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Abstract 
Statistical learning (SL) research aims to clarify the potential 
role that associative-based learning mechanisms may play in 
language. Understanding learners’ processing of nonadjacent 
statistical structure is vital to this enterprise, since language 
requires the rapid tracking and integration of long-distance 
dependencies. This paper builds upon existing nonadjacent 
SL work by introducing a novel paradigm for studying SL on-
line. By capturing the temporal dynamics of the learning 
process, the new paradigm affords insights into the time 
course of learning and the nature of individual differences. 
Across 3 interrelated experiments, the paradigm and results 
thereof are used to bridge knowledge of the empirical relation 
between SL and language within the context of nonadjacency 
learning. Experiment 1 therefore charts the micro-level 
trajectory of nonadjacency learning and provides an index of 
individual differences in the new task. Substantial differences 
are further shown to predict participants’ sentence processing 
of complex, long-distance natural dependencies in Experiment 
2. SRN simulations in Experiment 3 then closely capture key 
patterns of human nonadjacency processing, attesting to the 
efficacy of associative-based learning mechanisms that appear 
foundational to performance in the new, language-linked task. 

Keywords: Nonadjacent Dependencies; Sentence Processing; 
Serial Reaction Time Task; Simple Recurrent Network (SRN)  

Introduction 
Statistical learning is an inextricably temporal phenomenon, 
involving the encoding of sequential regularities unfolding 
over time and space, and the simultaneous shaping of 
distributional knowledge through ongoing learning 
experience. Within the past decade, statistical learning (SL) 
has especially emerged as a key proposed mechanism for 
acquiring probabilistic dependencies inherent in the time-
dependent signal of the speech stream (for reviews, see 
Gómez & Gerken, 2000; Saffran, 2003). 

While traditional artificial grammar learning (AGL; 
Reber, 1967) tasks have been fruitfully deployed towards 
studying SL, they fail to provide a clear window onto the 
temporal dynamics of the learning process. In contrast, 
serial reaction time (SRT; Nissen & Bullemer, 1987) tasks 
widely used in sequence-learning research trace individuals’ 
trial-by-trial progress, yet aim to investigate learning for 
primarily repeating structure. Rarely have methodological 
advantages of each paradigm been jointly subsumed under a 
single task for exploring properties of SL. 

Nonetheless, notable exceptions include the work of 
Cleeremans and McClelland (1991), who implemented a 

noisy finite-state grammar within a visual SRT task to study 
the encoding of contingencies varying in temporal distance; 
and of Hunt and Aslin (2001), who employed a visual SRT 
paradigm for examining learners’ processing of sequential 
transitions varying in conditional and joint probabilities. 
Howard, Howard, Dennis and Kelly (2008) also adapted the 
visual SRT to manipulate the types of statistics governing 
triplet structures; and Remillard (2008) controlled nth-order 
adjacent and nonadjacent conditional information to probe 
SRT learning for visuospatial targets. Across these studies, 
participants evinced complex, procedural knowledge of the 
sequence-embedded relations upon extensive training over 
20, 48, 6 or 4 sessions, respectively, spanning separate days. 
Reaction time measures throughout exposure enabled 
insights into the processing of the structural dependencies. 

In similar vein, we introduce a new paradigm that directly 
instantiates an artificial language within an adapted SRT 
task. Distinct from the aforementioned work, the paradigm 
specifically endeavors to capture the continuous timecourse 
of statistical processing, rather than contrasting/altering the 
forms of statistical information. The paradigm is designed 
for the briefer exposure periods prototypic of many AGL 
studies and flexibly accommodates the use of linguistic 
stimuli-tokens and auditory cues. More generally, the task 
shares similarities to standard AGL designs in the language- 
like nature of string-sequences, the smaller number of 
training exemplars, and the greater transparency to natural 
language structure. Crucially however, it uses the dependent 
variable of reaction times and a modified two-choice SRT 
layout to indirectly assess learning while focusing attention 
through a cover task. By coupling strengths intrinsic to AGL 
and SRT methods respectively, the ‘AGL-SRT paradigm’ is 
intended to complement existing approaches in SL research. 

Understanding how learners process nonadjacent relations 
constitutes an ongoing area of SL work, with importance for 
theories implicating SL in language acquisition/processing. 
Natural language abounds with long-distance dependencies 
that proficient learners must track on-line (e.g., as in 
subject-verb agreement, clausal embeddings, and 
relationships between auxiliaries and inflected morphemes). 
Even with the growing bulk of SL work aiming to address 
the acquisition of nonadjacencies (e.g., Gómez, 2002; 
Newport & Aslin, 2004; Onnis, Christiansen, Chater & 
Gómez, 2003; Pacton & Perruchet, 2008; inter alia), it is yet 
unknown exactly how such learning unfolds, the precise 
mechanisms subserving it, and the degree to which SL of 



nonadjacencies empirically relates to natural language 
processing. Our AGL-SRT paradigm offers a novel entry 
point into this study by augmenting current knowledge with 
finer-grained, temporal data of how nonadjacency-pairs may 
be processed over time. As such, Experiment 1 implements 
Gómez’s (2002) high-variability language within the AGL-
SRT task to reveal the timecourse of nonadjacent SL. 
Experiments 2 and 3 then probe the task’s relevance to 
language and its computational underpinnings. 

Experiment 1: Statistical Learning of 
Nonadjacencies in the AGL-SRT Paradigm 

In infants and adults, it has been established that relatively 
high variability in the set-size from which an ‘intervening’ 
middle element of a string is drawn facilitates learning of 
the nonadjacent relationship between the two flanking 
elements (Gómez, 2002). In other words, when exposed to 
artificial, auditory strings of the form aXd and bXe, 
individuals display sensitivity to the nonadjacencies (i.e., 
the a_d and b_e relations) when elements composing the X 
are drawn from a large set distributed across many 
exemplars (e.g., when |X| = 18 or 24). Performance is at 
chance, however, when variability of the set-size for the X is 
intermediate (e.g., |X| = 12) or low (e.g., |X| = 2). Similar 
findings of facilitation from high-variability conditions have 
also been documented for adults when the grammar is 
alternatively instantiated with visual shapes as elements 
(Onnis et al., 2003). Thus, findings have begun to document 
supportive learning contexts for both infants and adults, but 
we know little about the timecourse of high-variability non-
adjacency learning as it actually unfolds. Here, we address 
this gap by using the novel AGL-SRT paradigm. 

Method 
Participants Thirty monolingual, native English speakers 
from among the Cornell undergraduate population (age: 
M=20.6, SD=4.2) were recruited for course credit. 
Materials During training, participants observed strings 
belonging to Gómez’s (2002) artificial high-variability, 
nonadjacency language. Strings thus had the form aXd, bXe, 
and cXf, with initial and final items forming a dependency 
pair. Beginning and ending stimulus tokens (a, b, c; d, e, f) 
were instantiated by the nonwords pel, dak, vot, rud, jic, and 
tood; middle X-tokens were instantiated by 24 disyllabic 
nonwords: wadim, kicey, puser, fengle, coomo, loga, gople, 
taspu, hiftam, deecha, vamey, skiger, benez, gensim, feenam, 
laeljeen, chila, roosa, plizet, balip, malsig, suleb, nilbo, and 
wiffle. Assignment of particular tokens (e.g., pel) to 
particular stimulus variables (e.g., the c in cXf) was 
randomized for each participant to avoid learning biases due 
to specific sound properties of words. Mono- and bi-syllabic 
nonwords were recorded with equal lexical stress from a 
female native English speaker and length-edited to 500 and 
600 msec respectively. Ungrammatical items were produced 
by disrupting the nonadjacent relationship with an incorrect 
final element to produce strings of the form: *aXe, *aXf, 
*bXd, *bXf, *cXd and *cXf. Written forms of nonwords (in 

Arial font, all caps) were presented using standard spelling. 
Procedure A computer screen was partitioned into a grid 
consisting of six equal-sized rectangles: the leftmost column 
contains the beginning items (a, b, c), the center column the 
middle items (X1…X24), and the rightmost column the 
ending items (d, e, f). Each trial began by displaying the grid 
with a written nonword centered in each rectangle, with 
each column containing a nonword from a correct and an 
incorrect stimulus string (foils). Positions of the target and 
foil were randomized and counterbalanced such that each 
occurred equally often in the upper and lower rectangles. 
Foils were only drawn from the set of items that can legally 
occur in a given column (beginning, middle, end). E.g., for 
the string pel wadim rud the leftmost column might contain 
PEL and the foil DAK, the center column WADIM and the foil 
FENGLE, and the rightmost column RUD and the foil TOOD, 
as shown in Figure 1 across three time steps.  
 

 
Figure 1: The sequence of mouse clicks associated with a 

single trial for the auditory stimulus string “pel wadim rud”. 
 

 After 250 msec. of familiarization to the six visually 
presented nonwords, the auditory stimuli were played over 
headphones. Participants were instructed to use a computer 
mouse to click upon the rectangle with the correct (target) 
nonword as soon as they heard it, with an emphasis on both 
speed and accuracy. Thus, when listening to pel wadim rud 
the participant should first click PEL upon hearing pel (Fig. 
1, left), then WADIM when hearing wadim (Fig. 1, center), 
and finally RUD after hearing rud (Fig. 1, right). After the 
rightmost target has been clicked, the screen clears, and a 
new set of nonwords appears after 750 msec. An advantage 
of this design is that every nonword occurs equally often 
(within a column) as target and as foil. This means that for 
the first two responses in each trial (leftmost and center 
columns), participants cannot anticipate beforehand which is 
the target and which is the foil. Following the rationale of 
standard SRT experiments, however, if participants learn the 
nonadjacent dependencies inherent in the stimulus strings, 
then they should become increasingly faster at responding to 
the final target. The dependent measure is thus the reaction 
time (RT) for the predictive, final element on each trial, 
subtracted from the RT for the nonpredictive, initial element 
to serve as a baseline and control for practice effects. 

Each training block involved the random presentation of 
72 unique strings (24 strings x 3 dependency-pairs). After 
exposure to these 432 strings (across the first 6 training 
blocks), participants were surreptitiously presented with 24 
ungrammatical strings, with endings that violated the 
dependency relations (in the manner noted above). This 
short ungrammatical block was followed by a final training 



(‘recovery’) block with 72 grammatical strings. Block 
transitions were seamless and unannounced to participants.  

Upon completing all 8 blocks, participants were informed 
that the sequences they heard had been generated according 
to rules specifying the ordering of nonwords. For an ensuing 
‘prediction task,’ participants were instructed to select string 
endings for 12 trials upon being cued with only preceding 
sequence-elements. I.e., participants viewed the same grid 
display as before and followed the same procedure for the 
first two string-elements (e.g., pel wadim… in Fig. 1) but 
had to indicate which of the two nonwords in the 3rd column 
(e.g., TOOD or RUD) they thought best completed the string 
without hearing the final nonword (and without feedback). 

Results and Discussion 
Analyses were performed on only accurate string trials (with 
no more than one selection response for each of the three 
targets); these comprised grand averages of 90.0% (SD=5.6) 
of training block trials, 84.7% (SD=15.7) of ungrammatical 
trials, and 87.1% (SD=12.3) of recovery trials.1 Mean RT 
difference scores were then computed for each block. 

A one-way repeated-measures analysis of variance 
(ANOVA) with block as the within-subjects factor was 
performed. As Mauchly’s test indicated a violation of the 
sphericity assumption (χ2(27) = 111.82, p <.001), degrees of 
freedom were corrected using Greenhouse-Geisser estimates 
(ε = .36). Results indicated that mean RT difference was 
affected by block, F (2.55, 73.96) = 8.97, p <.001. Figure 2 
plots group averages for the mean RT difference scores (i.e., 
initial-element RT minus final-element RT), with positive 
values reflecting nonadjacency learning. RT differences 
gradually increased throughout, albeit with an expected 
decline in the ungrammatical 7th block. Cleeremans and 
McClelland (1991) have previously found that sensitivity to 
long-distance contingencies emerges more gradually than 
for adjacent dependencies; our temporal trajectory in Figure 
2 also indicates that sensitivity to nonadjacent dependencies 
requires considerable exposure (5 blocks on average) before 
it reliably affects responses. 

Planned contrasts confirmed that mean RT differences in 
the ungrammatical block significantly decreased compared 
to both the preceding training block, t(29) = 2.11, p =.04, 
and the following recovery block, t(29) = 3.22, p <.01. 
Following interpretations in the implicit learning literature 
for comparing RTs to structured versus unstructured 
material, this decrement in performance (Block 6 minus 
Block 7: M= -34.8 ms, SE=16.5) provides evidence for 
participants’ sensitivity to violations of the sequential 
structure, with improved performance demonstrated upon 
the reinstatement of grammatical sequences in the recovery 
block (Block 8 minus Block 7: M= 77.3 ms, SE=24.0 ms). 

                                                           
1 As analyzed trials required accuracy for all 3 string-elements 

composing a string-trial (rather than for single-selection responses 
defining one ‘trial’ in standard SRT designs), this criterion is quite 
conservative, and may underestimate participants’ total accuracy 
across all single responses. E.g., final-element selection accuracy 
across trial-types was 95.9% (2.4), 93.2% (6.5), and 94.2% (6.1). 

Prediction task accuracy scores averaged 61.1% 
(SD=21.4%) reflecting substantial interindividual variation. 
Group-level performance was above chance, (t(29) = 2.85,  
p <.01), providing another gauge of nonadjacency learning. 
Such scores further provide a sensitive index of individual 
differences for the on-line language processing of complex 
long-distance dependencies, as the next experiment shows. 

 

 
Figure 2: Group learning trajectory (as a plot of mean RT 
differences) and prediction accuracy in Experiment 1. 

Experiment 2: Individual Differences in 
Language Processing and Statistical Learning 

Individual differences in tracking long-distance 
dependencies in natural language have been extensively 
studied in relation to the contrastive processing of subject 
and object relatives. Object relative (OR) sentences 
(illustrated in 2) involve a head-noun that is the object of an 
embedded clause, and are generally more difficult to process 
and comprehend than subject relatives (SRs; such as 1), in 
which the head-noun is the subject of the modifying clause. 
ORs are of keen interest here because successfully tracking 
their structure entails integrating nonadjacent dependencies 
over lexical constituents (i.e., relating the embedded verb to 
the nonlocal head-noun and relating the head-noun to the 
main verb from across the embedded clause). 
(1) The reporter that attacked the senator admitted the error. 
(2) The reporter that the senator attacked admitted the error. 

Differential processing difficulty between ORs and SRs is 
most acute at the main verb, where protracted reading times 
(RTs) for ORs are evidenced. Individual differences in the 
degree of comparative difficulty have been first reported by 
King and Just (1991) and linked to variations in verbal 
working memory (vWM) as assessed by a reading span task. 
Interpretations of these findings, however, have been in 
dispute between experience-based versus capacity-based 
accounts (e.g., Just & Carpenter, 1992; MacDonald & 
Christiansen, 2002; see also Waters & Caplan, 1996). 

While capacity-based views impute low-span individuals’ 
poorer processing of ORs to limitations in memory 
resources, experience-based views emphasize experiential 
learning factors that modulate the processing difficulty that 
readers encounter. In support of the latter approach, 
MacDonald and Christiansen (2002) conducted simple 



recurrent network (SRN) simulations that reproduced the 
SR/OR RT patterns of low- and high-span individuals as a 
function of the amount of training received by the networks. 
In addition, a human training study by Wells, Christiansen, 
Race, Acheson and MacDonald (2009) showed that greater 
SR/OR reading experience (compared to that of a control  
condition) tuned RT profiles towards resembling those of 
high-span individuals and qualitatively fit the performance 
of the aforementioned SRNs after the most training epochs. 

These studies suggest that SL plays a crucial underlying 
role in shaping readers' experience of the distributional 
constraints that govern the less frequent and irregular ORs, 
which in turn facilitates subsequent RTs. If SL is indeed an 
important mechanism for such processing phenomena and is 
meaningfully captured by the new AGL-SRT task, then 
individual differences in nonadjacent SL (as observed and 
indexed in Exp. 1) should systematically contribute towards 
interindividual variation for the ability to track the nonlocal 
dependency structure of OR sentences. Exp. 2 thus aims to 
empirically test the strength of this predicted relationship. 

Method 
Participants Nineteen of the last 20 participants (age: 
M=20.0, SD=1.4) in Experiment 1 participated afterwards in 
this experiment for additional credit. Data from one 
participant was omitted due to equipment malfunction. 
Materials Two experimental sentence lists were prepared, 
each incorporating 12 initial practice items, 40 experimental 
items (20 SRs, 20 ORs), and 48 filler items.  Yes/No 
comprehension probes accompanied each sentence item. 
The SR/OR sentence pairs were taken from Wells et al. 
(2009) and counterbalanced across the two lists. Semantic 
plausibility information for subject/object nouns was 
controlled in the experimental materials. 
Procedure Each participant was randomly assigned to a 
sentence list, whose items were presented in random order 
using a standard word-by-word, moving-window paradigm 
for self-paced reading (Just, Carpenter & Woolley, 1982). 
Millisecond RTs for each sentence-word and accuracy for 
each following comprehension question were recorded. 

Results and Discussion 
Raw RTs corresponding to practice items and those in 
excess of 2500 ms (0.86% of data) were excluded from 
analyses. RTs were length-adjusted by computing a 
regression equation per participant based on the character-
length of a word, and subtracting observed RT values from 
predicted values (Ferreira & Clifton, 1986). Means from 
residual RTs were then calculated for the same sentence 
regions as used in Wells et al. (2009) and prior related work. 

Overall comprehension rate was high (87.3%). Consistent 
with past studies, comprehension was poorer for ORs 
(75.8%) compared to SRs (86.1%). To test the involvement 
of SL in mediating individual differences in corresponding 
RT patterns, participants were first classified as ‘low’ or 
‘high’ in SL skill according to their prediction task scores 
from Exp. 1 (with 50% as the cutoff-level). RTs from ‘low 

pred’ (n=11, M= 42.4%, SD=8.7) and ‘high pred’ (n=7, M= 
73.8%, SD=14.8) participants were then compared.  

While the two groups did not differ on their processing of 
SR regions, RTs considerably diverged at the main verb of 
ORs, as depicted in Figure 3. This performance contrast for 
ORs (and lack thereof for SRs) precisely mirrors the reading 
patterns documented in the literature for those with ‘low’ 
and ‘high’ vWM span scores respectively. Importantly then, 
individual differences in SL prediction task scores were not 
predictive of RTs for any SR/OR sentence regions except, 
crucially, at the main verb of ORs (R2= .34, p= .01)—the 
anticipated locus of observed processing difficulty.  

These findings suggest that skill in learning and applying 
statistical knowledge of distributional regularities, as 
indexed by prediction task scores from the novel AGL-SRT 
paradigm, is substantially involved in natural language 
processing of relative clauses. This conclusion is also 
supported by results from an individual-differences study by 
Misyak and Christiansen (2007), in which both adjacent and 
nonadjacent statistical learning performance was an even 
better predictor of sentence comprehension than vWM span 
scores. The current study thus expands on those findings by 
documenting that differences in nonadjacent SL vary 
systematically with the on-line tracking and integration of 
nonadjacent dependencies exemplified by OR sentences. 

 

 
Figure 3: Length-adjusted reading times by sentence region 
of obj.-relatives for ‘low’ and ‘high’ pred score participants. 

Experiment 3: Computational Simulations of 
On-line Nonadjacency Learning  

While Experiment 2 supports the relevance of the new 
AGL-SRT task for the processing of complex long-distance 
dependencies in natural language, the kind of computational 
mechanisms underpinning task performance remains to be 
probed. MacDonald and Christiansen’s (2002) simulations 
of relative clause processing suggest that mechanisms akin 
to those of simple recurrent networks (SRNs; Elman, 1990) 
may suffice. Moreover, Cleeremans and McClelland (1991) 
have formerly shown that the SRN can capture performance 
on AGL-like SRT tasks. We thus chose to closely model on-
line performance from our task with SRN simulations based 
on the exact same exposure and input as in the human case. 



The SRN is essentially a standard feed-forward network 
equipped with context units containing a copy of hidden 
unit activation at the previous timestep, thus providing 
partial recurrent access to prior internal states. The context 
layer’s limited maintenance of sequential information over 
past timesteps allows the SRN to potentially discover 
temporal contingencies spanning varying distances in the 
input. Next, we use the SRN’s graded output values and 
prediction-based learning mechanism to model human RTs 
and prediction scores from Experiment 1. 

Method 
Networks Simulations were conducted with 30 individual 
networks, one corresponding to each human participant, and 
each randomly initialized with a different set of weights 
within the interval (-1,1) to approximate learner differences. 
Localist representations were employed for the 30 input and 
output units, with one unique unit corresponding to each 
nonword item. The hidden layer had 15 units. The networks 
were trained using standard backpropagation with a learning 
rate of 0.1 and momentum at 0.8. 
Materials The SRNs received the same input as human 
participants, presented using the same randomization 
process as in Experiment 1, and tested on the same 
‘prediction task’ strings (with the same target-foil pairings). 
Procedure SRNs were trained on the strings following an 
identical trial-type sequence as that in Exp. 1 and given a 
subsequent ‘prediction task.’ Networks received the exact 
same amount of exposure to the statistical dependencies as 
the human participants (i.e., 6 grammatical blocks of 72 
string-trials, an ungrammatical block of 24 trials, a recovery 
block of 72 trials, and a 12-item prediction task)—and no 
additional training. Context units were reset between string-
sequences by setting values to 0.5; this simulated the screen-
clear and between-trial pauses that human participants 
observed. Weight changes were updated continuously 
throughout training, except for the prediction task items at 
the very end, when weights were ‘frozen’ (reflecting the fact 
that human participants received no auditory input/feedback 
for selecting the final elements of prediction-task strings). 

 

 
Figure 4: Comparison of group learning trajectories. 

Results and Discussion 
The networks’ continuous outputs were recorded, and 
performance was evaluated by computing a Luce ratio 

difference score for string-final predictions on each trial. A 
Luce ratio is calculated by dividing a given output-unit’s 
activation value by the sum of the activation values of all 
output units. During processing, the representation formed 
at the output layer of the SRN approximates a probability 
distribution for the network’s prediction of the next element. 
Thus, on the timestep where a middle (X) element is 
received as input, if the network has become sensitive to the 
nonadjacent dependencies, it should most strongly activate 
the output unit corresponding to the correct, upcoming 
string-final nonword. The Luce ratio essentially quantifies 
the proportion of total activity owned by this output unit. 

To approximate human RT difference scores, we 
subtracted the Luce ratio for the foil unit from the Luce ratio 
for the target unit. Since networks cannot erroneously select 
a foil in the same way that humans occasionally do (and 
which were excluded from analyses, as noted earlier and in 
line with standard SRT protocol), accurate trials for the 
networks were defined as those in which the Luce ratio for 
the target exceeded that for the foil. As in Exp. 1, only 
responses/outputs from accurate trials were analyzed. 

A one-way repeated-measures ANOVA with block as the 
within-subjects factor was performed. As Mauchly’s test 
indicated a violation of the sphericity assumption (χ2(27) = 
66.947, p <.001), degrees of freedom were corrected using 
Greenhouse-Geisser estimates (ε = .60). There was a main 
effect of block on mean Luce ratio difference, F (4.21, 
121.96) = 35.57, p <.001. As in the human case, difference 
scores gradually increased, with a performance decrement in 
the 7th (ungrammatical) block. This drop was significant in 
relation to both the preceding and succeeding grammatical 
blocks, t(29) = 6.76, p <.0001; t(29) = 7.80, p <.0001. 

As the analog to the human prediction task, in which 
SRNs received the same test-strings with foil-pairings as the 
humans, we considered the network’s selection to be the 
nonword corresponding to the unit with a higher Luce ratio 
(from among the 2 choices for an ending). Prediction task 
accuracy as a proportion correct out of the 12 items was 
then computed accordingly. The SRNs’ scores averaged 
56.4% (SD=13.4%), which was above chance-level, t(29) = 
2.61, p =.01. The networks’ score distribution was also not 
significantly different from that of humans’, t(58) = 1.025, p 
>.30. Although the networks exhibited somewhat less 
variability, they captured the identical full range of human 
performance from 25 - 100% accuracy. 

The networks’ mean Luce ratio difference scores across 
blocks are plotted in Figure 4, alongside the human learning 
trajectory from Exp. 1.2 Both trajectories are indicative of a 
gradually developing sensitivity to the nonadjacent 
dependencies, with a steeper ascent from blocks 4 to 6. The 
simulated block scores further account for 78% of the 
variance in human RT difference scores (p <.01). 

                                                           
2 Because the learning metric for humans subtracts final- from 

initial-element RTs (to control for potential motor effects) whereas 
that for the SRNs uses only final-element values, Y-axes are 
equalized with block 1 level performance as the baseline. 



General Discussion 
Nonadjacent dependency learning was investigated here 
across three interconnected experiments, using results from 
a novel AGL-SRT paradigm. The new task investigated 
individuals’ learning of nonadjacencies as it unfolded on-
line. Task performances were further shown to predict 
processing for complex, long-distance dependencies 
occurring in natural language, as well as to compellingly 
appear to recruit upon the kind of associative-based learning 
principles exemplified by SRNs. 

Our close modeling of human performance with SRNs 
further argues against the assumption that vWM capacity 
operates as a basic constraint for results in Exp. 1 and 2; it 
also establishes a connection with results from MacDonald 
and Christiansen (2002) in terms of common mechanisms. 
Their SRN simulations had predicted that ORs should be 
differentially affected by increased exposure to relative-
clause sentences. Wells et al. (2009) empirically confirmed 
those predictions and further hypothesized that SL may be 
centrally involved—but did not otherwise speak to what the 
underlying mechanisms may be. Our Exp. 2, however, 
directly supports Wells et al.’s hypothesis. Namely, SL 
prediction performance for high- and low-performing 
individuals on SR/OR processing closely conformed to the 
pattern obtained for participants measured to have high/low 
vWM spans in King and Just (1991), as well as those of the 
high/low experience manipulations for SRNs and humans in 
MacDonald and Christiansen and Wells et al., respectively. 
Together with previous findings that SL overall is a better 
predictor of sentence processing skills than vWM (Misyak 
& Christiansen, 2007), these results provide converging 
evidence for SL as a key contributing factor to individual 
differences in language processing. 

But how do high- and low-SL performers differ? Added 
inspection of micro-level trajectories from Exp. 1 for high/ 
low SL groups reveals distinct differences during non-
adjacency learning. Thus, there are contrasts in the shape of 
the SL training trajectory, final training performance, and 
the response to ungrammatical items. In particular, the low-
SL performers do not show evidence of learning until the 
final block, contributing to the strong recovery effect on this 
block observable in Figure 2. As in this paper, future work 
studying such SL differences (using sensitive paradigms and 
computational modeling) should be fruitful for further 
elucidating the interrelationships among SL, language, and 
nonadjacency processing, as well as the extent of their 
shared dependence on complex, association-based learning 
mechanisms (as captured by networks like the SRN). 
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