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Abstract 

Visual statistical learning allows observers to extract high-level 
structure from visual scenes (Fiser & Aslin, 2001). Previous 
work has explored the types of statistical computations afforded 
but has not addressed to what extent learning results in unbound 
versus spatially bound representations of element co-
occurrences. We explored these two possibilities using an 
unsupervised learning task with adult participants who observed 
complex multi-element scenes embedded with consistently 
paired elements. If learning is mediated by unconstrained 
associative learning mechanisms, then learning the element 
pairings may depend only on the co-occurrence of the elements 
in the scenes, without regard to their specific spatial 
arrangements. If learning is perceptually constrained, co-
occurring elements ought to form perceptual units specific to 
their observed spatial arrangements. Results showed that 
participants learned the statistical structure of element co-
occurrences in a spatial-specific manner, showing that visual 
statistical learning is perceptually constrained by spatial 
grouping principles. 

Keywords: Visual Statistical Learning, Associative Learning, 
Perceptual Learning, Spatial Constraints. 

Introduction 
Structure abounds in the environment. The sounds, objects, 
and events that we perceive are not random in nature but 
rather are coherent and regular. Consider spoken language: 
phonemes, syllables, and words adhere to a semi-regular 
structure that can be defined in terms of statistical or 
probabilistic relationships. The same holds true for almost 
all aspects of our interaction with the world, whether it be 
speaking, listening to music, learning a tennis swing, or 
perceiving complex scenes. 

How the mind, brain, and body encode and use structure 
that exists in time and space remains one of the deep 
mysteries of cognitive science. This issue has begun to be 
elucidated through the study of “implicit” or “statistical” 
learning1 (Cleeremans, Destrebecqz, & Boyer, 1998; 
Conway & Christiansen, 2006; Reber, 1993; Perruchet & 
Pacton, 2006; Saffran, Aslin, & Newport, 1996). Statistical 
learning (SL) involves relatively automatic learning 
mechanisms that are used to extract regularities and patterns 
                                                             

1 We consider implicit and statistical learning to refer to the 
same learning ability, which we hereafter refer to simply as 
statistical learning. 

distributed across a set of exemplars in time and/or space, 
typically without conscious awareness of what regularities 
are being learned. SL has been demonstrated across a 
number of sense modalities and input domains, including 
speech-like stimuli (Saffran et al., 1996), visual scenes 
(Fiser & Aslin, 2001), and tactile patterns (Conway & 
Christiansen, 2005). Because SL appears to make contact 
with many aspects of perceptual and cognitive processing, 
understanding the underlying cognitive mechanisms, 
limitations, and constraints affecting SL is an important 
research goal. 

 Initial work in SL emphasized its unconstrained, 
associative nature (e.g., see Frensch, 1998; Olson & Chun, 
2002, for discussion). That is, a common assumption has 
been that statistical relations can be learned between any 
two or more stimuli regardless of their perceptual 
characteristics or identity; under this view, there is no 
reason to believe that learning a pattern involving items A, 
B, and C should be any easier or harder than learning the 
relations among A, D, and E. However, recent research has 
shown that this kind of unconstrained, unselective 
associative learning process may not be the best 
characterization of SL (Bonatti, Peña, Nespor, & Mehler, 
2005; Conway & Christiansen, 2005; Saffran, 2002; Turk-
Browne, Junge, & Scholl, 2005). Instead, factors related to 
how the sensory and perceptual systems engage SL 
processes appear to provide important constraints on the 
learning of environmental structure. 

In this paper we examine a largely unexplored constraint 
on visual statistical learning (VSL): the relative spatial 
arrangement of objects. If VSL operates via unconstrained 
associative learning mechanisms, we ought to expect that it 
is the co-occurrence of two objects that is important, not the 
relative spatial arrangement of those objects. However, 
another possibility is that VSL is akin to perceptual 
learning, in which two frequently co-occurring objects can 
form a new perceptual “unit” (Goldstone, 1998). Such 
unitization would be highly specific to not only the 
individual items but to their relative spatial arrangement as 
well. Before describing the empirical study in full, we first 
briefly review other work that points toward spatial 
constraints affecting visual processing. 
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The Role of Space in Visual Processing 
Intuitively, each sensory modality seems biased to handle 

particular aspects of environmental input.  For instance, 
vision and audition appear to be most adept at processing 
spatial and temporal input, respectively (Kubovy, 1988). For 
instance, whereas the auditory system must compute the 
location of sounds through differences in intensity and time 
of arrival at each ear, the location of visual stimuli is 
directly mapped onto the retina and then projected 
topographically into cortical areas. In general, empirical 
work in perception and memory suggests that in visual 
cognition, the dimensions of space weigh most heavily, 
whereas for audition, the temporal dimension is most 
prominent (Friedes, 1974; Kubovy, 1988; Penney, 1989). 

In the area of VSL, the ways in which time and space 
constrain learning have only recently begun to be explored. 
Although VSL can occur both with items displayed in a 
spatial layout (Fiser & Aslin, 2001, 2005), as well as with 
objects appearing in a temporal sequence (Conway & 
Christiansen, 2006; Fiser & Aslin, 2002; Turk-Browne et 
al., 2005), some evidence suggests that it is the former that 
occurs most naturally and efficiently. For instance, Gomez 
(1997) suggested that visual learning of artificial grammars 
proceeds better when the stimulus elements are presented 
simultaneously – that is, spatially arrayed – rather than 
sequentially, presumably because a simultaneous format 
permits better chunking of the stimulus elements. Likewise, 
Saffran (2002) found that participants learned predictive 
relationships well with a visual-simultaneous presentation, 
but did poorly in a visual-sequential condition. Finally, 
Conway and Christiansen (2007) further explored spatial 
constraints on VSL by creating structured patterns that 
contained statistical relations among temporally-distributed, 
spatially-distributed, or spatiotemporally-distributed 
elements. The results revealed that participants had 
difficulty acquiring the statistical patterns of the temporal 
and spatiotemporal stimuli, but easily learned the spatial 
patterns. 

These data suggest that VSL occurs most easily for spatial 
layouts. However, a separate and hitherto unanswered 
question is whether VSL for spatially-distributed patterns 
necessarily leads to knowledge that is specific to the relative 
positions of the stimuli. For instance, suppose object A 
consistently is paired with object B, with A always 
occurring above B. After exposure to such pairs of items in 
a multi-element display, will participants learn that A and B 
co-occur, without regard to their arrangement, or that A and 
B co-occur in a specific spatial position (A above B)? If SL 
produces knowledge that is specific to the spatial 
arrangement of the co-occurring items, then this would 
suggest that VSL rather than being an unconstrained 
associative learning mechanism, may be more similar to 
perceptual learning processes which lead to highly specific 
forms of knowledge (e.g., Fahle & Poggio, 2002). 

In the following two experiments, we build upon the work 
pioneered by Fiser and Aslin (2001; 2005), who 
investigated VSL for complex, multi-element displays.  We 

used their paradigm to investigate to what extent VSL 
results in spatially bound versus unbound representations of 
object co-occurrences. Following the presentation of the 
experiments, we discuss the results in terms of how to best 
characterize the mechanisms underlying VSL 

Experiment 1 
Experiment 1 uses Fiser and Aslin’s (2001) methodology in 
which participants are exposed to complex, multi-element 
scenes under passive, unsupervised viewing conditions. The 
scenes are composed of “base-pairs”, which are two shapes 
that are consistently paired together in a particular spatial 
arrangement. Following presentation of the scenes, we 
tested participants’ knowledge of the base-pairs in a forced-
choice familiarity task. Unlike Fiser and Aslin (2001) who 
provided only one kind of test comparison (base-pairs vs. 
infrequent pairs), we also tested participants’ familiarity of 
“switched” pairs. Switched pairs are two shapes of a base-
pair that have had their spatial arrangements reversed. By 
including additional foil type, we can investigate to what 
extent participants’ knowledge of the co-occurrence 
statistics is bound by the relative spatial arrangements in 
which the shapes had consistently been presented. 

 
Method 
Participants Seventeen undergraduate students at Indiana 
University participated and received course credit. All 
subjects were native speakers of English. 
 
Stimuli Twelve arbitrary complex shapes, used by Fiser and 
Aslin (2001), were displayed in a 3 x 3 grid. The experiment 
consisted of two types of phases: exposure and test. During 
the exposure phases, the twelve shapes were organized into 
six base pairs. Each base pair consisted of two shapes that 
always occurred together in a specific spatial arrangement. 
As in Fiser and Aslin (2001), the six base pairs were 
organized into three orientations, two of each type: 
horizontal, vertical, and oblique. Scenes were created by 
randomly selecting 1 base pair of each orientation, and 
placing them on the 3 x 3 grid so that each base-pair 
touched at least one other base-pair. This method produces a 
total of 144 distinct scenes (see Figure 1 for examples). 
Given this method of scene creation, the probability of 
occurrence of a given individual shape is the same for all 
shapes; additionally, the joint probability of two shapes of a 
base-pair occurring in any given scene is 0.5. 

Two other types of shape pairs were created to be used 
during the test phases: non-pairs and switched pairs. A non-
pair was a pair of shapes that originated from two different 
base-pairs in the exposure phase. The probability of any 
given non-pair occurring together in the exposure phase was 
very low, less than 0.02. A switched pair was a base-pair 
that had the position of its two shapes reversed; that is, if a 
particular base-pair consisted of shape A always occurring 
above shape B, the switched pair contained shape B 
occurring above shape A. Thus, the joint probability of the 
two shapes of a switched pair occurring together 
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(independent of their relative spatial arrangement) was 0.5, 
the same as the probability of a base-pair. However, the 
probability of the shapes of a switched pair occurring in that 
particular spatial arrangement was 0. Thus, in this way, the 
use of switched pairs allows us to pit spatial-independent 
statistics against spatial-specific statistics. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Illustration of scene presentation during exposure 

phases of Experiment 1. Scenes were shown 1 at a time. 
 
Procedure Participants were instructed that they would 
view complex scenes one at a time. They were told to pay 
attention to what they saw because they would later be 
asked some questions. In the first exposure phase, 
participants saw each of the 144 scenes twice, presented in 
random order. Each scene was displayed for 2 s, with a 1 s 
pause inserted between scenes. Halfway through, 
participants were given a chance to take a voluntary rest 
break. The entire duration of this exposure phase was about 
15 minutes. Note that at no point were participants told 
anything about the scenes having any kind of invariant 
structure. 

Following the first exposure phase, participants were then 
given a series of temporal two-alternative forced-choice 
(2AFC) tests, in which two different pairs of shapes were 
shown on the grid, one at a time (see Figure 2). Participants 
were instructed to choose the pair that looked “most 
familiar” relative to the scenes they viewed in the exposure 
phase, by pressing the “1” or “2” keys. There were three 
types of comparisons: base-pair vs. non-pair; base-pair vs. 
switched pair; switched pair vs. non-pair2. For all cases, the 
two options had the same spatial arrangement (horizontal, 
vertical, or oblique) and absolute spatial position on the 
grid. There were 12 different 2AFC tests for each type of 
comparison, giving a total of 36 test trials. Each pair in a 
test was presented for 2 s with 1 s pause inserted in between. 
After the participant made a response, the next 2AFC test 
was initiated. 

Following Test 1, participants engaged in a second 
exposure phase, which was identical in all respects to the 
first exposure phase except that each scene was viewed only 
once, in random order, for a total of 144 scene presentations. 
After the second exposure phase, participants were given 

                                                             
2 Note that for scoring purposes, for the switched vs. non-pair 

comparison, we arbitrarily chose the switched pair as being the 
correct response. 

Test 2, which consisted of the same 36 2AFC tests that they 
had received in Test 1. 

 
 

 
 
 
 
 
Figure 2: Illustration of sample 2AFC. Note that the two 
scenes are shown 1 at a time. The correct response in this 

case is the base-pair, on the right. 
 
Results and Discussion 
Test 1 and Test 2 results are reported for the three types of 
forced-choice comparisons, shown in Figure 3. In Test 1, 
only one comparison type, base-pair vs. switched pair, had 
performance significantly above 50% (M = 6) chance levels 
[M = 7.8; t(16) = 4.3, p = .001]. Neither performance on 
base-pair vs. non-pair [M = 6.6; t(16) = .98, p = .34] nor 
switch vs. non-pair comparisons [M = 4.9; t(16) = -1.6, p = 
.12] reached significance. These results indicate that in Test 
1, participants were able to distinguish a base-pair from its 
spatially-inverted arrangement, but could not distinguish a 
base-pair from a non-pair nor a switched pair from a non-
pair. Thus, participants’ knowledge following the first 
unsupervised learning phase was relatively fragile, limited 
only to the spatial-specific positions of base-pairs. 

In contrast, Test 2 results indicate that both base-pair vs. 
switched pair [M = 10.1; t(16) = 6.5, p < .001] and base-pair 
vs. non-pair [M = 10.2; t(16) = 8.7, p < .001] comparisons 
were significantly greater than chance, whereas the switch 
vs. non-pair comparison was not [M = 6.7; t(16) = .99, p = 
.34]. These results indicate that by Test 2, participants had 
learned the shape co-occurrence patterns and could not only 
distinguish a base-pair from its spatially-inverted foil, but 
could also reliably pick base-pairs over non-pairs. 

In sum, the results from Experiment 1 strongly suggest 
that visual statistical learning is constrained such that co-
occurrence patterns are learned in a spatially-specific 
manner. Incorporating three different types of test 
comparisons allowed us to closely examine the nature of 
knowledge gained from exposure to the structured scenes. 
On the switched pair vs. non-pair comparison, participants 
did not reliably choose one of the pairs over the other as 
being most familiar. If participants tended to choose the 
switched pair, this would have been strong evidence for a 
“spatial-independent” aspect of visual statistical learning. 
This result would have indicated that even though the 
shapes’ spatial positions were inverted, the fact that the two 
shapes had consistently occurred together was enough for 
participants to learn their co-occurrence, independent of the 
actual relative positioning of the items. However, this was 
not what was found. The results instead showed that 
participants treated the switched pair no different than a 
non-pair, suggesting that the knowledge regarding the co-
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occurrence patterns was highly inflexible and constrained by 
the specific relative spatial arrangements of the objects. 
 

 

 
 
Figure 3: Experiment 1 performance (% correct) on each of 

the three comparison types for Test 1 (top) and Test 2 
(bottom). 

Experiment 2 
Although the results of Experiment 1 are highly suggestive, 
one possible limitation is that participants received the 
identical test in both test phases. It is possible that the first 
test biased participants’ performance on the second test. 
Thus, to eliminate this potential confound, we conducted 
Experiment 2 which incorporated only one test phase. 
Additionally, in order to encourage participants to better 
attend to the scenes in the exposure phase, we used a same-
different task (Conway & Christiansen, 2005), rather than 
passive exposure. 
  
Method 
Participants An additional seventeen undergraduate 
students at Indiana University participated and received 
course credit. All subjects were native speakers of English. 
 

Stimuli The shapes, scenes, and test pairs were identical to 
those used in Experiment 1. 
 
Procedure The procedure was identical to Experiment 1 
except in the following respects. Instead of having multiple 
exposure and test phases, there was only one exposure phase 
and one test phase. In the exposure phase, participants were 
told that they would see pairs of scenes, one scene at a time. 
For each pair of scenes, they were to decide whether they 
were the same or different, and press “S” or “D”, 
respectively. The pairs of scenes consisted of the 144 multi-
element scenes previously described. Each of the 144 scenes 
was paired with another scene, with half of all pairs being 
identical and half being different. The pairs that were 
different differed only in terms of 1 base-pair; and in almost 
all cases the absolute position of shapes on the 3 x 3 grid 
was the same. In this way, participants could not do the 
same-different task merely by noting that, for instance, the 
first scene had a shape in the upper left-hand location but 
the second scene did not. Doing this task successfully 
requires participants to pay attention to the actual identity of 
shapes in the scenes, in addition to their spatial positioning. 
Participants completed 144 same-different pairs (i.e., they 
viewed each of the 144 scenes two times). As before, each 
scene was shown for 2 s and there was a 1 s pause in 
between exposures. 

Following the exposure phase, participants completed a 
familiarity test phase, which was identical to the tests used 
in Experiment 1. 
 
Results and Discussion 
The mean performance on the same-different task in the 
exposure phase was M = 122.3 out of a possible total of 144, 
with a range of (99, 138). 

 

 
Figure 4: Experiment 2 test performance (% correct) on 

each of the three comparison types. 
 
The results for the test phase are shown in Figure 4. As 

can bee seen, both the base-pair vs. switched pair [M = 9.2; 

* 

** ** 

 ** 

* 
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t(16) = 6.4, p < .001] and base-pair vs. non-pair [M = 7.8; 
t(16) = 2.7, p < .02] comparisons were significantly greater 
than chance, whereas the switch vs. non-pair comparison 
was not [M = 5.2; t(16) = -1.5, p = .16]. Performance for 
base-pair vs. switch pair was marginally greater than 
performance for base-pair vs. non-pair [t(16) = 1.4, p = .09]. 

 The marginal difference indicates that on average, 
participants were slightly better at distinguishing base-pairs 
from switched pairs than they were at distinguishing base-
pairs from non-pairs. That is, having positional information 
involved in the forced-choice task appears to aid 
performance, providing further support that VSL intimately 
relies on relative spatial position information. 

In general, the pattern of results of Experiment 2 is 
essentially identical to that of Experiment 1 (Test 2). 
Experiment 2 thus serves to replicate the finding in 
Experiment 1 of spatial-specific learning mediating VSL. 
 

General Discussion 
In this paper, we attempted to investigate the nature of 
spatial constraints affecting VSL. Following exposure to 
structured multi-element scenes that contained pairs of 
invariantly arranged shapes, participants’ knowledge of the 
co-occurrence pairs was tested. We created test comparisons 
that allowed us to determine to what extent learning was 
either independent of, or specific to, relative spatial position. 
The results were quite clear: participants’ knowledge of the 
shape co-occurrence statistics was specific to the spatial 
arrangements in which they had occurred.  

Note that this was not an inevitable result. From a purely 
unselective associative standpoint, it might have been 
expected that participants would treat the switched pair as 
being familiar because it was composed of elements that had 
co-occurred frequently. However, participants treated the 
switched pairs no differently than the non-pairs; in their 
eyes, the switched pairs were just as unfamiliar as two 
shapes that had never or rarely occurred together in the 
exposure phase. 

That VSL is constrained by relative spatial position is 
consistent with other work showing the importance of the 
dimension of space to vision (Friedes, 1974; Penney, 1989). 
For example, results from experiments using the contextual-
cueing paradigm (Chun, 2000) have shown that the visual 
system picks up invariant spatial relationships and uses this 
context to guide attention; furthermore, spatial features 
appear to play a more important cueing role than surface 
features such as color (Olson & Chun, 2002). The current 
data also complement our knowledge regarding the nature 
of constraints affecting statistical learning more generally. 
For instance, Turk-Browne et al. (2005) have illustrated 
attentional constraints on VSL. They presented participants 
with two streams of statistically-structured visual materials; 
only the stream to which participants were asked to attend 
resulted in learning. Bonatti et al. (2005) have shown that 
the presence of linguistic constraints affect statistical 
learning. In an auditory SL task, they found that participants 
preferentially learned statistics among consonants but not 

among vowels. Finally, Conway and Christiansen (2005, 
2007) have revealed the presence of modality constraints 
affecting SL. They have shown that each sensory modality 
not only is particularly attuned to either spatial or temporal 
patterns, but also that each is differentially biased to pick up 
statistics at the beginning or ending of elements in a 
temporal stream. 

Coupled with the results of Conway and Christiansen 
(2005, 2007), the present finding of spatial-specificity in 
VSL suggests that limitations in perceptual processing 
constrain what statistics are learned. There are at least two 
possible interpretations of these data. One possibility is that 
VSL is an associative learning mechanism in which 
particular perceptual, attentional, and cognitive constraints 
affect how and what types of statistics are learned. A second 
possibility, which we will entertain here, is that VSL may be 
more closely related to perceptual processing – specifically, 
perceptual learning – than to associative learning. 

Although associative and perceptual learning are not 
necessarily mutually incompatible (e.g., see Hall, 1991), 
they do stress two different aspects of learning. Associative 
learning theories have to do with the linking of two or more 
stimuli or concepts such that the presence or excitement of 
one activates the other. Perceptual learning, on the other 
hand, emphasizes improvement in the perception or 
discrimination of stimuli following exposure. That is, the 
former theory has to do with cognitive “enrichment” 
whereas the latter has to do with perceptual “differentiation” 
and “specificity” (e.g., Gibson & Gibson, 1955; Pick, 1992; 
Postman, 1955).  

Not surprisingly, many researchers have stressed the 
associative nature of SL (e.g., Fiser & Aslin, 2001; Frensch 
& Runger, 2003); at least superficially, learning the 
statistical relations between two co-occurring items appears 
to involve forming an association between them. However, 
our results show that VSL involves more than merely 
learning the association between two unbound elements; 
spatial position is also encoded. It is true that an 
associationist perspective could account for these results by 
assuming that associations are learned not just between two 
shapes but also between each shape and its spatial position. 
Even so, to be consistent with our data, the learned 
associations must involve relative spatial position, not just 
absolute position. One advantage of a perceptual learning 
account is that it predicts a priori that learning would be 
specific to the relative spatial position of the items (see 
Goldstone, 2000).  

A perceptual learning account leads to an additional 
prediction. One of the primary mechanisms of perceptual 
learning is a “unitization” process in which two frequently 
co-occurring items become perceptually fused if a single 
image can be formed that integrates the two items 
(Goldstone, 1998). In the context of VSL, this would mean 
that the two individual shapes of a base-pair would, after 
sufficient exposure, be formed into a single functional unit. 
The prediction that follows is that VSL should lead to new 
units that are more easily perceived than combinations of 
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items that did not co-occur frequently. We are currently 
testing this prediction. If an improvement is found in 
perception following statistical learning, this would be 
additional evidence supporting the idea that VSL may be 
akin to perceptual learning. Of course, as already stated, 
associationist theories can also be crafted to be consistent 
with such data, as long as they take into account the 
bidirectional effects between perception and learning, 
especially those involving relative spatial position. 

To summarize, this paper investigated how spatial 
grouping principles constrain VSL. Consistent with 
previous work, VSL does not appear to involve spatially-
insensitive associative learning processes, but instead is 
constrained by the relative spatial arrangement of the 
elements of a scene, limiting what kinds of patterns are 
readily learned. Based on this evidence, we suggest that it 
may be fruitful to explore possible links between VSL and 
perceptual learning to investigate the extent to which these 
two learning phenomena may ultimately be relying on 
common mechanisms. 
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