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Sequential learning and the interaction 
between biological and linguistic adaptation 
in language evolution

Florencia Reali and Morten H. Christiansen
Department of Psychology, Cornell University, Ithaca, NY 14853

It is widely assumed that language in some form or other originated by piggy-
backing on pre-existing learning mechanism not dedicated to language. Using 
evolutionary connectionist simulations, we explore the implications of such 
assumptions by determining the effect of constraints derived from an earlier 
evolved mechanism for sequential learning on the interaction between biologi-
cal and linguistic adaptation across generations of language learners. Artificial 
neural networks were initially allowed to evolve “biologically” to improve their 
sequential learning abilities, after which language was introduced into the 
population. We compared the relative contribution of biological and linguistic 
adaptation by allowing both networks and language to change over time. The 
simulation results support two main conclusions: First, over generations, a 
consistent head-ordering emerged due to linguistic adaptation. This is consis-
tent with previous studies suggesting that some apparently arbitrary aspects of 
linguistic structure may arise from cognitive constraints on sequential learning. 
Second, when networks were selected to maintain a good level of performance 
on the sequential learning task, language learnability is significantly improved 
by linguistic adaptation but not by biological adaptation. Indeed, the pressure 
toward maintaining a high level of sequential learning performance prevented 
biological assimilation of linguistic-specific knowledge from occurring.

1. Introduction

Although the space of logically possible languages is vast, the world’s languages 
only take up a small fraction of it. As a result, human languages are characterized 
by a number of universal constraints on how they are structured and used. Many 
of these constraints undoubtedly derive from innate properties of the learning and 
processing mechanisms brought to bear on language acquisition and processing. 
But what is the origin of these constraints in our species?
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One approach suggests that language evolved through a gradual process of 
natural selection of more and more complex linguistic abilities (e.g., Briscoe, 2003; 
Dunbar, 2003; Jackendoff, 2002; Nowak, Komarova & Nyogi, 2002; Pinker, 1994, 
2003; Pinker & Bloom, 1990). From this perspective, biological adaptation has en-
dowed humans with a large body of innate knowledge specific to language: A Uni-
versal Grammar. Supported by a rapidly growing bulk of research from linguistics 
(grammaticalization: Givón, 1998; Heine & Kuteva, 2002), archeology (Davidson, 
2003), the development of indigenous sign-languages (Ragir, 2002), and computa-
tional modeling (e.g., Batali, 1998; Kirby, 2001 — see Kirby, 2002, for a review), an 
alternative perspective has emerged, focusing on the adaptation of language itself 
— linguistic adaptation — rather than on the adaptation of biological structures 
such as the brain. On this account, linguistic adaptation resulting from cultural 
transmission of language across many generations of language learners has re-
sulted in the emergence of complex linguistic structure (e.g., Christiansen, 1994; 
Christiansen & Chater, 2008; Deacon, 1997; Kirby & Hurford, 2002; Tomasello, 
2003). The universal constraints we observe across the world’s languages are pro-
posed to be a consequence of the process of cultural transmission combined with 
cognitive limitations on learning and processing (Kirby & Christiansen, 2003; see 
Christiansen & Chater, 2008, for a review).

Cultural transmission, however, does not take place in a vacuum but within 
the broader context of the biological evolution of the hominid species. A complete 
picture of the role of cultural transmission in language evolution must therefore 
take into account the complex interplay between general biological adaptation 
and linguistic adaptation. Recent computational studies have explored the role of 
biological adaptation for language (e.g., Batali, 1994; Cangelosi, 1999; Nowak et 
al., 2002) and linguistic adaptation (e.g., Batali, 1998; Kirby, 2001). Moreover, a 
growing number of studies have started to investigate the potentially important 
interactions between biological and linguistic adaptation in language evolution 
(Christiansen, Reali & Chater, 2006; Hurford, 1989; Hurford & Kirby, 1999; Kvas-
nicka & Pospichal, 1999; Livingstone & Fyfe, 2000; Munroe & Cangelosi, 2002; 
Smith 2002; 2004; Yamauchi, 2001). 

However, the complex interactions between biological and linguistic adapta-
tion are also subject to further limiting factors, deriving from the constraints on 
the neural mechanisms that are used to learn and process language (Christiansen 
& Chater, 2008) as well as the social context within which language is acquired and 
used (Levinson, 2000). In this paper, we conduct evolutionary simulations to fur-
ther explore how these interactions may be affected by the first type of constraints 
arising from the brains of the language learners, focusing on how the important 
cognitive ability of sequential learning may influence the evolution of language 
structure. Two main results are reported. First, we provide evidence suggesting 
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that apparent ‘arbitrary’ aspects of linguistic structure – such as word order uni-
versals – may arise as a result of sequential learning and processing constraints. 
Consistent with previous studies (e.g., Christiansen & Devlin, 1997; Kirby, 1998), 
our simulations revealed that consistent head-ordering emerged over generations 
of evolving learners and languages as a result of linguistic adaptation. Second, we 
explore the interaction between sequential learning constraints and biological 
adaptation. We assume that after the emergence of language, sequential learning 
skills would still have been crucial for hominid survival. Thus, the simulations 
were designed to explore the relative contribution of linguistic and biological ad-
aptation while simulating a selective pressure toward maintaining non-linguistic 
sequential learning abilities. The simulations revealed that, under such conditions, 
language learnability is significantly improved by linguistic adaptation but not by 
biological adaptation. Indeed, the pressure toward maintaining a high level of se-
quential learning performance prevented biological adaptation from occurring. 

2. Sequential learning and language evolution

There is an obvious connection between sequential learning and language: Both 
involve the extraction and further processing of elements occurring in temporal 
sequences. Indeed, recent neuroimaging and neuropsychological studies point to 
an overlap in neural mechanisms for processing language and complex sequential 
structure. A growing bulk of work indicates that language acquisition and process-
ing shares mechanisms with sequential learning in other cognitive domains (e.g., 
language and musical sequences: Koelsch et al., 2002; Maess, Koelsch, Gunter & 
Friederici, 2001; Patel, 2003, Patel, Gibson, Ratner, Besson & Holcomb, 1998; se-
quential learning in the form of artificial language learning: Christiansen, Con-
way & Onnis, 2007; Friederici, Steinhauer & Pfeifer, 2002; Petersson, Forkstam & 
Ingvar, 2004; break-down of sequential learning in aphasia: Christiansen, Kelly, 
Shillcock & Greenfield, 2007; Hoen et al., 2003). For example, using event-related 
potential (ERP) techniques, Friederici et al. (2002) showed that subjects trained 
on an artificial language have the same brainwave patterns to ungrammatical sen-
tences from this language as to ungrammatical natural language sentences (see 
also Christiansen et al., 2007). In a different series of studies, Patel et al. (1998), 
showed that novel incongruent musical sequences elicit ERP patterns that are sta-
tistically indistinguishable from syntactic incongruities in language. Using event-
related functional magnetic resonance imaging (fMRI) methods Petersson et al. 
(2004) have shown that Broca’s area, which is well-known for its involvement in 
language, is also active in an artificial grammar learning tasks. Moreover, results 
from a magnetoencephalography (MEG) experiment further suggest that Broca’s 
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area is involved in the processing of music sequences (Maess et al., 2001). Togeth-
er, these studies suggest that the same neural mechanisms that underlie processing 
of linguistic structure are involved in non-linguistic sequential learning.  

Here we argue that this close connection is not coincidental but came about 
because the evolution of our linguistic abilities to a large extent has “piggybacked” 
on sequential learning and processing mechanisms existing prior to the emer-
gence of language. Human sequential learning appears to be more complex (e.g., 
involving hierarchical learning) than what has been observed in non-human pri-
mates (Conway & Christiansen, 2001). As such, sequential learning has evolved 
to form a crucial component of the cognitive abilities that allowed early humans 
to negotiate their physical and social world successfully. Constraints on sequen-
tial learning would then, over hundreds of generations, have shaped the struc-
ture of language through linguistic adaptation, thus giving rise to many linguistic 
universals (Bybee, 2002; Christiansen, Dale, Ellefson & Conway, 2002; Ellefson & 
Christiansen, 2000). On this account, language could not have “taken over” these 
learning mechanisms because the ability to deal with sequential information in the 
physical and social environment would still have been essential for survival (as it is 
today — see Botvinick & Plaut, 2004, for a review).

The approach favoring biological adaptation also relies on pre-existing learn-
ing mechanisms to explain the initial emergence of language. For example, Pinker 
and Bloom (1990) speculated that, “(…) the multiplicity of human languages is in 
part a consequence of learning mechanisms existing prior to (…) the mechanisms 
specifically dedicated to language” (p. 723; our emphasis). Through biological ad-
aptation, these learning mechanisms would then gradually have become dedicated 
to language, incorporating innate linguistic knowledge. The evolutionary mecha-
nism by which language principles are proposed to have become genetically en-
coded through gradual assimilation is known as the Baldwin effect (Baldwin, 1896; 
Waddington, 1940 — see also contributions in Weber & Depew, 2003). Although 
a Darwinian mechanism, the Baldwin effect resembles Lamarckian inheritance 
of acquired characteristics in that traits that are learned or developed over the life 
span of an individual become gradually encoded in the genome over many genera-
tions. Biological adaptation for language via the Baldwin effect (e.g., Briscoe, 2003; 
Pinker, 1994; Pinker & Bloom, 1990) can be summarized in the following steps:

1. Initially language feature F is learned from exposure to a language in which F 
holds

2. Genes that make learning F faster are selected 
3. Eventually, F may be known with no experience
4. F is coded genetically
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The Baldwin effect so construed may not only help explain how biological adapta-
tions for language could gradually emerge, but it may also introduce a potential 
caveat for the cultural-transmission approach to language evolution. It is possible 
to grant that many aspects of language structure could emerge as a consequence 
of linguistic adaptation, but then still argue that the resulting linguistic features 
would then subsequently gradually become innate due to the Baldwin effect. How-
ever, on the sequential-learning account presented here, the Baldwin effect would 
not cause the original learning mechanisms to become dedicated to language be-
cause the ability to deal with sequential information in the physical and social 
environment would still have been essential for survival. Nonetheless, we consider 
this to be an empirical issue that can be addressed by computational means, and 
to which we turn next.

The first set of computational simulations explores the interactions between 
linguistic and biological adaptation under constraints derived from sequential 
learning. In the second set of simulations we further explore the impact of the 
sequential learning constraints on language evolution. Recent computational 
work suggests that biological assimilation via Baldwin effect may not be possible 
when the target – language – changes over time (Chater, Reali & Christiansen, 
2009; Christiansen, Reali & Chater, 2006). Simulation 2 was designed to show 
yet another caveat for the adaptationist view: Gradual assimilation of linguistic 
knowledge may not be feasible when the underlying neural machinery does have 
to accommodate other non-linguistic tasks. To test this hypothesis, in Simulation 
2 we manipulated the presence/absence of sequential learning constraints. To es-
tablish the individual effect of this factor, we controlled for linguistic adaptation 
by keeping the language constant throughout the simulations. The results suggest 
that biological adaptation is possible when removing the pressure to maintain the 
networks’ ability for sequential learning. However, sequential-learning constraints 
on their own are sufficient to counter the effects of biological adaptation toward 
language-specific knowledge. We conclude by discussing the further implications 
of our simulations for research on language evolution.

3. Simulation 1: Biological vs. linguistic adaptation

There have been several computational explorations of the Baldwin effect (e.g., 
Briscoe, 2002; Hinton & Nowlan, 1987; Munroe & Cangelosi, 2002). Of most rel-
evance to our simulations presented below is a study by Batali (1994), showing 
that it is possible to obtain the Baldwin effect using simple recurrent networks 
(SRNs; Elman, 1990) trained on context-free grammars. Over generations, net-
work performance improved significantly due to the selection and procreation of 
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the best learners. In the present study, we adopt a similar approach but introduce 
different assumptions concerning the nature of the task and considering the effect 
of pre-linguistic sequential learning constraints. 

Our simulations involved generations of 9 differently initialized SRNs. An 
SRN is essentially a standard feed-forward neural network equipped with an ex-
tra layer of so-called context units. At a particular time step t an input pattern is 
propagated through the hidden unit layer to the output layer. At the next time step, 
t+1, the activation of the hidden unit layer at time t is copied back to the context 
layer and paired with the current input. This means that the current state of the 
hidden units can influence the processing of subsequent inputs, providing a lim-
ited ability to deal with integrated sequences of input presented successively. This 
type of network is well suited for our simulations because they have previously 
been successfully applied both to the modeling of non-linguistic sequential learn-
ing (e.g., Botvinick & Plaut, 2004; Servan-Schreiber, Cleeremans & McClelland, 
1991) and language processing (e.g., Christiansen, 1994; Christiansen & Chater, 
1999; Elman, 1990, 1991). 

In order to simulate the emergence of pre-linguistic sequential learning abili-
ties, we first trained the networks on a learning task involving the prediction of 
the next element in random five number-digit sequences. We allowed the net-
works to evolve “biologically” by choosing the best network in each generation, 
permuting its initial weights slightly to create 8 offspring, and then training this 
new generation on the sequential learning task. After 500 generations the error on 
sequential learning was reduced considerably, and we introduced language into 
the population. Thus, the networks were now trained on both sequential learning 
and language. Crucially, both networks and language were allowed to evolve, so 
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Fig. 1: A schematic outline of the simulation timeline. During the first 500 generations, 
the networks improve their sequential learning abilities through biological adaptation. 
Language is then introduced into the population. Both networks and languages are 
allowed to evolve to improve learning. 

Figure 1. A schematic outline of the simulation timeline. During the first 500 genera-
tions, the networks improve their sequential learning abilities through biological adapta-
tion. Language is then introduced into the population. Both networks and languages are 
allowed to evolve to improve learning.
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that we were able to compare the relative contribution of biological and linguistic 
adaptation. For each generation, we selected the networks that performed best at 
language learning with the additional constraint that they were also required to 
maintain their earlier evolved ability for sequential learning (on the assumption 
that this type of learning would still be as important for survival as it was prior to 
language). At the same time, linguistic adaptation was implemented by selecting 
the best-learnt language as the basis for the next generation of languages. Fig. 1 
shows the basic timeline for the simulations.

3.1 Method

3.1.1 Networks
Each generation in our simulations contained nine SRN learners. The networks 
consisted of 21 units in the input layer, 6 units in the output layer and 10 units in 
the hidden and context layer. The initial weights of the first generation of networks 
were randomly distributed uniformly between −1 and +1. Learning rate was set to 
0.1 with no momentum. 
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1 We adopted this input representation in the sequential learning task because the 
linguistic task required a larger vocabulary and we use the same networks for both tasks. 

Fig. 2: Network configuration for the sequential learning task (a) and linguistic task (b). 
The arrows indicate full connectivity between layers. Dashed lines indicate fixed 
connection weights (with a value of 1), and solid lines indicate learnable connection 
weights. 

Figure 2. Network configuration for the sequential learning task (a) and linguistic task 
(b). The arrows indicate full connectivity between layers. Dashed lines indicate fixed con-
nection weights (with a value of 1), and solid lines indicate learnable connection weights.
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Networks trained on the sequential learning task had a localist representa-
tion of digits. In the input layer, four units represented each digit, however, each 
time a digit was presented to the network, only one unit was active at a time with 
equal probability.1 Additionally, one input unit represented the end of the string 
(EOS). Each unit in the output layer represented a digit from 1 to 5 and one unit 
representing EOS. Fig. 2a provides an illustration of the sequential-learning con-
figuration of the SRN.

When networks were trained on the linguistic task, each input to the network 
contained a localist representation of the incoming word: Each unit represented 
a different word in the vocabulary (20 total) and one unit represented the end of 
sentence (EOS). In the output layer each unit represented a grammatical category/
thematic role — subject (S), verb (V), object (O), adposition (Adp), and possessive 
(Poss) — and one unit represented EOS. The SRN configuration for the language-
learning task is shown in Fig. 2b. Networks were trained using the backpropaga-
tion algorithm.  

3.1.2 Materials
Sequential learning task. For our sequential-learning simulations, we used a modi-
fied version of a serial reaction-time task, originally developed by Lee (1997) to 
study implicit learning in humans, and previously simulated using SRNs (Boyer, 
Destrebecqz & Cleeremans, 1998). The task requires predicting the next digit in 
a five-digit string. Digits went from 1 through 5 and were presented in a random 
order. However, the following simple rule constrained possible sequences of digits: 
Each of the five different digits can only appear once in the string. For instance, the 
sequence “34521” is legal, while the sequence “34214” is not. Therefore, the un-
derlying rule is a gradient of probabilities across the five positions, where the first 
digit in the sequence is completely unpredictable and the last one is completely 
predictable. This task is particularly challenging because the information required 
to predict the last digit in the sequence goes beyond the information conveyed in 
transitional probabilities of co-occurrence of pairs or triples of digits. In order to 
predict the last digit, the network needs to keep track of the previous four posi-
tions.

Language and linguistic task.  The languages were generated by phrase-struc-
ture grammars, defined by a system of rewrite rules determining how sentences 
are constructed. The phrase-structure grammar “skeleton” used in this simulation 
is presented in Fig. 3a, comprising six rewrite rules involving the following ma-
jor constituents: sentence (S), verb phrase (VP), noun phrase (NP), adpositional 
phrase (AP), and possessive phrase (PossP).2 Individual grammars contained 
variations in the head order of each rewrite rule, varying among three possible 
values: head first, head last, and flexible head order. In order to simulate language 
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variation, head order was modified by shifting the constituent order of a rewrite 
rule. For example, a grammar with the rule NP → N (AP), a head first rule, could 
be made head final by simply rewriting NP as (AP) N, with the head of the noun 
phrase in the final position. Alternatively, if the rewrite rule has flexible head or-
der, the phrase is rewritten as head first or head final with equal probabilities in 
a sentence. Fig. 3b provides an example of an instantiated grammar defined by a 
particular head order arrangement. All possible combinations of head order in the 
six rewrite rules define the space of all possible grammars (36 = 729). 

Networks were trained using a simple vocabulary consisting of 20 words: 8 
nouns, 8 verbs, 3 adpositions and 1 possessive marker. Each word in the input was 
mapped on to one of the following five grammatical roles: Subject, Verb, Object, 
Adposition and Possessive. The networks’ task was to predict the next grammatical 
role in the sentence. Successful network learning thus required sensitivity to gram-
matical role assignments, allowing us to compare the ease with which the SRN was 
able to learn the majority of the fixed orders of subject (S), verb (V) and object 
(O): SOV, SVO, VOS, and OVS (accounting for nearly 90% of language types, Van 
Everbroeck, 1999). 
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Fig. 3: a) Grammar skeleton: Curly brackets represent changeable head order and 
round brackets represent optional phrases. Probability of recursion is 1/3. b) 
Example of one possible grammar constituted by a particular head order 
combination of the six rewrite rules (Flex=Flexible rewrite rule; HFirst = head first; 
HFinal = head final).    

Figure 3. a) Grammar skeleton: Curly brackets represent changeable head order and 
round brackets represent optional phrases. Probability of recursion is 1/3. b) Example 
of one possible grammar constituted by a particular head order combination of the six 
rewrite rules (Flex=Flexible rewrite rule; HFirst = head first; HFinal = head final).   

3.1.3 Procedure
As indicated in Fig.1, the networks were initially trained on the sequential learn-
ing task and allowed to evolve biologically. During every generation each network 
was trained on 500 random strings of digits and tested on 100 strings. After 500 
generations, language was introduced into the population and the networks were 
trained on both sequential learning and language. The weights were reset to their 
biologically-evolved initial settings between the two tasks, so that the network had 
identical starting conditions when learning sequential structure and language. 
This stage involved biological competition between nine networks and linguistic 
competition between five grammars. For each grammar, the networks were trained 
on the linguistic task using 1,000 sentences and were tested on 100 sentences. The 
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“best learner” network and “the best learnt” grammar in each generation were se-
lected as the basis for the next generation, thus allowing us to pitch biological and 
linguistic adaptation against each other. 

We measured performance on the sequential learning task by comparing net-
work predictions with the ideal output (had the network learned the task per-
fectly). For each position in a sequence, we calculated the cosine3 of the angle 
between the output vector (network predictions) and the theoretically derived 
probability vector for the next digit given the previous digit(s). The overall score 
for the sequential-learning task was then computed as the mean cosine across all 
positions in all test strings.

Performance on the linguistic task was scored by comparing network predic-
tions for each grammatical role to the probabilistically ideal output given the pre-
vious words in the utterance. For each word, we compared the full conditional 
probability vector for the possible next grammatical role to the output vector rep-
resenting the network predictions (see Christiansen & Chater, 1999, for details), 
calculating the cosine to the angle between the two vectors. The overall score for 
the language-learning task was then computed as the mean cosine across all words 
in all test utterances.

Biological Adaptation. We allowed the networks to evolve “biologically” by 
choosing the best network in each generation, permuting its initial weights slightly 
to create 8 offspring. In every generation, the networks were trained and the fitness 
assessed in terms of their performance on the linguistic and sequential learning 
tasks. The best network survived unchanged to the next generation with its con-
nection weights reset to the initial values it had before training. For all offspring, 
a copy of the parent’s initial weights was then modified by adding a random nor-
mally-distributed number with a mean of 0 and a standard deviation of 0.05 to 
each weight (Batali, 1994). The new offspring networks and the best network from 
the previous generation were then trained, and the cycle repeated for each genera-
tion. 

During the pre-language stage, the best network was selected based on the 
performance on the sequential learning task. After introduction of language into 
the population, the best network was selected based on performance on the lin-
guistic task with respect to the winning grammar. However, at each generation 
we only considered networks for selection that maintained their earlier evolved 
sequential learning abilities. For that purpose we defined a threshold value of 
minimum sequential learning performance that corresponded to the population 
average at the end of the pre-linguistic period. The pressure towards maintenance 
of sequential learning abilities was based on the assumption that this ability would 
still be advantageous after language was present in the population.
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Linguistic Adaptation. During each generation five different grammars com-
peted for survival. Linguistic adaptation was simulated by choosing the best learnt 
grammar as the basis for the next generation. The best learnt grammar survived 
and reproduced, generating 4 offspring. The initial grammar at the moment of 
language introduction contained all flexible rewrite rules.4 Language variation 
was simulated by mutating the grammars slightly by reassigning the head order 
of each re-write rule with a certain probability.5 The mutation rate was 1/12 for 
each rewrite rule, with 1/3 probability for re-assignment of head-first, head-final 
or flexible head order, respectively. We let language evolve until it stabilized in 
the population, that is, after the same grammar was selected for 50 consecutive 
generations. At that point we stopped the simulations and considered the selected 
grammar as the winning language. The step-by-step algorithm used to simulate 
linguistic adaptation can be summarized as follows:

Each generation the following algorithm applies:

1. Let Grammart-1 be the best learnt grammar in the previous generation. 
2. Four offspring are produced from Grammart-1 applying the mutation rules.
3. Train and test separate SRNs on sentences generated by Grammart-1 and its 4 

offspring.
4. From Grammart-1 and its 4 offspring choose the best learnt grammar, and call 

it Grammart. 
5. If Grammart satisfies Grammart = Grammart-1 =  Grammart+2 = … = Gram-

mart-50, then stop the simulation and call Grammart the winning language, 
otherwise go to 1. 

The results presented here are averaged across 5 different sets of the simulations.

3.2 Results and discussion

After the initial 500 generations of training on the sequential learning task alone, 
the average network performance in a generation had improved significantly (t(8) 
= 8.51, p < .0001) over the performance of the first generation of networks (see 
Fig. 4). These results are consistent with previous studies (Batali, 1994) in that they 
demonstrate that it is possible to obtain the Baldwin effect using SRNs trained on 
complex sequential learning tasks. 

After language introduction, networks and languages evolved during many 
generations before reaching a stable grammar (mean: 110 generations; SD: 36). In 
all simulations, we found that the same grammar was selected, corresponding to 
a SOV language. The results are in accord with previous computational work. For 
example, Van Everbroeck (1999) found that subject-first languages, which make 
up the majority of language types across the world, were the easier to learn by 
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recurrent networks (a variation on the SRN). Moreover, these findings are con-
sistent with previous results (e.g., Kirby, 1998), in that the head order of the win-
ning grammar was highly consistent: Five out of six rewrite rules had a head-first 
order, while head final order was only selected for the VP-rule. Interestingly, in all 
simulations flexible rewrite rules tended to disappear while consistency tended 
to increase over time (see Fig. 5). This trend highlights the role of cultural trans-
mission in the emergence of head-order consistency as a result of learning-based 
constraints. 

We found that linguistic adaptation produced a significant improvement in lan-
guage-learning performance while biological adaptation produced no measurable 
effect. In order to quantify biological adaptation, we compared the average perfor-
mance of the initial and final population (networks) when trained on the same lan-
guage (winning grammar). As illustrated in Fig. 6a, biological adaptation produced 
no significant improvement in population performance (t(8) = 0.82, p < .43). 
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After language introduction, networks and languages evolved during many generations 

before reaching a stable grammar (mean: 110 generations; SD: 36). In all simulations, we 

found that the same grammar was selected, corresponding to a SOV language. The results 
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Fig. 4: Comparison of average performance of the initial networks (white) 
and final networks (dark) after 500 generations of training in the sequential 
learning task 
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Figure 4. Comparison of average performance of the initial networks (white) and final 
networks (dark) after 500 generations of training in the sequential learning task
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We found that linguistic adaptation produced a significant improvement in language-

learning performance while biological adaptation produced no measurable effect. In order 

to quantify biological adaptation, we compared the average performance of the initial and 

final population (networks) when trained on the same language (winning grammar). As 

illustrated in Fig. 6a, biological adaptation produced no significant improvement in 

population performance (t(8) = 0.82, p < .43).  

In order to measure the effect of linguistic adaptation, we trained the same population 

(the final generation of networks) on different grammars. When the networks were 

trained on the winning language, the average population performance was significantly 

better than when they were trained on the initial grammar (t(8) = 19.73, p < .0001) (Fig. 

6b). As an additional measure of the effect, we compared the average performance of the 

Fig. 5: Evolution of the rewrite rules’ consistency and flexibility over time. 
Consistency is defined as the proportion of rewrite rules that share the same 
head order. Flexibility is defined as the proportion of flexible rewrite rules.   

Figure 5. Evolution of the rewrite rules’ consistency and flexibility over time. Consisten-
cy is defined as the proportion of rewrite rules that share the same head order. Flexibility 
is defined as the proportion of flexible rewrite rules.  
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In order to measure the effect of linguistic adaptation, we trained the same popu-
lation (the final generation of networks) on different grammars. When the networks 
were trained on the winning language, the average population performance was sig-
nificantly better than when they were trained on the initial grammar (t(8) = 19.73, p 
< .0001) (Fig. 6b). As an additional measure of the effect, we compared the average 
performance of the population when the networks were trained on five random 
grammars and the winning grammar. The average performance of the networks 
trained on the winning grammar was significantly better than the average perfor-
mance of the networks trained on random grammars (t(8) = 17.49, p < .0001). 

– 22 – 

population when the networks were trained on five random grammars and the winning 

grammar. The average performance of the networks trained on the winning grammar was 

significantly better than the average performance of the networks trained on random 

grammars (t(8) = 17.49, p < .0001).  

 

 

(a) 

0.5

0.6

0.7

0.8

0.9

1

Biological Adap.
Language Const. 

M
ea

n 
C

os
in

e

Initial
Networks 

Final
Networks

(b) 

0.5

0.6

0.7

0.8

0.9

1

Linguistic Adap.
Networks Const. 

M
ea

n 
C

os
in

e
Initial
Language

Final
Language

 

 

 

 

4. Simulation 2:  The role of sequential learning constraints 

Simulation 1 shows that biological adaptation is ineffective when language and networks 

co-evolve and there is a pressure toward maintaining sequential learning capacities. 

However, it is not clear whether the Baldwin effect would be effective in our 

evolutionary framework in the absence of a pressure to maintain sequential learning 

performance. Simulation 2 is designed to test this possibility. Crucially, we manipulated 

the absence/presence of sequential learning constraints. In Simulation 2a, networks were 

allowed to evolve with no pressure toward maintaining sequential learning capacities. In 

Simulation 2b, the pressure toward maintaining sequential learning abilities was 

Fig. 6: a) Comparison of initial and final network performance tested on a 
fixed language (winning grammar); b) Comparison of initial and final language 
performance, while keeping the network constant (final network). 

         * 
   

Figure 6. a) Comparison of initial and final network performance tested on a fixed 
language (winning grammar); b) Comparison of initial and final language performance, 
while keeping the network constant (final network).

4. Simulation 2:  The role of sequential learning constraints

Simulation 1 shows that biological adaptation is ineffective when language and 
networks co-evolve and there is a pressure toward maintaining sequential learning 
capacities. However, it is not clear whether the Baldwin effect would be effective 
in our evolutionary framework in the absence of a pressure to maintain sequential 
learning performance. Simulation 2 is designed to test this possibility. Crucially, 
we manipulated the absence/presence of sequential learning constraints. In Simu-
lation 2a, networks were allowed to evolve with no pressure toward maintaining 
sequential learning capacities. In Simulation 2b, the pressure toward maintaining 
sequential learning abilities was reinstated. In order to test for the specific role of 
sequential learning constraints in preventing the Baldwin effect from occurring, 
linguistic-adaptation factors were held constant. That is, networks were selected 
based on their performance on the linguistic task, while the grammar was fixed 
from the first generation.
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4.1 Method

4.1.1 Networks
The networks were the same as those that constituted the population at the mo-
ment of language introduction in Simulation 1. All parameters were the same as 
in Simulation 1.

4.1.2 Materials
Networks were trained on the grammar corresponding to the winning language 
from Simulation 1. 

4.1.3 Procedure
We allowed the networks to evolve biologically during the same number of gener-
ations necessary to reach a stable grammar in Simulation 1. We simulated absence 
of linguistic adaptation by keeping language constant throughout the simulations. 
In Simulation 2a, biological adaptation was simulated similarly to Simulation 1, 
but the networks were selected purely on their linguistic performance and no con-
straints toward sequential learning were imposed. In Simulation 2b, the pressure 
toward maintaining sequential learning abilities was reinstated, and biological ad-
aptation was simulated exactly as in Simulation 1. As in Simulation 1, the results 
are averaged across five different sets of simulations. 

4.2 Simulation 2a: Pure biological adaptation

4.2.1 Results and discussion
The networks’ average performance on the linguistic task increased significantly 
over time (t(8) = 5.47, p < .001) (Fig. 7a), showing that it is possible to obtain ef-
fective biological adaptation under these conditions.

Simulation 2a differs from Simulation 1 In two fundamental aspects: First, the 
pressure to maintain sequential learning abilities is absent, and, second, language 
is constant across generations. Recently, Chater, Reali & Christiansen (2009) con-
ducted simulations suggesting that genes for universal grammar could only co-
evolve with aspects of language that are stable in the linguistic environment. They 
argue that language is a “moving target” over time, and therefore, it would not 
provide a stable environment for biological assimilation to take place. Thus, it 
could be possible that the inefficacy of biological adaptation in Simulation 1 is due 
to the presence of language change and not the sequential learning constraints. 
In Simulation 2b, the pressure toward maintaining sequential learning capacities 
was reinstated similar to Simulation 1, but the language was kept constant. Thus, 
this design provides a way to test the specific contribution of sequential learning 
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constraints in preventing biological assimilation of linguistic-specific knowledge 
in our evolutionary framework. 

4.3 Simulation 2b: The role of sequential learning constraints

4.3.1 Results and discussion
Similarly to Simulation 1, we found that the evolved networks were not signifi-
cantly better than the initial ones (t(8) = 1.41, p < .195) (Fig. 8a), indicating that 
the pressure toward maintaining sequential learning abilities played a causal role 
in preventing biological adaptation in Simulation 1 (Fig. 8b). 
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Simulation 2a differs from Simulation 1 In two fundamental aspects: First, the pressure to 

maintain sequential learning abilities is absent, and, second, language is constant across 

generations. Recently, Chater, Christiansen & Reali (2007) conducted simulations 

suggesting that genes for universal grammar could only co-evolve with aspects of 

language that are stable in the linguistic environment. They argue that language is a 

Fig. 7: a) Results from Simulation 2a: Performance of initial and final networks 
trained on a fixed language (winning language in Simulation 1) when no 
pressure toward sequential learning was imposed; b) Comparison of initial and 
final network performance in Simulation 1 (tested on the winning language) 
when implementing pressure toward maintaining the evolved sequential abilities.  

* 

Figure 7. a) Results from Simulation 2a: Performance of initial and final networks 
trained on a fixed language (winning language in Simulation 1) when no pressure toward 
sequential learning was imposed; b) Comparison of initial and final network performance 
in Simulation 1 (tested on the winning language) when implementing pressure toward 
maintaining the evolved sequential abilities. 

– 25 – 

“moving target” over time, and therefore, it would not provide a stable environment for 

biological assimilation to take place. Thus, it could be possible that the inefficacy of 

biological adaptation in Simulation 1 is due to the presence of language change and not 

the sequential learning constraints. In Simulation 2b, the pressure toward maintaining 

sequential learning capacities was reinstated similar to Simulation 1, but the language 

was kept constant. Thus, this design provides a way to test the specific contribution of 

sequential learning constraints in preventing biological assimilation of linguistic-specific 

knowledge in our evolutionary framework.  

 

4.3. Simulation 2b: The role of sequential learning constraints 

4.3.1. Results and discussion 

Similarly to Simulation 1, we found that the evolved networks were not significantly 

better than the initial ones (t(8) = 1.41, p < .195) (Fig. 8a), indicating that the pressure 

toward maintaining sequential learning abilities played a causal role in preventing 

biological adaptation in Simulation 1 (Fig. 8b).  

 

(a) 

0.5

0.6

0.7

0.8

0.9

1

SL-constraints 

M
ea

n 
C

os
in

e

Initial
Networks

Final
Networks

(b) 

0.5

0.6

0.7

0.8

0.9

1

Simulation 1 

M
ea

n 
C

os
in

e

Initial
Networks

Final
Networks

 

 
Fig. 8: a) Results from Simulation 2b: Performance of initial and final networks 
trained on a fixed language (winning language in Simulation 1) when mainlining 
a pressure toward sequential learning; b) Comparison of initial and final network 
performance in Simulation 1 (tested on the winning language) when 
implementing pressure toward maintaining the evolved sequential abilities.   

Figure 8. a) Results from Simulation 2b: Performance of initial and final networks 
trained on a fixed language (winning language in Simulation 1) when mainlining a pres-
sure toward sequential learning; b) Comparison of initial and final network performance 
in Simulation 1 (tested on the winning language) when implementing pressure toward 
maintaining the evolved sequential abilities. 
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Overall, the results suggest that gradual assimilation of linguistic knowledge 
may not be possible when the underlying neural machinery has to accommodate 
other sequential learning tasks. However, there is a possible caveat to this conclu-
sion:6 During the initial stage, biological adaptation to the sequential learning task 
places the networks in a particular part of the evolutionary search space before 
language is introduced. During the second stage, further evolution is influenced 
by the continued presence or absence of the sequential learning task. Thus, it is 
possible that during the initial stage of the simulation, the network weights were 
moved into a local optimum from which they cannot escape when the sequential 
learning task is still part of the fitness function after language is introduced. An-
other possibility is that, irrespective of the starting-point for evolution, a set of 
initial weights cannot be modified to improve performance on both the sequential 
task and the linguistic task together. To determine which of these may be the case 
we ran a control version of Simulation 1 in which the initial stage of adaptation 
to sequential learning was removed. At the beginning of Stage 2, the initial set of 
weights was randomized and the performance of the networks on the sequential 
learning task was measured. The observed (baseline) performance on the sequen-
tial learning task was used to establish the fitness function: Networks were se-
lected based on their linguistic performance provided that they maintained the 
(non-evolved) baseline performance on sequential learning. We let networks and 
grammars evolve as defined in Stage 2 of the original simulation. As before, the 
simulation was stopped when the same grammar was selected for 50 consecutive 
generations. The results were qualitatively the same as bofore: When a pressure 
toward not getting worse at the sequential learning task was imposed, the Baldwin 
effect failed to occur (t(8)=0.79; p=0.44). This suggests that, irrespectively of the 
set of initial weights, the existence of a pressure toward maintaining performance 
on the sequential learning task prevents the occurrence of biological adaptation 
for language.

5. General discussion

Fueled by theoretical constraints derived from recent advances in the brain and 
cognitive sciences, computational modeling has become the paradigm of choice 
for exploring different theories of language evolution. Even though the use of 
computer simulations often involves a number of simplifications and abstrac-
tions, the advantage of this approach is that specific constraints and/or interac-
tions between constraints can be studied under controlled circumstances. In our 
case, the simplifications of the linguistic and sequential-learning tasks are at par 
with many existing models of these types of cognitive behaviors in psychology 
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and cognitive science (e.g., Boyer, Destrebecqz & Cleeremans, 1998; Christiansen 
& Chater, 1999; Elman, 1990, 1993; Servan-Schreiber, Cleeremans & McClelland, 
1991). Perhaps more importantly, recent work has indicated that such SRN models 
can be scaled up to deal with more natural sequential-learning tasks (Botvinick & 
Plaut, 2004) and full-blown corpora of child-directed speech (Reali, Christiansen 
& Monaghan, 2003). 

Together, the simulation results cast doubts on the Baldwin effect as a potential 
explanation for how a putative universal grammar could have evolved by Darwin-
ian means. But how can we then explain the existence of linguistic universals? An 
answer may be found in Simulation 1, demonstrating how cultural transmission 
can help explain linguistic universals such as head-order consistency. Importantly, 
our simulations go beyond previous work invoking cultural transmission-based 
explanations of consistent head ordering (e.g., Kirby, 1998). Given that the task of 
the networks was to predict the grammatical roles of the incoming words – that is, 
who did what to whom – linguistic adaptation in our simulations not only resulted 
in the emergence of a more structurally consistent language, but also a language 
that is easier to interpret. The results add to a growing bulk of work suggesting 
that some apparently arbitrary aspects of linguistic structure may be functional in 
terms of learning and processing limitations (e.g., Ellefson & Christiansen, 2000; 
Kirby, 1998; 1999; O’Grady, 2005; Smith, Brighton & Kirby, 2003; Van Everbroeck, 
1999). For example, Smith et al. (2003) used modeling techniques to show how 
compositional structure in language might have resulted from the complex in-
teraction of learning constraints and cultural transmission. O’Grady (2005) has 
recently proposed that apparent idiosyncratic binding constraints governing pro-
nominal reference may result from pragmatic factors during processing. In a dif-
ferent series of studies, it has been suggested that subjacency constraints may arise 
from cognitive constraints on sequential learning (Ellefson & Christiansen, 2000). 
Moreover, using rule-based language induction, Kirby (1999) accounted for the 
emergence of typological universals as a result of domain-general learning and 
processing constraints (see Christiansen & Chater, 2008, for a review).

Simulation 1 showed that when language and learners were allowed to co-
evolve, no biological assimilation occurred if networks were required to maintain 
the same level of performance on sequential learning as obtained before language 
was introduced into the population. These findings are consistent with recent stud-
ies challenging the plausibility of biological assimilation of linguistic knowledge 
(Chater, Reali & Christiansen, 2009; Christiansen, Reali & Chater, 2006; Kirby & 
Hurford, 1997; Munroe & Cangelosi, 2002; Yamauchi, 2001). For example, Chris-
tiansen, Reali and Chater (2006) conducted a series of computational studies to in-
vestigate the circumstances under which universal linguistic constraints might get 
genetically fixed in a population of language learning agents. The results indicated 
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that under assumptions of linguistic change, only functional, but not arbitrary, fea-
tures of language can become genetically fixed. The simulations presented herein 
illustrate yet another problem with the adaptationist view: The gradual assimila-
tion of linguistic knowledge may not be possible when the underlying neural ma-
chinery has to accommodate other sequential learning tasks. 

Neural network models trained on corpora encoded in the form of lexical 
categories are widely used in computational linguistics. However, some caveats 
to the representational scheme used in our simulations should be noted. For ex-
ample, it is clear that learners are not provided directly with such “tagged” input. 
Rather, they have to bootstrap both lexical categories and syntactic constraints 
concurrently. One way of doing this may involve the combination of distributional 
information with other kinds of cues during language learning (e.g., Monaghan, 
Christiansen & Chater, 2007). Moreover, some aspects of natural languages – such 
as the mapping between form and meaning – are not captured in the input/out-
put representation used in the present simulations. Most connectionist models 
are restricted to model syntactic aspects of language. However, they are based on 
the assumption that purely distributional aspects of language are closely entwined 
with language meaning. Along these lines, natural language processing is viewed 
as an attempt to retrieve meaning from linguistic form (see Elman, 1991 for fur-
ther discussion).

The SRN incorporates certain important biases on the learning of sequential 
structure (Christiansen & Chater, 1999). The importance of exploring such endog-
enous inductive biases has been recently demonstrated by the work of Griffiths and 
Kalish (2007) and Kirby, Dowman and Griffiths (2007). Using learning algorithms 
based on the principles of Bayesian inference, Grifiths and Kalish studied the con-
sequences of iterated learning. In their simulations, Bayesian learners combine 
prior inductive biases with the evidence provided by linguistic data to compute a 
posterior distribution over all possible languages. They found that iterated learn-
ing converges to a distribution over languages that is determined by the learner’s 
prior inductive biases. These results indicate that learning biases have a strong 
influence on linguistic adaptation. Recently, Kirby, Dowman and Griffiths (2007) 
used similar methods to show that when learners select languages with maximum 
posterior probability, the final distribution over languages is also determined by 
factors of cultural transmission, such as the amount of information transmitted 
between generations. They concluded that, under some learning assumptions, cul-
tural transmission factors can magnify weak endogenous biases.  

A crucial assumption adopted here is that language learning and processing 
shares mechanisms with sequential learning in other domains. A growing number 
of neuroimaging studies now provide empirical support for this notion (Koelsch 
et al., 2002; Maess et al., 2001; Patel, 2003, Patel et al., 1998; Friederici et al., 2002; 
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Petersson et al., 2004). Moreover, recent studies suggested that breakdown of lan-
guage capacities is associated with impaired sequential learning in non-linguistic 
tasks (Christiansen et al., 2007; Hoen et al., 2003; Hsu, Christiansen, Tomblin, 
Zhang & Gómez, 2006; Plante, Gómez & Gerken, 2002). For example, Christians-
en et al. (2007) found that agrammatic aphasics, who typically have damage in or 
around Broca’s area, showed decreased performance on a sequential learning task. 
In a different study, Hsu et al. (2006) showed that specific language impairment is 
associated with impaired sequential learning. Moreover, Hoen et al. (2003) found 
that increased performance on a visual sequence-learning task in agrammatic 
aphasics resulted in improvements in their abilities to understand certain complex 
linguistic constructions. Thus, from an evolutionary perspective, it seems reason-
able to assume that language originally emerged based on pre-existing learning 
and processing mechanisms (e.g., Kirby & Christiansen, 2003; Pinker & Bloom, 
1990). However, if language originally emerged by piggybacking on prior sequen-
tial-learning mechanisms, it is unlikely that language could have “taken over” 
these mechanisms because being able to extract and process sequential informa-
tion would still have been crucial for negotiating the social and physical environ-
ment of the hominids.

A further assumption of our simulations is that there have been specific bio-
logical adaptations for better sequential learning abilities in the hominid lineage. 
Recent work in human molecular genetics and comparative genomics relating to 
the FOXP2 gene suggests that a genetic adaptation for this type domain-general 
learning may indeed have taken place in recent human evolution (Fisher, 2006). 
Mutations to the FOXP2 gene result in severe speech and orofacial motor impair-
ments (Lai et al., 2001; MacDermot et al., 2005). Studies of FOXP2 expression in 
mice and imaging studies of an extended family pedigree with FOXP2 mutations 
have provided evidence that this gene is important to the development and func-
tion of the corticostriatal system as well as other neural systems (Lai et al., 2003). 
These systems have been shown in other studies to be important for sequential 
and other types of procedural learning (Packard & Knowlton, 2002). In family 
members affected by FOXP2 mutations, the volume of the caudate was found to 
be smaller than for unaffected family members (Watkins et al., 2002). Crucially, 
preliminary findings from a mother and daughter with a translocation involving 
FOXP2 indicate that they have problems with both language and sequential learn-
ing (Tomblin et al., 2004). Cross-species comparisons have shown that FOXP2 is 
highly conserved across species, showing evidence of only 3 amino acid changes 
in the FOXP2 protein since the last common ancestor for mice and humans, some 
170 million years ago (Enard et al., 2002). However, two of these changes happened 
after the split between humans and chimps about 5-6 millions ago, and statistical 
analyses suggest that these changes happened rapidly and got fixed in the human 
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population about 200,000 years ago. Thus, the current knowledge regarding the 
FOXP2 gene is consistent with the kind of evolutionary scenario detailed in our 
simulations, but not, as previously thought, with the evolution of some aspects of 
universal grammar.

Finally, we note that in our simulations, we have approximated biological ad-
aptation by selecting the best-learning network’s initial connection weights at each 
generation. Therefore, the simulation results pertain to a gradual assimilation of 
innate knowledge encoded in fine-grained patterns of connectivity (see also, Bata-
li, 1994; Munroe & Cangelosi, 2002). This conforms to the standard way of char-
acterizing the knowledge of a network in terms of the strength of its connection 
weights (McClelland, Rumelhart & Hinton, 1986). Elman et al. (1996) have de-
scribed this definition of innate knowledge as the strongest and most specific form 
of nativism. Such representational nativism would allow for an innately specified 
encoding of detailed rules of, say, grammar, physics or theory of mind (for dis-
cussion see chapter 7, Elman et al., 1996). Although our simulations suggest that 
linguistic assimilation at the level of representational innateness may not be ef-
fective when language evolution also incorporates sequential-learning constraints 
and linguistic change, they do not address whether the Baldwin effect could po-
tentially occur at the level of architectural constraints. These constraints comprise 
innate specifications of the structural aspects of the networks, including the com-
putational properties of individual units and the general characteristics of layering 
and connectivity within a specific region of the network. However, changes to such 
architectural constraints are more likely to be reflected in differences in general 
learning abilities, rather than the kind of domain-specific linguistic knowledge 
characteristic of a universal grammar (Deacon, 2003). 

In sum, our simulations illustrate the effectiveness of linguistic adaptation 
to improve language learnability and challenge the plausibility of biological as-
similation of linguistic-specific knowledge. Together, the findings indicate that the 
emergence linguistic structure may have resulted from the complex interaction of 
domain-general architectural constraints and the process of linguistic adaptation 
through cultural transmission.
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Notes

1. We adopted this input representation in the sequential learning task because the linguistic 
task required a larger vocabulary and we used the same networks for both tasks.

2. We use ‘adpositional phrase’ to denote that the rewrite rule may involve either a prepositional 
phrase or a postpositional phrase depending on the head-order; ‘possessive phrase’ is used to 
denote rules involving possessive relationships between two nouns either through a possessive 
marker (such as ‘s in the general’s daughter) or adpositional constructions (such as the use of of 
in the daughter of the general).

3. The cosine measure ranges from 0 to 1, with 1 corresponding to perfect performance.

4. The initial state of language when introduced can be seen as a lexical-based proto-language 
with no syntactic constraints imposed apart from the presence of at least a subject noun and 
a verb. We remain agnostic with regard to the question of the origin of proto-language, but 
base our simulations on the historical fact that at some time in the human lineage language did 
emerge.

5. Our use of grammar mutation to introduce linguistic variation is a computational simplifica-
tion of the effects of cultural transmission. Theoretically, we envisage that differences in learning 
and use of language among interacting agents would drive this process. 

6. We are thankful to an anonymous reviewer for suggesting this possibility.
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