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Abstract 
While statistical learning (SL) and language acquisition have 
been perceived as intertwined, such a view must contend with 
theoretical and empirical challenges. Against the backdrop of 
criticism leveled at early associationist efforts to account for 
language, a key concern for current SL approaches is whether 
it may suffice to enable the detection of long-distance 
relationships akin to those ubiquitously abounding in natural 
language. In Experiment 1, we extend results from previous 
work on the learning of nonadjacent dependencies to the 
learning of long-distance relations spanning three intervening 
elements; such learning is shown to obtain under two separate 
contexts. In Experiment 2, we additionally test the strength of 
SL and language's proposed relatedness by documenting the 
nature of correlations in individual differences between the 
two. Both experiments support the thesis that SL may overlap 
with mechanisms for language, while raising questions as to 
the singularity or duality of such underlying mechanism(s). 

Keywords: Statistical Learning; Artificial Grammar 
Learning; Language Comprehension; Sentence Processing; 
Individual Differences; Working Memory; IQ 

Introduction 
Statistical learning (SL) has been proposed as centrally 
connected to language acquisition and development. 
Succinctly defined as the discovery of structure by way of 
statistical properties of the input, such learning has been 
characterized as robust and automatic, and has been 
demonstrated across a variety of both linguistically relevant 
and general cognition contexts, including speech 
segmentation (Saffran, Aslin & Newport, 1996), learning 
the orthographic regularities of written words (Pacton, 
Perruchet, Fayol & Cleeremans, 2001), visual processing 
(Fiser & Aslin, 2002), visuomotor learning (Hunt & Aslin, 
2001) and non-linguistic, auditory processing (Saffran, 
Johnson, Aslin & Newport, 1999). But important issues still 
surround the general scope of SL, especially with respect to 
how much of complex language structure can be captured 
by this type of learning.   

SL research—sometimes also studied as “artificial 
grammar learning” (AGL) or under the rubric of “implicit 
learning”—has shown that infant and adult learners, upon 
brief and passive exposure to sequences generated by an 
artificial grammar, can incidentally acquire and evince 
knowledge for the predictive dependencies embedded 
within the stimuli strings (for reviews, see Gómez & 
Gerken, 2000; Saffran, 2003). As the instantiation of 
statistical regularities among stimulus tokens in such 
grammars commonly mirror the kinds of relations among 
phonemic, lexical, and phrasal constituents in actual 

language, a clear parallel becomes discernible between 
successful learning of the artificial languages and those of 
natural languages. Yet it remains to be fully evidenced 
whether and to what extent SL and language are subserved 
by the same underlying mechanism(s). 

Furthermore, while considerable focus has been placed on 
the successful learning of dependencies between adjacent 
linguistic elements, e.g., syllables in words, comparatively 
less work has addressed the issue of learning nonadjacent 
relations (for exceptions see Gómez, 2002; Newport & 
Aslin, 2004; Onnis, Christiansen, Chater & Gómez, 2003). 
This is an area of decisive importance, as many key 
relationships between words and constituents are conveyed 
in long-distance (or remotely connected) structure. In 
English, for example, linguistic material may intervene 
between auxiliaries and inflectional morphemes (e.g., is 
cooking, has traveled) or between subject nouns and verbs 
in number agreement (e.g., the books on the shelf are dusty).  
More complex relationships to surface forms are also found 
in nonadjacent dependencies between antecedents and gaps, 
such as in wh-questions (e.g., Who did you see __?) and 
anaphoric reference (e.g., John went to the store where he 
bought some apples).  Indeed, previous work incorporating 
statistical relations in behaviorism faulted when attempting 
to account for long-distance dependencies created by the 
presence of embedded materials. Will SL be consigned to a 
similar fate, found “guilty by association” or through 
associative shortcomings of its own? And how does SL 
relate to language processing more generally? 

We employ a two-pronged approach to explore the 
hypothesis that SL and language are integrally interrelated. 
We first conduct an AGL experiment in which the grammar 
instantiates farther, more remote statistical relations than has 
been previously studied—thereby preliminarily testing the 
viability of SL to succeed in principle where earlier efforts 
at associationist accounts of language had been deemed to 
flounder. The detection of long-distance dependencies is 
thus the focus of our first experiment. We then press further 
to probe the degree to which SL and language may be 
empirically linked. Accordingly, our second experiment 
seeks to determine how individual differences in SL and 
natural language are interrelated. 

Experiment 1: Statistical Learning of Long-
Distance Dependencies 

Gómez (2002) investigated 18-month-old infants’ and 
adults’ learning of nonadjacent structure by having them 
listen to one of two artificial languages (L1 or L2), each of 
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which generated three-element strings in which initial and 
final items formed a dependency pair (e.g., a-d of aXd). 
Drawing upon the observation that certain elements in 
natural language belong to relatively small sets (function 
morphemes like ‘a,’ ‘was,’ ‘-s,’ and ‘-ing’), whereas others 
belong to very large sets (nouns and verbs), and the fact that 
learners must often track key dependencies between 
functional elements, Gómez manipulated the set size (i.e., 2, 
6, 12, or 24 elements) from which she drew the middle 
items (Xs), and found that participants were better able to 
detect the nonadjacent dependencies when the variability of 
the middle items was at its highest (i.e., set size 24). Onnis 
et al. (2003) reported that such learning of nonadjacent 
relations also occurs within the visual domain and when the 
set size of the middle item is invariant (i.e., 1 element). 

A theoretical shortcoming of these studies is that the 
learning of nonadjacent dependencies only occurred across a 
single interposed item. Here we extend those results to three 
middle elements. We assess for learning of the long-distance 
dependencies under a condition in which “overlapping” sets 
for the middle items of the language’s generated strings (as 
detailed below) reflects a property of natural language in 
which embeddings are commonly varied and complex, 
admitting of interspersions in multiple places. We also 
include a condition without any overlap in intervening 
material, but which nonetheless contains the same surface-
level long-distance relations as the former. 

Method 
Participants Thirty-nine undergraduates at Cornell 
University participated for course credit or monetary 
compensation. 
Materials During training, participants listened to strings 
generated by an artificial language from one of two 
conditions. Strings in both conditions had the form aXYZd, 
bXYZe, and cXYZf, but differed in the exact composition of 
sets comprising the middle positions (X, Y, and Z). 

In the Overlapping-Nonwords condition, |X| = 2, |Y| = 3, 
and |Z| = 4 for aXYZd (i.e., 2, 3, and 4 elements constituted 
the sets for the X-, Y-, and Z-positions respectively), |X| = 3, 
|Y| = 4, and |Z| = 2 for bXYZe, and |X| = 4, |Y| = 2, and |Z| = 3 
for cXYZf. Overlap resulted from allowing four intervening 
elements (i.e., nonwords) to occur within two of three 
different sets across all dependency pairs. Using n1, n2, ...n9 
to designate the 9 distinct intervening nonwords, then the 
element-sets for positions X, Y and Z were as follows: 

 aXYZd: bXYZe: cXYZf: 
X= {n1, n2} X= {n1, n2, n3} X= {n1, n2, n3, n4} 
Y= {n3, n4, n5} Y= {n4, n5, n6, n7} Y= {n5, n6} 
Z= {n6, n7, n8, n9} Z= {n8, n9} Z= {n7, n8, n9} 

Whereas in the Non-Overlap condition, |X| = 3, |Y| = 3 and 
|Z| = 3 for all three nonadjacent dependency pairings: 

 X= {n1, n2, n3} 
 Y= {n4, n5, n6} 
 Z= {n7, n8, n9} 

Strings were constructed by combining individual 
nonword tokens recorded from a female speaker. The initial 
(a, b, c) and final (d, e, f) stimulus tokens were instantiated 
by the nonwords pel, dak, vot; rud, jic, and tood. The middle 
items were drawn from the nonwords dup, cav, jux, lum, 
mib, neep, tiz, rem, and bix. Assignment of particular tokens 
(e.g., pel) to particular stimulus variables (e.g., the c in 
cXYZf) was randomized for each participant to avoid 
learning biases due to specific sound properties of words. 
Nonwords were presented with a 250 msec inter-word 
interval and a 750 msec inter-string interval. 
Procedure Thirteen participants were recruited per 
condition and for a no-training control group. Since the 
Overlapping-Nonwords condition only had 24 unique 
strings for each dependency pair, 24 of 27 possible strings 
per dependent pair in the Non-Overlap condition were 
randomly selected for presentation. Trained participants 
listened to 4 blocks of stimuli strings, with each block 
composed of a random ordering of the 72 strings (24 strings 
x 3 pairs), for total exposure to 288 strings. Training lasted 
about 24 minutes. 

Participants were instructed to pay attention to the stimuli 
because they would be tested on them later. Before testing, 
they were informed that the sequences they had heard were 
generated by a set of rules specifying the particular order of 
nonwords and that they would hear 12 strings, 6 of which 
would violate the rules. They were asked to judge whether 
the stimuli followed the rules by pressing a “Yes” or “No” 
key. Participants were then tested on a randomly ordered set 
of 6 grammatical strings (e.g., aXYZd) and 6 foils (e.g., 
*aXYZe). Foils had been constructed by dissociating the tail 
element of a string from the string’s head and replacing it 
with another nonword from the final-element set. Test items 
were identical for both conditions and for the control group. 

Results and Discussion 
Group means for accurate grammaticality judgments in the 
two conditions were statistically identical, each at 7.85 (out 
of 12), corresponding to 65.4% correct classification. This is 
significantly higher than chance-level performance, t(12) = 
2.24, p < .05 for the Overlapping-Nonwords condition; t(12) 
= 2.89, p = .01 for the Non-Overlap condition. The control 
group, without any training, had a mean correct 
classification score of 6.31 (52.6%), which was not better 
than expected by chance, t(12) = .74, p = .47. Furthermore, 
comparisons of mean scores for each condition against that 
of the control’s indicated significantly higher performance 
for both of the trained conditions: Overlapping-Nonwords 
versus control group, t(24) = 1.67, p = .054; Non-Overlap 
versus control group, t(24) =  2.02, p = .028. 

While performance was modest compared to that for 
detecting single-item separated dependencies under high-
variability contexts (cf. Gómez, 2002), significant learning 
was nonetheless observed. These encouraging results form a 
good starting point for exploring other contexts that may 
potentially facilitate (or hinder) detection of remote 
dependency structures. In support of this claim, it should be 
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noted that, while training duration was slightly longer than 
those in earlier nonadjacency studies with adults (24 
minutes versus 18 minutes), participants were actually 
exposed to fewer total strings (288 versus 432) owing to the 
longer sequences (5- versus 3-element strings). Moreover, 
the middle-element sets’ sizes were either of fairly low or of 
zero variability with respect to the other internal sets (i.e., 
versus a set size of 24). Thus, while the Overlapping 
condition exhibited some internal variability that may have 
helped place the level of learning performance on par with 
the Non-Overlap condition, which would be consistent with 
findings of Gómez (2002) and Onnis et al. (2003), 
languages under both conditions were learned without 
incorporating the facilitatory (variability) effect of large set 
sizes, with exposure to fewer instances of strings, and with 
dependent relations spanning across more items. 

As a final point of interest, performance within the two 
conditions was seen to be highly variable across individuals. 
For example, 7 of the 26 trained participants (and none of 
the controls) demonstrated learning above 83% correct 
classification. Why do some individuals thus appear more 
adept at discerning the relevant regularities?  And what 
implications and correspondence would such seemingly 
differential sensitivity to statistical structure have with 
respect to known population variance in natural language 
ability?  We address these issues as part of Experiment 2. 

Experiment 2: Individual Differences in 
Statistical Learning and Language 

While individual differences in language have received 
some attention to date, less is known about individual 
differences in SL within the normal population. Although 
seemingly present throughout development, some minor 
differences across age have been documented. Saffran 
(2001) observed consistent performance dissimilarities 
between children and adults in one of her artificial language 
studies. Cherry and Stadler (1995) reported that SL 
differences, as gauged by a serial-reaction time (SRT) task, 
correlate with variations in educational attainment, 
occupational status, and verbal ability in older adults. More 
recently, Brooks, Kempe and Sionov (2006) showed that 
Culture-Fair IQ Test scores mediated successful learning on 
a miniature second-language learning task bearing 
resemblance in its design and learning demands to those 
invoked by a traditional AGL task. Although these few 
studies have looked at individual differences in SL, no 
previous study has directly sought to link them to variations 
in language abilities. Finding correlations between 
individual differences in SL and language is crucial to 
determining whether the two overlap in terms of their 
underlying mechanisms. We thus set out to explore this in a 
comprehensive study of SL and language differences using 
a within-subject design. 

Method 
Participants Thirty monolingual, native English speakers 
from among the Cornell undergraduate population (M=19.9, 

SD=1.4) were recruited for course credit or money. None 
had participated in Experiment 1. 
Materials To study the relationship between individual 
differences in SL and language, we administered a test 
battery assessing two types of SL, language comprehension, 
vocabulary, reading experience, working memory, memory 
span, IQ, and cognitive motivation. 

Statistical Learning. Two SL tasks, each implementing 
one of two types of artificial grammars, involving either 
adjacent or nonadjacent dependencies were conducted. The 
auditory stimuli and design structure were typical of those 
successfully used in the literature to assess statistical 
learning (e.g., Gómez, 2002). In both tasks, training lasted 
about 25 minutes and was followed by a 40-item test phase. 
The latter used a two alternative forced choice (2AFC) 
format in which participants were required to discriminate 
grammatical strings from ungrammatical ones within sets of 
contrastive pairs. Ungrammatical strings differed from 
grammatical ones by only one element. 

For the adjacent SL task, adjacent dependencies occurred 
both within and between phrases generated by the grammar 
(Figure 1, left). Regarding phrase internal dependencies, 
there were two types of determiners—one of which (d) 
always occurred prior to a noun (N), and the other of which 
(D) always directly preceded an adjective (A) that, in turn, 
occurred before a noun (D A N). Between-phrase 
dependencies resulted from every verb phrase (VP) being 
consistently preceded by a noun phrase (NP) and optionally 
followed by another noun phrase. The language was 
instantiated through 10 distinct nonwords distributed over 
these lexical categories such that there were 3 N, 3 V, 2 A, 1 
d, and 1 D. For the nonadjacent SL task, the grammar 
consisted of 3 sets of dependency pairs (i.e. a-d, b-e, c-f), 
each separated by a middle X element (Figure 1, right). The 
string-initial and final elements that comprise the 
nonadjacent pairings were instantiated with monosyllabic 
nonwords. The intervening Xs were drawn from 24 distinct 
disyllabic nonwords. None of the nonadjacent SL nonwords 
were similar to those in the adjacent SL task. 

 
S → NP VP S → a X d 
NP → d N S → b X e 
NP → D A N S → c X f 
VP → V (NP) X = { x1, x2, … x24} 

Figure 1: The two artificial grammars used to assess 
statistical learning of adjacent (left) and nonadjacent (right) 

dependencies. 
 
Language comprehension. A self-paced reading task was 

used to assess language comprehension. Sentences were 
presented individually on a monitor using the standard 
moving window paradigm and followed by “yes/no” 
questions probing for comprehension accuracy. While 
reading times were recorded, the measures of interest for 
our analyses were the comprehension scores that served as 
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offline correlates of language ability.1 The sentence material 
consisted of sentences drawn from three different prior 
studies of various aspects of language processing (see Table 
1). We thus computed comprehension accuracy scores for 
each set of materials: clauses with animate/inanimate noun 
constructions (A/IN; Trueswell, Tanenhaus & Garnsey, 
1994), noun/verb homonyms with phonologically typical or 
atypical noun/verb resolutions (PT; Farmer, Christiansen & 
Monaghan, 2006), and subject-object relative clauses 
(S/OR; Wells, Christiansen, MacDonald & Race, 2007). 

 
Table 1: Language comprehension sentence examples. 

 
Subject-Object Relative Clauses (S/OR) 

Subject relative: The reporter that attacked the senator 
admitted the error. 

Object relative:  The reporter that the senator attacked admitted 
the error. 
Animate-Inanimate Noun Clauses (A/IN) 

Reduced: The defendant/evidence examined by the lawyer 
turned out to be unreliable. 

Unreduced: The [defendant who]/[evidence that] was examined 
by the lawyer turned out to be unreliable. 
Ambiguities involving Phonological Typicality (PT) 

Noun-like homonym with N/V resolution: Chris and Ben are 
glad that the bird perches [seem easy to install]/[comfortably in 
the cage]. 

Verb-like homonym with N/V resolution: The teacher told the 
principal that the student needs [were not being met]/[to be more 
focused]. 

 
Vocabulary. The Shipley Institute of Living Scale (SILS) 

Vocabulary Subtest (Zachary, 1994) was used to assess 
vocabulary. It is a paper-and-pencil measure consisting of 
40 multiple-choice items in which the participant is 
instructed to select from among four choices the best 
synonym for a target word. 

Reading Experience. The Author Recognition Test (ART) 
(Stanovich & West, 1989) was used as a proxy measure of 
relative reading experience. The questionnaire required 
participants to check off the names of popular writers they 
recognize on a list. The list included 40 actual authors, 40 
foils, and 2 “effort probes.” 

Working Memory. The Waters and Caplan (1996) reading 
span task gauged verbal working memory (vWM). 
Participants were asked to recall all sentence-final words of 
a given sentence set, while forming semantic judgments for 
each individual sentence as it was visually presented. The 
number of sentences in each set increased incrementally 
from 2 to 6, with three trials at each level. 

Memory Span. Rote memory capacity was indexed 
through recall accuracy on the Forward Digit Span (FDS) 
task, derived from the WAIS-R subtest (Wechsler, 1981). A 
recording played a sequence of digits spoken in monotone at 

                                                             
1 Given the offline nature of SL grammaticality tests, these offline 
comprehension measures are more suitable for comparisons than 
simple RTs (reading times) as they better equate task demands 
across the experimental manipulations.  

1-sec intervals. A standard tone after each sequence cued 
the participant to repeat out loud the digits they had heard in 
their proper order. Sequences progressed in length from 2 to 
9 digits, with two distinct sequences given for each level. 

IQ. We used Scale 3, Form A of Cattell’s Culture Fair 
Intelligence Test (CFIT) (1971), which is a nonverbal test of 
fluid intelligence or Spearman’s “g.”  The test contained 
four individually timed subsections (Series, Classification, 
Matrices, Typology), each with multiple-choice problems 
progressing in difficulty and incorporating a particular 
aspect of visuospatial reasoning. Raw scores on each subtest 
are summed together to form a composite score, which may 
also be converted into a standardized IQ. 

 Cognitive Motivation. The Need for Cognition (NFC) 
Questionnaire (Cacioppo, Petty & Kao, 1984) provided a 
scaled quantification of participants’ disposition to engage 
in and enjoy effortful cognitive activities. Participants 
indicated the extent of their agreement/disagreement to 34 
particular statements (e.g., “I prefer life to be filled with 
puzzles that I must solve.”). 
Procedure Participants were individually administered the 
tasks during two sessions on separate days. For each 
participant, one of the two SL tasks was randomly assigned 
for the beginning of the first session, and the other was 
given at the start of the second session. In addition to these 
tasks for assessing statistical learning, participants 
completed the measures of language and cognitive factors 
noted above: self-paced reading task, SILS vocabulary 
assessment, ART, reading span task, FDS, CFIT, and NFC. 

Results and Discussion 
The mean performance on the two SL tasks—62.1% 
(SD=14.3%) and 69.2% (SD=24.7%) for adjacent and 
nonadjacent respectively—was significantly above chance-
level classification and indicative of learning at the group-
level; t(29) = 4.63, p < .0001 for the adjacent SL task; t(29) 
= 4.26, p = .0002 for the nonadjacent SL task. The means 
for the other measures were as follows: A/IN (M=90.1%, 
SD=7.2%), PT (M=94.4%, SD=6.7%), S/OR (M=85.6%, 
SD=9.8%), SILS (M=34.4, SD=2.9), ART (M=0.44, 
SD=0.16), vWM  (M=4.2, SD=1.3), FDS (M=11.0, SD=2.3), 
CFIT (M=29.7, SD=3.6), and NFC (M=40.6, SD=31.6). 

The first objective in our analyses was to determine the 
relation between adjacency and nonadjacent dependency 
learning. Based on whether these correlated significantly, 
we intended to conduct either partial correlation analyses (in 
the affirmative case) or standard bivariate analyses (if no 
correlation was obtained). Using as our central language 
measures the three language scores derived from the self-
paced reading task (i.e., comprehension subscores, 
differentiated by sentence-type), we planned to explore 
significant correlations found between the three language 
measures, the two SL measures, and the other individual 
difference factors, using stepwise regressions with 
Bonferoni corrections for multiple comparisons. 

We found no correlation between the two SL tasks (r = 
.14, p = .45). We then computed the correlations between all  
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Table 2: Intercorrelations between task measures in Experiment 2. 

 Adj-SL Nonadj-SL A/IN PT S/OR SILS ART vWM FDS CFIT 
NA-SL .14          
A/IN -.02 .41*         
PT .49** .12 .18        

S/OR .39* .42* .11 .46*       
SILS .05 .26 .28 .33† -.07      
ART -.17 .16 .37* .14 -.05 .33†     
vWM .46* .53** .37* .40* .39* .35† .22    
FDS .40* .13 .02 .32† .33† .11 -.20 .36†   
CFIT .23 .19 .20 .02 .01 .21 .07 .28 .16  
NFC .22 .15 .33† .32† .03 .34† .20 .27 .03 -.08 

 †p < .09. *p < .05. **p <.01. (two-tailed, n = 30). 
 
task measures as shown in Table 2. Regarding SL, adjacent 
dependency learning (“Adj-SL”) was positively associated 
with PT-comprehension (“PT-comp”), S/OR-comp, vWM, 
and FDS; nonadjacent dependency learning (“Nonadj-SL”) 
was associated with A/IN-comp, S/OR-comp, and vWM.  

For the language-processing measures, A/IN-comp—in 
addition to the positive correlation with Nonadj-SL noted 
above—correlated with ART and vWM. PT-comp, as well 
as correlating with Adj-SL (above), was further positively 
associated with S/OR-comp and vWM. And S/OR-comp—
besides correlating with Adj-SL, Nonadj-SL, and PT-
comp—correlated with vWM. Note then that there was 
considerable overlap in the language correlations obtained 
between (and among) Nonadj-SL, Adj-SL, and vWM. 

To determine which of our measures were the best 
predictors of language comprehension and whether other 
measures would explain part of the variance in those scores 
after entry of each corresponding score’s strongest 
predictor, we carried out three stepwise regression analyses. 
The variables from the bivariate analyses that were 
significant at the .05 level were entered as predictors and the 
language comprehension scores entered as the dependent 
variables (P value for entry = .05, P value for remaining = 
.10). The stepwise regression for A/IN-comp revealed only 
a single variable in the model: Nonadj-SL, t(29) = 2.39, p = 
.024, R2 = .17 (i.e., ART and vWM did not enter). After 
regression for PT-comp, the only variable left in the model 
was Adj-SL, t(29) = 2.96, p = .006, R2 = .24. And for S/OR-
comp, Nonadj-SL alone predicted the scores after 
regression, t(29) = 2.47, p = .020, R2 = .18. In each case 
then, the best (and sole) predictor of the language-
processing measure was either of the two SL measures. 

Because of the correlation reported by Brooks et al. 
(2006) between CFIT (IQ) scores and their language-
learning task, we computed the correlations between CFIT 
and our SL tasks, but did not detect any significant 
associations; however, scores for nearly all our participants 
were above their reported median and likely comprised a 
narrower range. We also note that Vocabulary, traditionally 
construed as a relative proxy for language experience, did 
not correlate with the SL tasks, but did correlate with 
marginal significance to PT-comp (p = .073), ART (p = 
.076), NFC (p = .069), and vWM (p = .055) factors. 

Our findings confirmed systematic variability in SL 
performance across the normal adult population, and 
indicated that SL scores were also strongly interrelated with 
vWM and language comprehension. Moreover, SL ability, 
rather than vWM, was the single best predictor of 
comprehension accuracy for each of the types of sentence 
material in the regression models. Following MacDonald 
and Christiansen (2002), these results are consistent with the 
likely role of vWM as merely another index of processing 
skill for language comprehension and SL, rather than a 
functionally separate mechanism. 

Furthermore, the specific pattern of correlations between 
SL measures and language comprehension subscores 
suggests that individual differences in detecting adjacent 
and nonadjacent dependencies may map onto variations in 
corresponding skills relevant to processing similar kinds of 
dependencies as they occur in natural language. Thus, 
comprehending subject-object relative constructions in the 
S/OR material entails tracking long-distance relationships 
spanning across lexical constituents (e.g., relating the object 
of an embedded clause to the subject and main verb of the 
sentence). Analogously, statistics underlying successful 
processing of A/IN material also invoke long-distance 
elements given the ambiguous nature and relative clause 
construction common to most sentences of that set. And 
while the nature of individual differences in the processing 
of phonologically typical lexical items has yet to be fully 
known, it seems plausible that individual sensitivity to such 
cues relies upon detecting sequential phonological 
regularities that are in essence adjacently co-occurring and 
thus hinge upon attunement to local (i.e., adjacent) relations. 

General Discussion 
As language often involves interspersing several words or 
linguistic constituents between long-distance dependencies, 
it is critical to determine the extent to which this can be 
accomplished via SL. The results in Experiment 1 build 
upon the formative findings of Gómez (2002), who studied 
the learning of nonadjacent structure in three-element 
dependency strings, and extend them to five-element 
sequences—showing that the detection of farther, surface-
level long-distance statistical relationships than previously 
reported is, in fact, possible by human learners. 
Additionally, sensitivity to such statistical structure was 
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demonstrated across two different circumstances (i.e., 
variations in the permissibility of overlapped words and in 
the relative set sizes of the intervening material). These 
findings are a step forward in scaling up the complexity of 
artificial grammars to match with that of language, and aid 
in preliminarily countering concerns for the feasibility of 
current SL approaches to account for the learning of long-
distance relationships common to language—a point of 
contention besetting earlier behaviorist endeavors. 

Experiment 2 shows that the variation in learning 
performance observed in Experiment 1 also pertains to SL 
tasks instantiating more standard grammars and that such 
variation within the normal population may provide a 
suitable framework for further testing the empirical 
relatedness of language and statistical learning. As a 
confirmation of this approach, it appears that sensitivity to 
particular kinds of statistical regularities (i.e., adjacent or 
nonadjacent) in the artificial grammars was predictive of 
processing ability for different types of sentence 
constructions (i.e., involving the tracking of either local or 
long-distance relationships). 

Our results may also be relevant to questions regarding 
the nature of underlying mechanism(s) for SL. Although 
group performances for adjacent and nonadjacent grammar 
tasks have been documented, the research presented here is 
the first to assess within-subject differences across these 
tasks. The lack of significant correlation detected between 
them, and possibly the differentiation of their predictive 
relations to the language measures, raises an intriguing 
question as to whether the two types of SL may be 
subserved by separate mechanisms. More research that, as 
here, makes within-subject comparisons across tasks is 
needed to understand the proper relation between different 
types of SL and the degree to which they may be relying on 
the same or different neural underpinnings. 

Further work in the learning of long-distant dependencies, 
in tandem with examining individual differences in 
language and statistical learning, should thus aid in mapping 
more concretely the relation between statistical sensitivities 
and linguistic processing, while elucidating the nature of the 
underlying mechanism(s) upon which statistical learning 
and language may commonly supervene. 
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