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Introduction

Connectionist psycholinguistics is an emerging approach
to modeling empirical data on human language proces-
sing using connectionist computational architectures.
Over the last 20years, a wide range of psycholinguistic
phenomena have been modeled, such as speech proces-
sing, impaired and normal reading, aphasic word pro-
duction, and structural priming in sentence production.
This article focuses on syntax, and especially on the
theoretical relationship between traditional notions in
syntax (constituency, structure dependency, and recur-
sion) and connectionist networks, which do not appear
to make reference to these notions intrinsically.
Connectionist models, or neural networks, are neu-

rally inspired devices based on numerical computa-
tion rather than symbolic manipulation. They are
formed by several simple processing units, called
nodes, which mimic the activity of single neurons.
Each node is excited or inhibited by information
coming from other units to which it is connected.
A set of homogeneous nodes that collectively repre-
sents some information is often called a layer. For
instance, there could be a phoneme layer, a word
layer, and so on. A popular architecture in connec-
tionist psycholinguistics is the feed-forward network
(Figure 1), in which an input layer receives signals
(e.g., rawwords) from outside the network, an output
layer sends signals to outside the network, and an
intermediate layer of so-called hidden units does not
directly connect outside of the network. Hidden unit
layers are often considered the internal states that
represent the knowledge acquired by the network at
the end of training. Information flows from input to
output, and training proceeds by adjusting theweights
between single units until the network produces a
desired output (for instance, the production of the
correct word syntactic category in a given context).
Two aspects of neural networks are particularly

interesting for syntactic processing. First, networks
learn to perform some specific task, such as process
an English sentence, from being exposed to relatively
unanalyzed raw input, such as a sequence of words.
This feature makes them suitable for explaining a great
deal of language learning and language processing
in a psychologically plausible manner. Second, the

knowledge of the networks is not represented in any
explicit way but rather emerges as a pattern of neuronal
activity between the interconnected nodes in a parallel
distributed processing fashion. This is particularly
interesting because it contrasts with more-traditional
symbolic views in cognitive science in suggesting that
humans process sentences by transforming representa-
tions according to sets of rules. For instance, a repre-
sentation of the sentence the girl liked a boy requires
the constituents the, a, girl, boy, liked, and an explicit
representation of the syntactic relationships between
these constituents. The rules of syntax govern how
constituents can be combined together, allowing, for
instance, the boy liked a girl as a legal sentence but not
boy girl a liked the. The following phrase structure
rules describe the relationship between constituents in
the above sentence (S stands for sentence; NP, noun
phrase; VP, verb phrase; det, determiner; N, noun;
and V, verb):

S ! NP VP
NP ! (det) N
VP ! V (NP)

Besides such constituent structure, to capture the
full generativity of human language, recursion needs
to be introduced, for instance by adding a new rule
that adds a potential prepositional phrase (PP) to the
NP (prep stands for preposition):

NP ! (det) N (PP)
PP ! prep NP

These rules are recursive because the expansion of
the right-hand sides of each can call the other. For
example, the complex NP the flowers in the vase has
the simple NP the vase recursively embedded within
it. Because this process can be applied arbitrarily
often, constructions of arbitrary complexity can in
principle be generated. Constituency and recursion
are some of the most fundamental concepts in linguis-
tics. Because both are defined in terms of relations
between symbols, symbolic models of language pro-
cessing therefore incorporate these properties by fiat.
This article discusses how constituency, structure
dependency, and recursion may fit into a connection-
ist framework and the possible implications this work
may have for linguistics and psycholinguistics.

Constituency

Connectionist models can address constituency in
three increasingly radical ways. First, some models –
especially early ones – are implementations of
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symbolic language-processing models in neural hard-
ware. For example, some models have implemented
context-free grammars containing explicit represen-
tations of the constituent structure of a sentence in
just the same way as a nonconnectionist implementa-
tion of the same model would have. Connectionist
implementations of this kind provide feasibility
proofs that traditional symbolic models of language
processing are compatible with a brain style compu-
tational architecture, although they add little new to
the treatment of constituency. The remaining two
classes of connectionist models actually learn to process
constituent structure rather than having this ability
hardwired. One approach is to have a network learn
from input tagged with information about constituent
structure. One study trained a network to map a com-
bination of orthographic and co-occurrence-based
semantic information about a word onto a structured
representation encoding theminimal syntactic environ-
ment for that word. With an input vocabulary consist-
ing of 20000 words, this model has an impressive
coverage and can account for certain results from the
psycholinguistic literature concerning ambiguity reso-
lution in sentence processing. Another model, known
as a simple synchrony network, was trained to parse
sentences pre-encoded as parts of speech. The network
takes the part of speech tags for the sentence constitu-
ents as input and is trained to output the parse tree

fragment of a given constituentwhen that constituent is
queried. The network learns to parse a corpus of writ-
ten English reasonably well. However, because in these
models constituent structure is compiled either into the
input or the output representations, this style ofmodel
does not offer any fresh insight into how linguistic
constituency might operate based on connectionist
principles.

The third class of connectionist models addresses
the more ambitious problem of learning the constitu-
ent structure of a language from untagged linguistic
input. Such models have the potential to develop a
new or unexpected notion of constituency and hence
may have substantial implications for theories of con-
stituency in linguistics and psycholinguistics.

To understand how the more radical connectionist
models address constituency, one can divide the prob-
lem of finding constituent structure into two interre-
lated parts: segmenting the sentence into chunks
which correspond, to some extent, to linguistic con-
stituents and categorizing these units appropriately.
The first problem is an aspect of the general problem
of segmenting speech into appropriate units (pho-
nemes, words, etc.) and more generally is an aspect
of perceptual grouping. The second problem regards
the general problem of classifying linguistic units – for
instance, recognizing different classes of phonemes or
establishing the parts of speech of individual lexical
items. The segmentation and classification problems
need not be solved sequentially. Indeed, there may be
mutual influence between the decision to segment a
particular chunk of language and the decision that it
can be classified in a particular way. Nonetheless, it is
useful to keep the two aspects of the analysis of con-
stituency conceptually separate.

It is also important to stress the difference between
the problem of assigning constituent structure to
novel sentences when the language is known and the
problem of acquiring the constituent structure of an
unknown language. Statistical symbolic parsers are
able to make some inroads into the first problem.
For highly stylized language input, and given a pre-
stored grammar, they can apply grammatical knowl-
edge to establish one or more possible constituent
structures for novel sentences. But symbolic methods
are much less advanced in acquiring the constituent
structure of language because this requires solving the
hard problem of learning a grammar from a set of
sentences generated by that grammar. It is therefore
in relation to the acquisition of constituency that
connectionist methods, with their well-developed
learning methods, have attracted the most interest.

One may begin by focusing on the problem of
classifying, rather than segmenting, the linguistic
input. One connectionist model learns parts of speech
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Figure 1 A standard feed-forward network containing three
layers of units. Information flows bottom up from input to output
units. These types of networks are normally trained using the
back-propagation algorithm, which minimizes the discrepancy
between the network’s actual and desired output. Redrawn from
Onnis L, Christiansen H, and Chater N (2006) Human language
processing: Connectionist models. In: Brown K (ed.) Encyclope-
dia of Language and Linguistics, pp. 401–409. Oxford: Elsevier,
with permission from Elsevier.
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of individual words by clustering words together on
the basis of the immediate linguistic contexts in which
they occur. The rationale is based on the replacement
test: if two words are observed to occur in highly
similar immediate contexts in a corpus, they probably
belong to the same syntactic category. Using a single
layer network with Hebbian learning to store co-
occurrences between target words and their immedi-
ate neighbors, each target word was associated with a
vector representing the contexts in which it typically
occurs. A competitive learning network classified
these vectors grouping together words with similar
syntactic categories. This method is able to operate
over unrestricted natural language, in contrast to
most symbolic and connectionist models. From a lin-
guistic perspective, the model slices lexical categories
too finely, producing, for example, many word classes
that correspond to nouns or verbs. On the other
hand, the words within a class tend to be semantically
related, which is useful from a cognitive perspective.
The same method can be extended to classify sequen-
ces of words as NPs, VPs, and so forth. An initial
classification of words is used to recode the input
as a sequence of lexical constituents. Then short
sequences of lexical constituents are classified by their
context, as before. The resulting groups of phrase (e.g.,
determiner–adjective–noun) are readily interpretable
as NPs, VPs, PPs, and so on, but again, these groupings
are too linguistically restrictive (i.e., only a small num-
ber of NPs are included in any particular cluster).
Moreover, this phrasal-level classification has not yet
been implemented in a connectionist network.
A different attack on the problem of constituency

involves training simple recurrent networks (SRNs)
on linguistic input. An SRN involves a crucial modifi-
cation to a feed-forward network: the current set of
hidden unit values is copied back to a set of additional
input units and paired with the next input to the net-
work (Figure 2). The current hidden unit values can
thus directly affect the next hidden unit values, pro-
viding the networkwith amemory for past inputs. This
enables it to tackle online sentence processing, in
which the input is revealed sequentially over time.
Segmentation into constituents can be achieved in

two ways by an SRN trained to predict the next input.
One is based on the assumption that predictability is
higher within constituents than across constituent
boundaries, and hence that high prediction error indi-
cates a boundary. This method has been advocated as
potentially applicable at a range of linguistic levels,
but in practice it has been successfully applied only on
corpora of unrestricted natural language input in
finding word boundaries. Even here, the prediction
strategy is a very partial cue to segmentation. If
the network is provided with information about

naturally occurring pauses between utterances (or
parts of utterances), an alternative method is to
assume that constituent boundaries occur where the
network has an unusually high expectation of an
utterance boundary. The rationale is that pauses
tend to occur at constituent boundaries and hence
the prediction of a possible utterance boundary sug-
gests a constituent boundary may have occurred.
This approach seems highly applicable to segmenting
sentences into phrases but has also primarily been
used for finding word boundaries in real corpora of
language, when combined with other cues.

So far, this article has considered how SRNs might
find constituents. But how well do they classify con-
stituents? At the word level, cluster analysis of hidden
unit activations shows that, to some extent, the
hidden unit patterns associated with different word
classes group naturally into syntactic categories, for
SRNs trained on simple artificial grammars. These
results are important because they show that even
though the SRNmay not learn to classify constituents
explicitly, it is nevertheless able to use this informa-
tion to process constituents appropriately. Another
way of assessing constituency learning is to see
whether networks generalize to predict novel sen-
tences of a language. The logic is that to predict
successfully, the SRN must exploit linguistic regula-
rities which are defined across constituents and hence
develop a notion of constituency to do so. However,
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Figure 2 A simple recurrent network (SRN). An SRN is essen-
tially a standard feed-forward network equipped with an extra
layer of so-called context units. At each time step, an input pro-
pagates through the hidden units to the outputs (solid arrows). The
hidden unit activation at the previous time step is copied back to
the context layer (dashed arrows) and paired with the current input
(solid arrows). Thus the hidden units influence the processing of
subsequent inputs, providing a limited ability to deal with sequen-
tial inputs. Redrawn from Onnis L, Christiansen H, and Chater N
(2006) Human language processing: Connectionist models. In:
Brown K (ed.) Encyclopedia of Language and Linguistics, pp.
401–409. Oxford: Elsevier, with permission from Elsevier.
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it has been pointed out that this type of evidence is
not compelling if the novel sentences are extremely
similar to the network’s training sentences. That is, to
show substantial evidence for generalization across
constituents, the network should be able to handle
novel sentences in which words appear in sentence
locations where they have not previously occurred.
For example, a novel sentence might involve a particu-
lar noun in object position that has previously occurred
only in subject position. This property of the human
brain, called systematicity, captures the idea that if one
can understand the sentence Bob loves Mary, one can
also understand Mary loves Bob; the underlying
knowledge that supports understanding of the first
sentence enables understanding the second. Hence, to
generalize effectively, the network must presumably
develop some abstract category of nouns.
The challenge of systematicity can be addressed by

presenting evidence that connectionist models are in
fact able to attain strong generalization. In the train-
ing corpus of one study, the noun boy was prevented
from ever occurring in a noun phrase conjunction
(i.e., noun phrases such as John and boy and boy
and John did not occur). During training, the SRN
had therefore been presented only with singular verbs
following boy. Nonetheless, the network was able to
correctly predict that a plural verb must follow John
and boy as prescribed by the grammar. In addition,
the network was still able to correctly predict a plural
verb when a prepositional phrase was attached to
boy as in John and boy from town, providing even
stronger evidence for strong generalization. In con-
trast, when the SRN was presented with ungrammat-
ical lexical items in the second noun position, as
in John and near, it did not activate the plural
nouns. Instead, it activated lexical items that were
not grammatical given the previous context. This
suggests that the SRN is able to make nonlocal gen-
eralizations based on the structural regularities in the
training corpus. If the SRN relied solely on local
information, it would not have been able to make
correct predictions in either case. Thus, the network
demonstrated sophisticated generalization abilities,
ignoring local word co-occurrence constraints while
appearing to comply with structural information at
the constituent level.
Another strong test of generalizations that connec-

tionist models seem to fail concerns equivalence rela-
tions: one SRN was trained on sentences like A rose is
a rose or A tulip is a tulip, but when given a novel
sentence fragment like A blicket is a . . ., the SRN
could not predict that blicket was going to be the
next word because it activated all the words that it
had seen in this sentence position (e.g., rose, tulip,
etc.). This suggests that it did not develop abstract
variable-based frames like a X is a X, where X is a

variable that can be bound to any word. In reply to
this negative evidence, another study presented a
model of sentence production that could generalize
well if the input message was encoded in several
separate representations that were linked together.
The model had a dual-pathway architecture, with
one pathway representing the mapping of object
semantics to word forms and another representing
and mapping objects (and the words that describe
them) into appropriate sentence positions. The
model contained a bank of units representing event
roles (agent, patient, etc.) that fed onto a layer of
lexical units (e.g., DOG, CAT, etc.). This way the
model could represent the different roles of a word,
say dog, in various events while activating a common
semantics that all dogs have. Semantic units connected
to word label units that represented the phonetics of
each word, allowing the learning of a word label for
each meaning. Because there was only one set of
semantic units for different event role units, learning
the mapping of the semantic feature DOG to the word
label dog allowed the model to generalize this word to
other event roles. Hence, even if the model had expe-
rienced only the sentence the dog chases the cat, it was
able to generalize and produce a novel sentence the cat
chases the dog. A variation of this model was further
able to capture an important psycholinguistic phe-
nomenon called structural priming, namely, a ten-
dency for speakers to reuse previously experienced
sentence structures. Because structural priming occurs
in the absence of lexical and conceptual repetition
and in the face of thematic role differences, it has
been taken as convincing evidence that people make
use of abstract syntactic representations and construc-
tions, such as a the double-object dative construction
(e.g., John gave Mary a book). The connectionist
model could reproduce structural priming without
having inbuilt syntactic constructions.

Another model, called CSCP, was developed to
perform both comprehension and production of com-
plex, multiclausal sentences using a larger corpus
than previous models had. In this respect, neural net-
works promise to scale up to real samples of natural
language. The model deals with several sentence com-
prehension and production phenomena that involve
discovery of constituent structures such as multiple
verb tenses and voices, adverbs and adjectives, prep-
ositional phrases, relative and subordinate clauses,
and sentential complements. The CSCP network has
a semantics component, which is used to help the net
predict the next word. The semantic component is
also used to produce a word. When a word is selected
for production, it is fed back into the comprehension
input, and the model proceeds to produce the next
word, and so on. Therefore, the model also claims
that language production is learned primarily by
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formulating implicit predictions while attempting to
comprehend one’s language.
This discussion must note that connectionist mod-

els do not mirror classical constituency precisely.
That is, they do not derive rigid classes of words
and phrases that are interchangeable across contexts.
Rather, they divide words and phrases into clusters
without precisely defined boundaries and treat them
differently depending on the linguistic contexts in
which they occur. This context-sensitive constituency
can be viewed as either the undoing of connectionist
approaches to language or their radical contribution.
The potential problem with context-sensitive constit-
uency is the productivity of language: to take Noam
Chomsky’s famous example, how do we know that
the sentence colorless green ideas sleep furiously is
syntactically correct, except by reference to a context-
insensitive representation of the relevant word clas-
ses? This seems necessary because each word occurs in
a context where it has rarely been encountered before.
But this problemmay not be fatal for context-sensitive
notions of constituency. A neural network was trained
tomutually associate two input sequences – a sequence
of word forms and a corresponding sequence of word
meanings. The networkwas able to learn a small artifi-
cial language successfully; it was able to regenerate the
word forms from the meanings and vice versa. The
networkwas tested to see whether, by passing informa-
tion from form tomeaning and back, it could recreate a
sequence of word forms presented to it. Ungrammati-
cal sentences were recreated much less accurately than
grammatical sentences, and the network was thus able
to distinguish grammatical from ungrammatical sen-
tences. It is important to note that this was true for
sentences in which words appeared in novel grammati-
cal combinations, as specified by the systematicity cri-
terion and as exampled in Chomsky’s famous sentence.
Thus, the context sensitivity of connectionist constitu-
ency may not rule out the possibility of highly creative
and novel use of language, because abstract relations
may be encoded at a semantic level, as well as at the
level of word forms.
If the apparent linguistic limitations of context-

sensitive constituency can be overcome, then the
potential psychological contribution of this notion is
enormous. First, context-sensitivity seems to be the
norm throughout human classification. Second, much
data on sentence processing can be naturally exp-
lained by assuming that constituents are represented
in a fuzzy and context-bound manner.

Structure Dependency

A linguistic concept intimately tied to constituency
is structure dependency, the notion that grammati-
cal knowledge relies on the structural relationships

between constituents rather than on the linear
sequence of items. One of the fiercest arguments
leveled at distributional models of learning (of which
neural networks can be seen as an instantiation) con-
cerns the uninformativeness of such mechanisms for
detecting linguistically relevant properties. The most
relevant properties of language appear to be abstract,
such as phrase structure configurations, grammatical
relations, and syntactic categories, whereas informa-
tion contained in raw input pertains to serial position,
adjacency, and co-occurrence relations among words.
To the extent that connectionist models, and in partic-
ular SRNs, process information relying simply on the
linear sequencing of linguistic elements (at any level of
analysis – phonemes, morphemes, words, etc.), they
would seem doomed to fail to capture structure
dependency. It turns out that SRNs can master a clas-
sic example of structure dependency in English, auxil-
iary fronting. In the generative linguistics framework,
declaratives are turned into questions by fronting the
correct auxiliary. For example, to turn the declarative
form The man who is hungry is ordering dinner, it is
correct to front the main clause auxiliary, as in 1(a),
but fronting the subordinate clause auxiliary produces
an ungrammatical sentence, as in 1(b):

1(a) Is the man who is hungry ordering dinner?
1(b)* Is the man who hungry is ordering dinner?

A structure-independent rule would move the first
is, but the correct structure-dependent rule involves
only the movement of the is from the main clause.
Because children do not erroneously move the first is
to the front of the sentence, and because they receive
too little direct evidence for inferring correct auxiliary
fronting, it has been claimed that structure depen-
dency could not be learned from positive evidence
by an associative mechanism. To address this chal-
lenge, SRNs were trained to predict the next lexical
category from a corpus of child-directed speech that
contained no relevant examples of correct auxiliary
fronting. The networks, tested on completely novel
sentences, produced more accurate predictions for
grammatical test sentences such as Is the boy who is
hungry nearby? than for ungrammatical sentences,
such as *Is the boy who hungry is nearby? The
prediction of the well-formed relative clause con-
tinuation, V (i.e., is), was highly preferred over the
ill-formed version, ADJ (i.e., hungry). This pattern of
predictions reflected the networks’ sensitivity to the
statistical properties of the corpus. The networks dis-
tinguished chunks of lexical categories that weremore
frequent in the training input from less-frequent ones
(i.e., the lexical categories corresponding to PRON
VADJ (who is hungry) vs. PRONADJ V (who hungry
is)). This work suggests that the networks were sensi-
tive to the indirect statistical evidence present in the
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corpus, developing an appropriate bias toward the
correct forms of AUX questions without having a
built-in rule for question formation.

Recursion

As with constituency, connectionist models have dealt
with recursion in three increasingly radical ways. The
least radical approach is to hardwire recursion into
the network (e.g., as in the model that implemented
phrase structure rules) or to add an external symbolic
(first-in-last-out) stack to the model. In both cases,
recursive generativity is achieved entirely through
standard symbolic means, and although this is a per-
fectly reasonable approach to recursion, it adds noth-
ing new to symbolic accounts of natural language
recursion. The more radical connectionist approaches
to recursion aim for networks to learn to deal with
recursive structure. One approach is to construct a
modular system of networks, each of which is trained
to acquire different aspects of syntactic processing:
one trained to map words onto case-role assignments,
another trained to function as a stack, and a third
trained to segment the input into constituent-like
units. Although such a model displays complex recur-
sive abilities, the basis for these abilities and their
generalization to novel sentence structures derive
from the configuration of the stack network, com-
bined with the modular architecture of the system,
rather than being discovered by the model.
The most radical connectionist approaches to

recursion attempt to learn recursive abilities with
minimal prior knowledge built into the system. In
this type of model, the network is most often required
to discover both the constituent structure of the input
and how these constituents can be recursively assem-
bled into sentences. As with the similar approach to
constituency described above, such models may pro-
vide new insights into the notion of recursion in
human language processing.
Before these modeling efforts are discussed, the

extent to which recursion is observed in human lan-
guage behavior needs to be assessed. It is useful to
distinguish simple and complex recursion. Simple
recursion consists of recursively adding new material
to the left (e.g., the adjective phrases (AP) in the gray
cat! the fat gray cat! the ugly fat gray cat) or right
(the PPs in the flowers in the vase! the flowers in the
vase on the table ! the flowers in the vase on the
table by the window) of existing phrase material. In
complex recursion, new material is added in more
complicated ways, for example, through center
embedding of sentences (the chef admired the musi-
cians ! the chef who the waiter appreciated admired
the musicians). Psycholinguistic evidence shows that

people find simple recursion relatively easy to process,
whereas complex recursion is almost impossible to pro-
cesswithmore thanone level of recursion. For instance,
the following sentence, with two levels of simple (right-
branching) recursion, The busboy offended the waiter
who appreciated the chef who admired the musicians,
is much easier to comprehend than the comparable
sentence with two levels of complex recursion, The
chef who the waiter who the busboy offended appre-
ciated admired themusicians. Because recursion is built
into symbolic models, there are no intrinsic limitations
on how many levels of recursion can be processed.
Instead, suchmodels must invoke extrinsic constraints,
such as the competence–performance distinction, to
accommodate the human performance asymmetry on
simple and complex constructions. The radical connec-
tionist approach models human performance directly
without the need for extrinsic performance constraints.

The SRN model developed by Jeff Elman was per-
haps the first connectionist attempt to simulate
human behavior on recursive constructions. This net-
work was trained on sentences generated by a small
context-free grammar incorporating center embed-
ding and a single kind of right-branching recursive
structure. In related work, SRNs were trained on a
recursive artificial language incorporating four
kinds of right-branching structures, a left-branching
structure, and center embedding. The behavior of
these networks was qualitatively comparable to
human performance in that the SRN predictions for
right-branching structures were more accurate than
for sentences of the same length involving center
embedding, and performance degraded appropriately
when depth of center embedding increased. Further
simulations corroborated these results, suggesting
that semantic bias (incorporated via co-occurrence
restrictions on the verbs) can facilitate network
performance in center-embedded constructions in a
way similar to the semantic facilitation effects found
in human processing. Using abstract artificial lan-
guages, it has been demonstrated that the SRN’s gen-
eral pattern of performance is relatively invariant
across network size and training corpus, and the
humanlike pattern of performance likely derives
from intrinsic constraints inherent in the SRN archi-
tecture.

Connectionist models of recursive syntax typically
use toy fragments of grammar and small vocabularies.
Aside from raising concerns over scaling up, these fac-
tors make it difficult to provide detailed fits with empir-
ical data. Nonetheless, some attempts have recently
been made toward fitting existing data and deriving
new empirical predictions from the models. One SRN
model fits grammaticality ratings data from several
behavioral experiments, including an account of the
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relative processing difficulty associatedwith the proces-
sing of center embeddings (with the following relation-
ship between nouns and verbs: N1_N2_N3_V3_V2_V1)
versus cross-dependencies (with the following relation-
ship between nouns and verbs: N1_N2_N3_V1_V2_V3).
Human data have shown that sentences with two cen-
ter embeddings (in German) were significantly harder
to process than comparable sentences with two cross-
dependencies (in Dutch). A measure of grammatical
prediction error (GPE) was developed that allowed
network output to be mapped onto human perfor-
mance data. GPE is computed for each word in a
sentence and reflects the processing difficulties that a
network experiences at a given point in a sentence.
Averaging GPE across a whole sentence, the SRN
fit human data concerning the greater perceived diffi-
culty associated with center embedding in German
compared with cross-serial dependencies in Dutch.
The simulation results demonstrated that the SRNs
exhibited the same kind of qualitative processing
difficulties as humans do on these two types of comp-
lex recursive constructions. Further simulations
derived novel predictions concerning other types of
recursive constructions, and these predictions were
later confirmed experimentally. Single-word GPE
scores were mapped directly onto reading times,
providing an experience-based account for human
data concerning the differential processing of singly
center-embedded subject and object relative clauses in
human participants with different levels of reading
comprehension ability.
Just as the radical connectionist approach to con-

stituency deviates from classical constituency, the
above approach to recursion deviates from the classi-
cal notion of recursion. The radical models of recur-
sion do not acquire true recursion because they are
unable to process infinitely complex recursive con-
structions. However, the classic notion of recursion
may be ill-suited for capturing human recursive abil-
ities. Indeed, the psycholinguistic data suggest that
people’s performance may be better construed as
being only quasi-recursive. The earlier mentioned
semantic facilitation of recursive processing further
suggests that human recursive performance may be
partially context-sensitive; for example, the semanti-
cally biased The bees that the hive that the farmer
built housed stung the children is easier to compre-
hend than neutral The chef that the waiter that the
busboy offended appreciated admired the musicians
even though both sentences contain two center
embeddings. This dovetails with the context-sensitive
notion of constituency and suggests that context sen-
sitivity may be a more pervasive feature of language
processing than is typically assumed by symbolic
approaches.

Connectionist Models of Language
Processing

What is the significance of connectionist models of
language processing? Will connectionism ultimately
replace, complement, or simply implement symbolic
approaches to language? Early connectionists addres-
sed this issue by attempting to show that connectionism
could, in principle, capture aspects of language and
language processing. These models showed that con-
nectionist networks could in principle acquire parts of
linguistic structure without extensive innate knowl-
edge. Recent work has moved toward a connectionist
psycholinguistics that captures detailed psychological
data. This article has outlined several ways in which
constituency and recursion – two fundamental proper-
ties of linguistic knowledge – may be accommodated
within a connectionist framework, ranging from direct
implementation of symbolic systems to the acquisition
of constituency and recursion from untagged input. It
has focused on the radical approach because this
approach has the greatest potential impact on psycho-
linguistics and linguistic theory.

However, much of this research is still preliminary.
Work is required to decide whether promising, but
limited, initial results can eventually be scaled up to
deal with the complexities of real language input or
whether a radical connectionist approach is beset by
fundamental limitations. Another challenge is to find
ways – theoretically and practically – to interface
models, which have been proposed at different levels
of linguistic analyses, with one another (e.g., interfac-
ing models of morphology with models of sentence
processing).

Nevertheless, the connectionist models described in
this article have already influenced the study of lan-
guage processing. First, connectionism has helped
promote a general change toward replacing box-
and-arrow diagrams with explicit computational
models. Second, connectionism has reinvigorated the
interest in computational models of learning, includ-
ing learning properties, such as recursion and constit-
uent structure, which were previously assumed to be
present a priori in humans and therefore taken for
granted. Finally, connectionism tends to discard the
separation between competence and performance as
artificially construed and possibly misleading. From
this perspective, linguistic recursion is a conceptual
artifact of the competence–performance distinction
instead of a necessary characteristic of the underlying
computational mechanism. In this light, the problem
facing connectionist models of language processing is
not whether they can implement some kind of recur-
sive mechanism but whether they will be able to
account for the (limited) recursive structure found in
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natural language behavior purely in terms of nonsym-
bolic computation.
Connectionism has already had a considerable

impact on the psychology of language. However, the
final extent of this influence depends on the degree to
which practical connectionist models can be devel-
oped and extended to deal with complex aspects of
language processing in a psychologically realistic
way. Recent models have already started to scale up
to more realistic corpora and sentence processing
behaviors. If realistic connectionist models of lan-
guage processing can be provided, then the possibility
of a radical rethinking, not just of the nature of lan-
guage processing, but of the structure of language
itself, may be required.

See also: Language Development; Psycholinguistics;
Sentence Production; Sentence Comprehension; Statis-
tical Learning of Language; Word Production; Word
Recognition; Word Learning.
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