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Seeing and hearing in space and time: Effects of modality

and presentation rate on implicit statistical learning

Christopher M. Conway
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Department of Psychology, Cornell University, Ithaca, NY, USA

Across a wide range of tasks, vision appears to process input best when it is spatially
rather than temporally distributed, whereas audition is the opposite. Here we
explored whether such modality constraints also affect implicit statistical learning
in an artificial grammar learning task. Participants were exposed to statistically
governed input sequences and then tested on their ability to classify novel items. We
explored three types of presentation formats*visual input distributed spatially,
visual input distributed temporally, auditory input distributed temporally*and two
rates of presentation: moderate (4 elements/second) and fast (8 elements/second).
Overall, learning abilities were best for visual-spatial and auditory input.
Additionally, at the faster presentation rate, performance declined only for the
visual-temporal condition. Finally, auditory learning was mediated by increased
sensitivity to the endings of input sequences, whereas vision was most sensitive to
the beginnings of sequences. These results suggest that statistical learning for
sequential and spatial patterns proceeds differently across the visual and auditory
modalities.
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Intuitively, each sensory modality seems biased to handle particular aspects

of environmental input. For instance, vision and audition appear to be most

adept at processing spatial and temporal input, respectively (Kubovy, 1988).

Consider that it takes very little time*often a single glance*in order to

recognise a relatively complex visual scene, but it generally takes several

seconds or longer to recognise a melody or voice. That is, a brief ‘‘snapshot’’

of sound is fairly incomprehensible, whereas a visual snapshot may be quite

coherent. This somewhat anecdotal evidence, bolstered by studies of

perception and memory, suggests that in visual cognition, the dimensions

of space weigh most heavily, whereas for audition, the temporal dimension is

most prominent (Freides, 1974; Geldard, 1970; Kubovy, 1988; O’Connor &

Hermelin, 1978; Penney, 1989).

These modality constraints have been proposed to affect the manner in

which stimuli are perceived (Mahar, Mackenzie, & McNicol, 1994; Repp &

Penel, 2002), maintained in short-term memory (Collier & Logan, 2000;

Gardiner & Cowan, 2003; Glenberg & Swanson, 1986; Penney, 1989), and

learned (Conway & Christiansen, 2005; Handel & Buffardi, 1969; Saffran,

2002). Even so, researchers do not always give modality effects due

attention. In fact, it has been suggested that cognitive psychologists ought

not to consider the senses as being separate entities at all (e.g., Ghazanfar &

Schroeder, 2006; Marks, 1978; Stoffregen & Bardy, 2001). Or at the very

least, modality effects ought to be deemphasised, with a focus instead on the

importance of amodal (e.g., Gibson, 1966) information in the environment

that can be detected by any of the sense modalities. Unfortunately, these

views tend to obfuscate the possible presence of modality differences that

may affect processing, which in turn can hinder the development of a

complete theory of human cognition.
Effects of presentation modality are still largely unexplored in the realm

of implicit statistical learning, defined as the ability to extract environmental

regularities through automatic learning mechanisms operating outside

of immediate awareness (cf. Cleeremans, Destrebecqz, & Boyer, 1998;

Conway & Christiansen, 2006; Perruchet & Pacton, 2006; Reber, 1967;

Saffran, Aslin, & Newport, 1996; Stadler & Frensch, 1998). Statistical

learning is a fundamental ability believed to underlie important aspects of

language, cognition, and perception (Altmann, 2002), including speech

segmentation (Saffran, Newport, & Aslin 1996), spoken language processing

under degraded listening conditions (Conway, Karpicke, & Pisoni, 2007), the

learning of orthographic regularities in printed language (Pacton, Perruchet,

Fayol, & Cleeremans, 2001), visual scene perception (Fiser & Aslin, 2001;

Olson & Chun, 2002), tactile pattern processing (Conway & Christiansen,

2005), and visual-motor skill acquisition (Cleeremans & McClelland, 1991).

Because implicit statistical learning appears to make contact with so many
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different cognitive domains, understanding its underlying mechanisms and

constraints is an important research goal.
However, despite the interest in statistical learning, very few studies have

directly compared learning across sensory domains; fewer still have

investigated to what extent spatial and temporal constraints affect statistical

learning. One exception is Conway and Christiansen (2005), who examined

statistical learning of tactile, visual, and auditory input sequences and

found that auditory learning of statistical regularities exceeded both visual

and tactile learning. Their work followed previous suggestions that visual

implicit learning proceeds better when the stimulus elements are presented
simultaneously*that is, spatially arrayed*rather than sequentially, pre-

sumably because a simultaneous format permits better chunking of the

stimulus elements (Gomez, 1997; Saffran, 2002). In addition, using the

contextual-cueing paradigm, which is distinct but related to statistical

learning, it has been found that spatial features play a more important

cueing role than surface features such as colour in the detection of invariant

visual patterns (e.g., Olson & Chun, 2002). Finally, relative spatial

arrangements appear to be automatically extracted by participants in a
visual statistical learning task (Conway, Goldstone, & Christiansen, 2007).

Together, these studies suggest an intimate connection between visual

implicit learning and spatially arrayed patterns. However, to date there has

not been a carefully controlled study investigating how temporal and spatial

constraints interact with visual and auditory statistical learning.

In this report, we directly test the hypothesis that temporal and spatial

constraints differentially affect visual and auditory learning of statistical

patterns. Using the AGL paradigm, we expose participants to statistically
governed visual or auditory input sequences generated from an artificial

grammar and then test learners on their ability to generalise their knowledge

to novel patterns. Our primary manipulation is the manner in which the

visual input is distributed: spatially or temporally. To serve as a comparison

group, we also include an auditory condition with input distributed

temporally. In line with a modality-constrained view, we predict that

learning will be greatest for the visual-spatial input, comparable to the

auditory (temporal) condition, and poorest for the visual-temporal format.
An additional aim of this study is to explore the effect that rate of

presentation has on learning, an issue that has not been explored in full for

statistical learning tasks (but see Frensch & Miner, 1994; Turk-Browne,

Jungé, & Scholl, 2005). Faster presentation rates may magnify the effect of

modality constraints by adversely affecting learning in the nonpreferred

mode of processing (see Collier & Logan, 2000, for an example in the realm

of short-term memory). Consequently, we predict that at the fast rate,

learning in the visual-temporal condition will show the largest decrement in
performance.
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Before detailing the experiment, we first briefly review relevant AGL work

that has investigated the general issue of how input format affects learning.

One line of work has purportedly shown that participants can transfer their

implicit knowledge of the grammatical regularities from one letter vocabu-

lary (e.g., M, R, T, V, X) to another (e.g., N, P, S, W, Z) (Brooks & Vokey,

1991; Mathews et al., 1989; Reber, 1969; Shanks, Johnstone, & Staggs, 1997)

and even across sense modalities (Altmann, Dienes, & Goode, 1995). This

suggests that what is learned from statistical learning is independent of the

perceptual features of the stimuli, possibly some form of abstract or amodal

knowledge. However, other studies have called the transfer results into

question (Redington & Chater, 1996). For instance, Tunney and Altmann

(1999) showed that when stimuli are controlled so that ungrammatical test

items do not differ in terms of repetition patterns or starting element legality,

participants are not able to successfully apply grammatical knowledge of

training stimuli to a different sensory modality. This suggests that rather

than abstract knowledge, at least part of what is learned is modality or

stimulus specific.

A second line of work has investigated how differences in stimulus format

affect learning. In some cases, changing particular aspects of the stimuli

between the exposure and test phases appears to affect AGL performance.

For instance, Chang and Knowlton (2004) showed that changing the font

affected how well participants could learn the statistical patterns in the letter

strings, suggesting that their knowledge was at least partly based on

stimulus-specific features of the input. On the other hand, Pothos and

Bailey (2000) compared AGL for embedded geometric shapes versus

geometric shapes presented in sequence, and found no differences (see

also, Pothos, Chater, & Ziori, 2006). In sum, the existing data is unclear

regarding the specific role that input type and sensory modality play in

constraining learning; specifically, how temporal and spatial constraints

interact with visual and auditory implicit statistical learning has been

relatively unexplored.

METHOD

Subjects

One hundred and forty-four subjects (twelve in each of twelve conditions)

with normal hearing and normal or corrected-to-normal vision were

recruited from psychology classes at Cornell University, earning course

credit for their participation. Data from two subjects were discarded,

one due to the participant being colour blind and the other due to

experimenter error.
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Materials

Figure 1 shows the artificial grammar, consisting of five unique elements,

each represented by a numeral (1�5). Each numeral was mapped onto

elements from one of four vocabularies, corresponding to three input

conditions (auditory, visual-temporal, and visual-spatial).

For the acquisition phase we used 12 legal sequences that were generated

from the grammar.1 Each legal sequence was used twice to create a set of 12

learning pairs (see Appendix A). Six of the pairs consisted of the same

sequence presented twice (matched pairs), whereas the other six pairs

consisted of two different sequences (mismatched pairs). These matched

and mismatched pairs were used in conjunction with a same�different

judgement task.

The test set (see Appendix B) consisted of 10 novel legal and 10 illegal

sequences. Legal sequences were produced from the finite-state grammar.

The illegal sequences each begin with a legal element (i.e., 1 or 4), followed

by one or more illegal transitions and ending with a legal element (i.e., 2, 3,

or 5). For example, the illegal sequence 1-4-5-1-3-3 begins and ends with

legal elements (1 and 3, respectively) but contains several illegal interior

transitions not allowed by the grammar (1-4, 4-5, 5-1, and 3-3). The legal

and illegal sequences can be described as differing from one another in

terms of cooccurrence statistics of adjacent elements. That is, a statistical

learning mechanism could discern which novel test sequences are illegal by

noting the presence of pairwise element combinations that did not occur in

the training set.

Start 

Exit 

Exit 

S2

S1

S3

S4

S5

Figure 1. Artificial grammar used in the experiment. Each numeral was mapped onto a particular

auditory or visual stimulus element, depending on the condition.

1 See Meulemans and van der Linden (1997) for discussion regarding how the number of

training/acquisition items may affect the nature of learning.
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Each of the five stimulus elements (1�5) were mapped onto one of three

vocabularies, corresponding to three types of modality/format. Importantly,

the timing of all stimuli was equated across these four conditions.

Visual-temporal. For the visual-temporal conditions, the stimulus ele-

ments consisted of different coloured squares (1�red, 2�blue, 3�yellow,

4�green, 5�black) appearing sequentially in the centre of the computer

screen at approximately eye level. Each square (2.6�2.6 cm) appeared for

250 ms in the ‘‘slow’’ input condition and 125 ms in the ‘‘fast’’ condition

(with no pauses between the presentation of each square in a sequence).

Thus, the sequence 1-2-1-3 consists of a temporal sequence of red, blue, red,

and yellow squares (see Figure 2).

Visual-spatial. For the visual-spatial conditions, the stimulus elements

consisted of the same coloured squares described earlier, except that all

squares in a sequence were presented simultaneously along a horizontal row,

from left to right, at approximately eye level. The timing of the stimuli was

equal to the cumulative presentation time of the visual-temporal stimuli.

That is, in the slow condition, a visual-spatial sequence was displayed for a

number of milliseconds equal to 250�N, where N is the number of squares

in the sequence. For the fast condition, a sequence was displayed for 125�N

ms. Thus, the visual-spatial sequence 1-2-1-3 consists of a row of squares

appearing simultaneously for (250�4)�1000 ms or (125�4)�500 ms,

from left to right: red, blue, red, yellow (see Figure 3).

(yellow)

(red)

(blue)

(red)

Figure 2. Example of visual-temporal sequence 1-2-1-3. The arrow designates the flow of time.

Note that participants did not see the labels for each colour; they are included here only for

illustrative purposes.
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Auditory. For the auditory conditions, the stimulus elements consisted

of pure tones of various frequencies (1�261.6 Hz, 2�277.2 Hz, 3�349.2

Hz, 4�370 Hz, and 5�493.9 Hz) corresponding to musical notes C, C#, F,

F#, and B, respectively, played through headphones. For the ‘‘slow’’ and

‘‘fast’’ input conditions, each stimulus element (tone) had durations of 250

ms and 125 ms, respectively. As an example, the sequence 1-2-1-3 consists of

the following four notes in this order: C, C#, C, and F.

Procedure

Participants were assigned randomly to one of 12 conditions, six control

groups and six experimental groups. Within the experimental groups, the

3�2 design consisted of two factors: modality/format (visual-temporal,

visual-spatial, and auditory,) and presentation rate (slow and fast). The slow

and fast groups received the input material at a presentation rate of four and

eight elements per second, respectively (corresponding to individual element

durations of 250 ms and 125 ms). The six control groups were used as a

baseline measure of performance. Consequently, the experimental groups

received both acquisition and test phases whereas the control groups

received the test phase only.

At the beginning of the acquisition phase, the experimental group

participants were instructed that they would hear or see pairs of sequences.

For each pair of sequences (listed in Appendix A), they had to decide

whether the two sequences were the same or not and indicate their decision

by pressing a button marked YES or NO. This match�mismatch paradigm,

also used by Conway and Christiansen (2005), served as a way to encourage

participants to pay attention to the stimuli without giving them explicit

instruction that the sequences conformed to an underlying structure. Note

that there is no feedback given during the task.

Each pair was presented six times in random order for a total of

72 exposures, with the timing parameters described earlier. In all conditions,

a 2 s pause occurred between the two sequences of each pair and following

the last sequence of the pair. After exposure to the two sequences, a prompt

was displayed on the computer monitor asking for the participant’s

response, until a button press was made. After another 2 s pause, the next

(red) (blue) (red) (yellow)

Figure 3. Example of visual-spatial sequence 1-2-1-3. Note that participants did not see the labels

for each colour; they are included here only for illustrative purposes.

MODALITY EFFECTS IN STATISTICAL LEARNING 567

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
r
n
e
l
l
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
9
:
3
6
 
1
0
 
A
p
r
i
l
 
2
0
0
9



training pair was presented. The entire training phase in each condition

lasted roughly 10 min for each participant.

Before the test phase, participants in the experimental group were told

that the sequences they had just observed had been generated by a computer

program that determined the order of the stimuli by using a complex set of

rules. They were told that they would now be presented with new sequences.

Some of these would be generated by the same program, whereas others

would not. Participants were instructed to classify each new sequence

according to whether or not they thought it was generated by the same rules

as before, using two buttons marked YES and NO, and without feedback.

The control participants, who did not participate in the acquisition phase,

received an identical test task.
The 20 test sequences were presented one at a time, in random order, to

each participant. The timing of the test sequences was the same as that used

during the acquisition phase (250 ms or 125 ms element durations and 2 s

pauses before and after each sequence).

RESULTS AND DISCUSSION

Acquisition-phase performance for the six experimental groups is shown in

Table 1, which displays the mean number of correct match/mismatch

decisions out of 72. We submitted the data to a two-way ANOVA with the

factors modality/format and presentation rate. There was a main effect of

modality/format, F(2, 72)�23.5, pB.0001, but no main effect of presenta-

tion rate, F(1, 72)�0.11, p�.74, nor a significant interaction, F(2, 72)�1.1,

p�.34. We conducted post hoc tests, collapsing across presentation rate, in

order to compare performance among the three modality/format groups. To

minimise Type I errors, Bonferroni corrections were applied to give a

new alpha level of (.05/3�.016). The results showed that acquisition

phase performance for both the auditory and visual-spatial groups were

TABLE 1
Experimental group acquisition phase (match�mismatch) results

Slow (4 elements/s) Fast (8 elements/s) Comparison

Modality/format M SE t(11) M SE t(11) t(22)

Visual-temporal 61.3 1.92 13.2* 59.4 1.78 13.1* 0.73

Visual-spatial 65.8 1.06 28.2* 67.6 1.14 27.6* �1.12

Auditory 68.7 1.01 32.4* 70.0 0.79 43.1* �0.97

Mean values reported out of 72 possible correct. T-tests are conducted with respect to chance

levels (36 out of 72).

*pB.001.
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significantly greater than performance for the visual-temporal group, (pB

.001 for both). Furthermore, all six groups performed the match/mismatch

task at greater than chance levels (see Table 1). Finally, we also contrasted

performance for fast versus slow rates, for each of the three modality/format

conditions separately. None of the contrasts were statistically significant (see

Table 1), confirming that rate did not affect performance on the match/
mismatch task for any of the modalities.

The control group test results are shown in Table 2, which displays the

mean number of correct classification responses out of 20. As expected, none

of the six groups performed different from chance levels, thus indicating that

any learning displayed by the experimental groups is due to exposure to the

material during the training phase.

The experimental group test results are displayed in Table 3. We

submitted these data to a two-way ANOVA with the factors modality/
format and presentation rate. There was a main effect of modality/format,

F(2, 72)�7.65, pB.001, but no main effect of presentation rate, F(1, 72)�
0.97, p�.33, nor a significant interaction, F(2, 72)�1.13, p�.33.

TABLE 2
Control group (baseline) test results

Slow (4 elements/s) Fast (8 elements/s)

Modality/format M SE t(11) M SE t(11)

Visual-temporal 9.9 0.53 �0.16 8.9 0.65 �1.68

Visual-spatial 9.3 0.69 �0.97 9.25 0.54 �1.39

Auditory 10.8 0.47 1.76 10.75 0.48 1.57

Mean values reported out of 20 possible correct. T-tests are conducted with respect to chance

levels (10 out of 20).

TABLE 3
Experimental group test results

Slow (4 elements/s) Fast (8 elements/s) Comparison

Modality/format M SE t(11) M SE t(11) t(22)

Visual-temporal 12.2 0.68 3.17** 10.4 0.45 0.92 2.14*

Visual-spatial 13.1 0.91 3.39** 12.7 0.82 3.25** 0.34

Auditory 13.9 0.72 5.42*** 14.3 0.69 6.29*** �0.42

Mean values reported out of 20 possible correct. T-tests for each of the six groups are

conducted with respect to chance levels (10 out of 20). The comparison t-test compares

performance for the slow and fast conditions for each modality/format.

*pB.05, **pB.01, ***pB.001.
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We continued with several planned post-hoc comparisons. First, we

compared performance among the three different modality/formats, coll-

apsed across presentation rate, using a corrected alpha level of (.05/3�.016).

The auditory group performance was greater than visual-temporal perfor-

mance (pB.001). It is also relevant to note that visual-spatial performance

was also greater than visual-temporal performance, using the noncorrected

level of .05 (p�.033).

We also contrasted performance for fast versus slow rates, for each of the

three modality/format conditions. The only significant result was for the

visual-temporal group, t(22)�3.75, pB.05, indicating that visual-temporal

performance was significantly worse at the fast rate compared to the slow

rate. Consistent with this finding, only the visual-temporal (fast) group

performed the test task at chance levels (see Table 3).

In sum, these analyses reveal two key findings that can be easily

appreciated by viewing Figure 4. First, all three groups demonstrated

learning at the slow presentation rate, at levels comparable to one another.

Second, only the auditory and the visual-spatial groups showed learning at

the fast rate; the visual-temporal group performed much worse, in fact no

10

11

12

13

14

15

16

Slow Fast
Presentation Rate

Aud

V-spatial

V-tmp

Figure 4. Experimental group mean test scores (for slow and fast rates) with error bars included.
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better than chance levels. These findings suggest that the rate of presentation

differentially affected learning in the three modality/format conditions.
Thus, the ability to implicitly acquire visual-temporal statistical patterns is

hindered severely at a fast rate of presentation, whereas statistical learning

for auditory and visual-spatial patterns is not negatively impacted at fast

presentation rates, at least for the rates used here.

Contribution of acquisition phase performance
to test performance

One possible explanation of the quantitative modality differences is that

there could be an association between acquisition-phase performance and

test-phase performance. That is, perhaps better test-phase performance for

particular modality/rate conditions merely was due to certain stimuli being
more easily perceived and/or remembered (as assessed in the acquisition

phase match/mismatch task). This may be possible, given that we found a

significant effect of modality/format on the match/mismatch task. That is,

the stimuli used in certain experimental conditions may have been more

easily perceived in general which could directly affect the ease in which the

statistical regularities are learned.

On the other hand, for the match/mismatch task, there was no decrement

in performance at the fast presentation rate for any of the three input
conditions, whereas there was a clear drop in test performance at the fast

presentation rate for the visual-temporal condition. For this reason it is less

likely that the test-phase results can be solely attributed to acquisition-phase

performance.

In order to help tease apart these issues, we investigated the contribution

of acquisition-phase performance to test-phase performance by computing

the Pearson correlation coefficients between the acquisition and test phase

for each of the three modality/format conditions separately (collapsed across
presentation rate). The results revealed that only the visual-spatial correla-

tion coefficient was statistically significant, r�.50, pB.05, whereas the

other two coefficients were smaller and nonsignificant (auditory: r�.28,

p�.19, visual-temporal: r��.002, p�.99). These correlation analyses

suggest that there may in fact be an association between acquisition-phase

and test-phase performance, but it is limited to the visual-spatial condition

(and possibly to the auditory one as well).

Regression analyses

The results presented here suggest quantitative learning differences between

sense modalities, which to some extent may be at least partly due to
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differences in perceiving and/or remembering sequences in each input

condition. In order to detect more subtle modality-specific learning

differences, we explored whether there also exist learning-related qualitative

modality effects. Specifically, we conducted regression analyses to determine

which sources of information may have been extracted in each modality/

format condition. Each of the legal and illegal test items were assessed in

terms of their initial and final anchor strengths (IAS and FAS), an indication

of the relative frequencies of the initial and final fragment ‘‘chunks’’ (i.e., bi-

and trigrams) that exist in similar positions in the training items (Conway &

Christiansen, 2005). For example, the test item 1-2-1-3-5-2 has an IAS of 4.5

and an FAS of 2.0, indicating that the initial chunks 1-2, 2-1, and 1-2-1 occur

frequently in the initial positions of the training set, whereas the final chunks

3-5, 5-2, and 3-5-2 occur slightly less frequently in the final positions of the

training set.2 We used SPSS 16.0 to run six different linear regression

analyses, one for each modality/format condition. For each analysis, the

dependent variable was number of endorsements for each test item, summed

over all subjects. IAS, FAS, and item length were the three independent

variables (predictors). A stepwise variable selection method was used

(probability of entry�.05; probability of removal�0.1). The results of the

linear regression analyses indicate which of these three measures best

predicts whether a participant in each modality/format condition will

endorse a test item as legal. The results revealed a striking difference

between the auditory and the visual conditions: FAS was a significant

predictor for auditory endorsements at both presentation rates, R2�.70,

pB.001 for slow and R2�.64, pB.05 for fast, whereas FAS was not a

significant predictor for any of the visual conditions. On the other hand, IAS

was a significant predictor for visual-spatial, R2�.42, pB.01, and visual-

temporal endorsements, R2�.36, pB.01, at the slow rate of presentation.

No other predictors were statistically significant for the slow visual

conditions and none of the predictors were significant for the fast visual

conditions. Finally, length was not a significant predictor for any of the

conditions. These results therefore suggest that auditory statistical learning

may rely most heavily on the fragment information contained at the endings

of input sequences (i.e., a ‘‘recency’’ effect) whereas visual statistical learning

is most sensitive to fragment information contained at the beginnings of

input sequences (i.e., a ‘‘primacy’’ effect). Note that these qualitative

2 In Conway and Christiansen (2005), we assessed these same stimuli in terms of additional

information sources, such as novelty, novel fragment position, and similarity, but found that for this

particular test and training set, these measures were highly correlated with IAS and FAS. A

principle components analysis revealed that all these sources could be efficiently reduced to IAS,

FAS, and item length. Therefore, we include only those three measures in the current regression

analyses.
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modality differences cannot be readily explained by differences in perfor-

mance on the acquisition task.

GENERAL DISCUSSION

In summary, for the experimental group test data, there was a main effect of

modality/format, with auditory performance highest and visual-temporal

performance worst. We also found that at the fast presentation rate, only the

visual-temporal condition was adversely affected. These quantitative learn-

ing differences were accompanied by qualitative learning effects. Consistent

with previous results (Conway & Christiansen, 2005), audition and vision

were differentially biased to encode statistical regularities towards the end

and beginning of input sequences, respectively. There was some evidence that

the quantitative modality effect was due at least in part to differences in the

ability to adequately perceive and/or remember the input sequences. That is,

perhaps auditory sequences and visual-spatial patterns are more easily

perceived and held in memory, and thus the statistical regularities are easier

to learn, relative to the visual-temporal input. However, this account cannot

completely explain our pattern of results. At the fast presentation rate, the

visual-temporal sequences were still readily perceived and remembered (as

indicated by the acquisition phase task results), whereas the statistical

regularities within the sequences were not learned (as indicated by the test-

phase task results).
Overall, these results suggest that statistical learning is constrained by

factors related to presentation modality, rate, and format (spatially vs.

temporally distributed input). Participants in the visual conditions appeared

to extract statistical patterns best when the input was presented in a spatial

format rather than a temporal one. Additionally, visual learning relied upon

statistical information present at the beginning of input sequences. In

contrast, the auditory modality was quite adept at encoding temporal input,

which was mediated by greater sensitivity to the statistical structure at the

end of input sequences. Furthermore, the quantitative modality constraints

were most pronounced at the fastest presentation rate, with visual-temporal

learning adversely affected, highlighting the fact that vision is poor at

encoding temporal regularities, at least at fast presentation rates.

The modality constraints observed here extend the results of Conway and

Christiansen (2005), who found that auditory statistical learning of

sequential structure exceeded that of visual or tactile learning. The results

are also consistent with Saffran (2002), who found that learning predictive

relationships occurred better for visual-simultaneous and auditory input

compared to visual-sequential material. In the current study, visual learning

matched auditory learning only when the presentation rate was slow.
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Increasing the rate of presentation caused a decline in learning performance

for the visual-temporal condition, whereas the auditory and visual-spatial

groups showed no decline. These results illustrate that the extraction of

statistical patterns is affected by the modality and presentation format in

which the input is delivered. Furthermore, given the visual-temporal

acquisition and test phase results, it appears that presentation rate has an

effect on the learning of statistical patterns, over and above any effects it has

on the perceiving or remembering of those same patterns. In and of itself, this

finding is noteworthy because it suggests a relative independence of

statistical learning from other processes related to general perception and

memory.3

The differences in the initial/final sensitivities by vision and audition were

also observed previously (Conway & Christiansen, 2005). It is important to

note that for the current stimulus set, both fragment-initial and fragment-

final information are equally helpful for making correct classification

judgements; thus, it is unlikely that the observed qualitative sensitivity

biases are due to experiment-specific learning. Instead, it is more likely that

learners come into the experiment with preexisting auditory-final and visual-

initial encoding biases. Interestingly, similar modality initial/final effects are

seen in the realm of serial recall (i.e., serial position effects) with audition

showing better recall for the end of lists and under certain circumstances,

vision showing better recall for the beginning of lists (Beaman, 2002). Thus,

there may exist a global perceptual/cognitive constraint on vision and

audition, evolved and developed through currently unknown selection

pressures, to differentially attend to information in initial and final sequence

positions, respectively.

Taken together, these findings suggest that a full understanding of

statistical learning and, it could be argued, other forms of perception,

learning, and memory, will only occur by taking into account the effects of

input modality in relation to the dimensions of space and time. The

empirical evidence supports a modality-constrained view of cognition. That

is, as previous work in attention, perception, learning, memory, and

cognition has shown, various aspects of cognitive functioning appear to be

constrained by factors having to do with the presentation modality of the

input, which in turn may implicate the involvement of modality-specific,

sensorimotor mechanisms and/or representations (cf. Barsalou, 1999;

Collier & Logan, 2000; Conway & Christiansen, 2005, 2006; Duncan,

Martens, & Ward, 1997; Freides, 1974; Gardiner & Cowan, 2003; Geldard,

1970; Glenberg, 1997; Harris, Petersen, & Diamond, 2001; Mahar et al.,

3 It should be noted that the exact role that perception and short-term or working memory play

in implicit statistical learning has not been extensively explored and thus remains a ripe avenue for

future research.
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1994; Mauk & Buonomano, 2004; Metcalfe, Glavanov, & Murdock, 1981;

O’Connor & Hermelin, 1978; Penney, 1989; Repp & Penel, 2002; Rubin,

2006; Wilson, 2001). For the case of implicit statistical learning specifically,

the current findings show that the ability to extract statistical regularities is

strongly affected by the combination of presentation modality, presentation

rate, and input format (i.e., spatial or temporal) of the stimuli in question.

Before concluding, we will address two possible concerns with the present

results and interpretations. The first is of an empirical nature, the second,

theoretical. The first concern is that the current empirical design is limited in

that it does not fully compare learning across the various sense modalities in

all input formats. For instance, there was not an auditory-spatial condition.

Also, other types of visual or auditory stimuli were not included, such as

abstract shapes or spoken nonsense syllables. Clearly, these are additional

manipulations that are needed in order to fully investigate the role of space

and time in visual and auditory statistical learning; we anticipate that the

current work will provide the springboard for these future investigations. To

our knowledge, aside from Conway and Christiansen (2005) and Saffran

(2002), no other empirical study of AGL or statistical learning has made a

rigorously controlled attempt to compare learning in different sense

modalities and input formats as has been done here.4

The second concern regards the interpretation of vision and audition as

being biased towards spatial and temporal patterns, respectively. In that

vein, we should point out that although the modality effects shown here and

elsewhere appear to be substantial and robust, there also exist commonalities

between visual and auditory processing (e.g., Kubovy & van Valkenburg,

2001; Marks, 1978). Both vision and audition can be used to localise stimuli

in space, to detect movement, to perceive rhythms and sequential patterns,

and to discriminate objects based on when they occurred. As suggested from

an ecological approach to perception (Gibson, 1966; Stoffregen & Bardy,

2001), such environmental information might be ‘‘amodal’’ in the sense that

these and other features can be picked up across multiple sense modalities. If

so, then different stimulus energies could be considered to be equivalent, or

invariant, to one another. Similarly, Marks (1978) argued that the sense

modalities have much in common in terms of phenomenological attributes,

principles, and mechanisms. As he suggested, it is likely that the auditory

and visual systems rely upon many of the same computational algorithms

and neural architectures (cf. Shamma, 2001). From these perspectives,

4 Pothos and Bailey (2001) and Pothos et al. (2006) did compare visual implicit learning using

several different types of presentation formats and found no effects on learning. However, all

formats consisted of visual regularities that were spatially distributed; there were no conditions

examining temporally distributed regularities or auditory input.
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perhaps the vision�space, audition�time analogy is misleading (Handel,

1988).
Clearly, it may be misleading to consider vision solely within a spatial

framework and audition as existing only within a temporal one. However,

there appear to be real biases in terms of which dimensions are more or less

important for each modality. From a purely phenomenological perspective,

it seems nearly impossible to imagine an atemporal sound or a nonspatial

visual percept. Time appears to be the primary foundation for audition, with

sounds changing in certain ways over time, whereas space is the primary

referent for vision, with visual objects defined by size and shape (Hirsh,
1967).

Thus, however much the sensory systems may be similar, it is clear that

certain constraints affect their processing, and therefore it is important to

understand the nature of the constraints. Within the context of verbal short-

term memory, Penney (1989) suggested that auditory and visual stimuli are

processed in separate ‘‘streams’’ with each having different properties and

capabilities. The auditory stream is characterised by strong associations

between successive/sequential items, whereas the visual stream most readily
encodes associations between simultaneously presented spatial input. This

makes sense in light of what is known about the principles of auditory

grouping: Sounds that rapidly follow one another tend to be produced by the

same environmental source and thus are perceived together, whereas it is

spatial rather than temporal contiguity which is important for visual

perception. Possibly, a similar associative neural learning mechanism may

be operative in both auditory and visual cortical areas, but each makes its

computations over a different dimension of input. The existence of similar
underlying computational principles helps explain the processing similarities

across the modalities, while the proposed separate processing streams allow

for the existence of modality-specific differences. Within this framework,

visual mechanisms might more readily associate features and/or objects that

are close together in space, whereas auditory mechanisms would encode

relations among events occurring close together in time. The origin of these

modality constraints is currently unknown and unexplored. Presumably,

they are at least partly experience dependent, developing over a lifetime of
exposure to various sensory stimuli occurring in different presentation

formats, with the end result being a suite of learning systems that have each

become tuned to focus on particular aspects of environmental stimuli over

others.

As has been argued elsewhere (Barsalou, 1999; Conway & Christiansen,

2006; Rubin, 2006), any theory of cognition that cannot account for modality-

specific phenomena will not be adequate. As the field of cognitive science

progressively moves away from the ‘‘mind-as-amodal-and-disembodied-
computer’’ metaphor, it becomes increasingly apparent that understanding
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the role played by the sensory systems is necessary to obtain a full theory of

human memory and perception. Although additional work is needed to
investigate implicit statistical learning in all modality/format combinations

(e.g., auditory-spatial input), the current data shed light on one important

learning constraint: Statistical learning is heavily affected by the sense

modality and presentation format of the stimuli in question, especially at

fast presentation rates. The presence of this constraint suggests that auditory

and visual statistical learning may at least partly depend upon modality-

specific processing streams, each having different biases and properties.

Additional research must further elucidate the nature of each modality-
constrained learning system and how they support human cognition more

broadly.
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APPENDIX B

Test items

Legal IAS FAS Illegal IAS FAS

4-1-3-5-2-3 2.5 2.5 1-4-5-1-3-3 0 0

1-2-1-3-5-2 4.5 2.0 4-5-1-2-1-3 0 2.0

4-3-5-2-5-5 2.0 1.5 4-2-1-3-1-5 0 0

4-1-3-5-2-5 2.5 2.0 1-5-3-3-2-2 0 0

4-1-1-1-3 2.0 2.0 1-5-3-4-2 0 0

1-2-1-1-3 4.5 2.0 4-2-1-5-3 0 0

1-2-3-5-2 5.0 2.0 1-5-3-1-2 0 0

4-1-1-3 2.0 2.0 4-5-1-3 0 1.5

4-3-5-2 2.0 2.0 4-5-2-2 0 0

1-2-5 4.5 1.0 1-4-2 0 0

The numbers refer to a particular visual or auditory stimulus (see text). IAS�initial anchor

strength; FAS�final anchor strength.

APPENDIX A

Acquisition pairs

Matched pairs Mismatched pairs

1-2-1-1-1-3/1-2-1-1-1-3 1-2-3-5-2-5/1-2-3-5-2-3

4-1-1-3-5-2/4-1-1-3-5-2 1-2-3-5-2-3/1-2-3-5-2-5

4-1-3-5-2/4-1-3-5-2 4-3-5-2-3/4-3-5-2-5

1-2-5-5-5/1-2-5-5-5 4-3-5-2-5/4-3-5-2-3

4-1-3/4-1-3 1-2-5-5/1-2-1-3

1-2-3/1-2-3 1-2-1-3/1-2-5-5

The numbers refer to a particular visual or auditory stimulus (see text).
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