeed in the task could be acquired by distributional
learning through training exemplars. Our connectionist
simulations in Experiment 2 provide some evidence that the
latter alternative should be considered.

It has been previously argued by Elman (1990, see
also Elman, 2004) that SRNs are capable of forming internal
representations of grammatical classes from distributional
information. The present findings build on that idea,
showing that SRNs are capable of good performance in the
prediction task even in sentences having null transitional
probabilities relative to the training corpus. Previous studies
have demonstrated that the network uses distributional
information to induce categories. These categories are
reflected in the analysis of hidden unit activations evoked in
response to each word (e.g., Christiansen & Chater, 1999;
Reali et al. 2003; see also Elman, 2004). These analyses
involve measures in terms of Euclidean distance in the
hidden unit space, representing the similarity of words’
hidden unit activations, and cluster according to lexical
categories. Interestingly, the present results show that
SRNs’ prediction of the next word seems to be at least in
part determined by lexical category membership, rather than
being determined by specific word co-occurrences in the
training corpora. This is an important achievement for a
distributional learning mechanism, seeing as it was not
provided with information about grammatical classes.
Traditional n-gram models of language are not capable of
representing lexical classes in the same way. Standard
bigram or trigram models trained on our artificial grammar,
would assign exactly the same probability to all our test



sentences. SRNs seem to be effective in learning something
that goes beyond surface properties of language, suggesting
they could be understood as “regularity discoverers” rather
than mere statistical learners resembling n-gram models.
The present results are consistent with previous arguments
about connectionist models’ generalization properties
(Christiansen & Chater, 1994). Recently, Allen &
Seidenberg (1999), used connectionist simulations to show
that low probability sentences like (1) could be statistically
learned when other information such as word types or
semantics are used in its comprehension. Simulations in
Experiment 2 build on these previous studies by
demonstrating that pure distributional information can
provide a basis in the process of learning low probability
sentences.

In order to dismiss statistical approaches to
language, particularly through limitations imposed by sparse
data issues, it is necessary to thoroughly understand the
learning capabilities of systems such as connectionist
models. The present results challenge one of the most well-
established objections to statistical approaches, which might
be based on an underestimation of the ability of
connectionist models to deal with sparse input. One of the
principal arguments for innateness of grammar, often
referred to as “Poverty of the Stimulus” logic (e.g., Crain &
Pietroski, 2001), is based on precisely that property of the
linguistic data: sparseness. It is therefore crucial to
determine the extent to which connectionist models and
statistical approaches in general can overcome some of the
difficulties related to the sparseness of the linguistic input.
The present study constitutes a step in that direction.
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