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Chapter 5 

Connectionist Explorations of Multiple-Cue Integration in 
Syntax Acquisition 

Morten H. Christiansen, Rick Dale, and Florencia Reali 

  
Among the many feats of learning that children showcase in their development, syntactic 

abilities appear long before many other skills, such as riding bikes, tying shoes, or playing a 

musical instrument. This is achieved with little or no direct instruction, making it both 

impressive and even puzzling, because mastering natural language syntax is one of the most 

difficult learning tasks that humans face. One reason for this difficulty is a “chicken-and-egg” 

problem involved in acquiring syntax. Syntactic knowledge can be characterized by constraints 

governing the relationship between grammatical categories of words (such as noun and verb) in a 

sentence. At the same time, the syntactic constraints presuppose the grammatical categories in 

terms of which they are defined; and the validity of grammatical categories depends on how they 

support those same syntactic constraints. A similar “bootstrapping” problem faces a student 

learning an academic subject such as physics: understanding momentum or force presupposes 

some understanding of the physical laws in which they figure; yet these laws presuppose these 

very concepts. The bootstrapping problem solved by very young children seems much more 

daunting, both because the constraints governing natural language are so intricate, and because 

these children do not have the intellectual capacity or explicit instruction present in conventional 

academic settings. Determining how children accomplish the astonishing feat of language 

acquisition remains a key question in cognitive science.  
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By 12 months, infants are attuned to the phonological and prosodic regularities of their 

native language (Jusczyk, 1997; Kuhl, 1999). This perceptual attunement may provide an 

essential scaffolding for later learning by biasing children toward aspects of language input that 

are particularly informative for acquiring grammatical knowledge. In this chapter, we 

hypothesize that integrating multiple probabilistic cues (phonological, prosodic, and 

distributional) by perceptually attuned general-purpose learning mechanisms may hold promise 

for explaining how children solve the bootstrapping problem. Multiple cues can provide reliable 

evidence about linguistic structure that is unavailable from any single source of information.  

In the remainder of this chapter, we first review empirical evidence suggesting that 

infants may use a combination of phonological, prosodic, and distributional cues to bootstrap 

into syntax. We then report a series of simulations demonstrating the computational efficacy of 

multiple-cue integration within a connectionist framework (for modeling of other aspects of 

cognitive development, see the chapter by Mareschal & Westermann, this volume). Simulation 1 

shows how multiple-cue integration results in better, faster, and more uniform learning. 

Simulation 2 uses this initial model to mimic the effect of grammatical and prosodic 

manipulations in a sentence comprehension study with 2-year-olds (Shady & Gerken, 1999). 

Simulation 3 uses an idealized representation of prenatal exposure to gross-level phonological 

and prosodic cues, leading to facilitation of postnatal learning of syntax by the model. Simulation 

4 demonstrates that adding additional distracting cues, irrelevant to the syntactic acquisition task, 

does not hinder learning. Finally, Simulation 5 scales up these initial simulations, showing that 

connectionist models can acquire aspects of syntactic structure from cues present in actual child-

directed speech. 
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THE NEED FOR MULTIPLE LANGUAGE-INTERNAL CUES  
In this section, we identify three kinds of constraints that may serve to help the language learner 

solve the syntactic bootstrapping problem. First, innate constraints in the form of linguistic 

universals may be available to discover to which grammatical category a word belongs, and how 

they function in syntactic rules. Second, language-external information, concerning observed 

semantic relationships between language and the world, could help map individual words onto 

their grammatical function. Finally, language-internal information, such as aspects of 

phonological, prosodic, and distributional patterns, may indicate the relation of various parts of 

language to each other, thus bootstrapping the child into the realm of syntactic relations. We 

discuss each of these potential constraints below, and conclude that some form of language-

internal information is needed to break the circularity. 

Although innate constraints likely play a role in language acquisition, they cannot solve 

the bootstrapping problem. Even with genetically prescribed abstract knowledge of grammatical 

categories and syntactic rules (e.g., Pinker, 1984), the problem remains: Innate knowledge 

requires building in universal mappings across languages, but the relationships between words 

and grammatical categories clearly differ cross-linguistically (e.g., the sound /su/ is a noun in 

French (sou) but a verb in English (sue)). Even with rich innate knowledge, children still must 

assign sound sequences to appropriate grammatical categories while determining the syntactic 

relations between these categories in their native language. Recently, a wealth of compelling 

experimental evidence has accumulated, suggesting that children do not initially use abstract 

linguistic categories. Instead, they seem to employ words at first as concrete individuals (rather 

than instances of abstract kinds), thereby challenging the usefulness of hypothesized innate 

grammatical categories (Tomasello, 2000). Whether we grant the presence of extensive innate 
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knowledge or not, it seems clear that other sources of information are necessary to solve the 

bootstrapping problem. 

Language-external information, such as correlations between the environment and 

semantic categories, may contribute to language acquisition by supplying a “semantic 

bootstrapping” solution (Pinker, 1984). However, because children learn linguistic distinctions 

that have no semantic basis (e.g., gender in French: Karmiloff-Smith, 1979), semantics cannot be 

the only source of information involved in solving the bootstrapping problem. Other sources of 

language-external constraints include cultural learning, indicated by a child’s imitation of 

linguistic forms in socially conventional contexts (Tomasello, Kruger & Ratner, 1993). For 

example, a child may perceive that the idiom “John let the cat out of the bag,” used in the 

appropriate context, means that John has revealed some sort of secret, and not that he released a 

feline from captivity. Despite both of these important language-external sources, to break down 

the linguistic forms into relevant units, it appears that correlation and cultural learning must be 

coupled with language-internal information. 

We do not challenge the important role that the two foregoing sources of information 

play in language acquisition. We would argue, however, that language-internal information is 

fundamental to bootstrapping the child into syntax. Because language-internal input is rich in 

potential cues to linguistic structure, we offer a requisite feature of this information for syntax 

acquisition: Cues may only be partially reliable individually, and a learner must integrate an 

array of these cues to solve the bootstrapping problem. For example, a learner could use the 

tendency for English nouns to be longer than verbs to conjecture that bonobo is a noun, but the 

same strategy would fail for ingratiate. Likewise, although speakers tend to pause at syntactic 

phrase boundaries in a sentence, pauses also occur elsewhere during normal language 
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production. And although it is a good distributional bet that the definite article the will precede a 

noun, so might adjectives, such as silly. The child therefore needs to integrate a great diversity of 

probabilistic cues to language structure. Fortunately, as we review in the next section, there is 

now extensive evidence that multiple probabilistic cues are available in language-internal input, 

that children are sensitive to them, and that they facilitate learning through integration. 

Bootstrapping through Multiple Language-Internal Cues 
We explore three sources of language-internal cues: phonological, prosodic, and distributional. 

Phonological information includes stress, vowel quality, and duration, and may help distinguish 

grammatical function words (e.g., determiners, prepositions, and conjunctions) from content 

words (nouns, verbs, adjectives, and adverbs) in English (e.g., Cutler, 1993; Gleitman & 

Wanner, 1982; Monaghan, Chater & Christiansen, 2005; Monaghan, Christiansen & Chater, 

2007; Morgan, Shi, & Allopenna, 1996; Shi, Morgan, & Allopenna, 1998). Phonological 

information may also help separate nouns and verbs (Monaghan, Chater, & Christiansen, 2005; 

Monaghan, Christiansen, & Chater, 2007; Onnis & Christiansen, 2008). For example, English 

disyllabic nouns tend to receive initial-syllable (trochaic) stress whereas disyllabic verbs tend to 

receive final-syllable (iambic) stress, and adults are sensitive to this distinction (Kelly, 1988). 

Acoustic analyses have also shown that disyllabic words that are noun–verb ambiguous and have 

the same stress placement can still be differentiated by syllable duration and amplitude cue 

differences (Sereno & Jongman, 1995). Even 3-year-old children are sensitive to this stress cue, 

despite the fact that few multisyllabic verbs occur in child-directed speech (Cassidy & Kelly, 

1991, 2001). Additional noun/verb cues in English likely include differences in word duration, 

consonant voicing, and vowel types, and many of these cues may be cross-linguistically relevant 

(see Kelly, 1992; Monaghan & Christiansen, 2008, for reviews). 
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Prosodic cues help word and phrasal/clausal segmentation and may reveal syntactic 

structure (e.g., Gerken, Jusczyk & Mandel, 1994; Gleitman & Wanner, 1982; Kemler-Nelson, 

Hirsh-Pasek, Jusczyk, & Wright Cassidy, 1989; Morgan, 1996). Acoustic analyses find that 

pause length, vowel duration, and pitch all mark phrasal boundaries in English and Japanese 

child-directed speech (Fisher & Tokura, 1996). Perhaps from utero (Mehler et al., 1988) and 

beyond, infants seem highly sensitive to such language-specific prosodic patterns (Gerken et al., 

1994; Kemler-Nelson et al., 1989; for reviews, see Gerken, 1996; Jusczyk & Kemler-Nelson, 

1996; Morgan, 1996). Prosodic information also improves sentence comprehension in 2-year-

olds (Shady & Gerken, 1999). In experiments using adult participants, artificial language 

learning is facilitated in the presence of prosodic marking of syntactic phrase boundaries 

(Morgan, Meier & Newport, 1987; Valian & Levitt, 1996). Neurophysiological evidence in the 

form of event-related brainwave potentials (ERP) in adults shows that prosodic information has 

an immediate effect on syntactic processing (Steinhauer, Alter, & Friederici, 1999), suggesting a 

rapid, on-line role for this important cue. While prosody is influenced to some extent by a 

number of nonsyntactic factors, such as breathing patterns, resulting in an imperfect mapping 

between prosody and syntax (Fernald & McRoberts, 1996), infants’ sensitivity to prosody argues 

for its likely contribution to syntax acquisition (Fisher & Tokura, 1996; Gerken 1996; Morgan, 

1996). 

Distributional characteristics of linguistic fragments at or below the word level may also 

provide cues to grammatical category. Morphological patterns across words may be 

informative—e.g., English words that are observed to have both –ed and –s endings are likely to 

be verbs (Maratsos & Chalkley, 1980). In artificial language learning experiments, adults acquire 

grammatical categories more effectively when they are cued by such word-internal patterns 
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(Brooks, Braine, Catalano & Brody, 1993; Frigo & McDonald, 1998). Corpus analyses reveal 

that word co-occurrence also gives useful cues to grammatical categories in child-directed 

speech (e.g., Mintz, 2003; Monaghan et al., 2005, 2007; Redington, Chater, & Finch, 1998). 

Given that function words primarily occur at phrase boundaries (e.g., initially in English and 

French and finally in Japanese), they can also help the learner by signaling syntactic structure. 

This idea has received support from corpus analyses (Mintz, Newport & Bever, 2002) and 

artificial language learning studies (Green, 1979; Morgan et al., 1987; Valian & Coulson, 1988). 

Finally, artificial language learning experiments indicate that duplication of morphological 

patterns across related items in a phrase (e.g., Spanish: Los Estados Unidos) <COMP: Keep 

underline for clarity.> facilitates learning (Meier & Bower, 1986; Morgan et al., 1987). 

It is important to note that there is ample evidence that children are sensitive to these 

multiple sources of information. After just 1 year of language exposure, the perceptual 

attunement of children likely allows them to make use of language-internal probabilistic cues 

(for reviews, see Jusczyk, 1997, 1999; Kuhl, 1999; Pallier, Christophe & Mehler, 1997; Werker 

& Tees, 1999). Through early learning experiences, infants already appear sensitive to the 

acoustic differences between function and content words (Shi, Werker & Morgan, 1999) and the 

relationship between function words and prosody in speech (Shafer, D. W. Shucard, J. L. 

Shucard & Gerken, 1998). Young infants are able to detect differences in syllable number among 

isolated words (Bijeljac, Bertoncini & Mehler, 1993). In addition, infants exhibit rapid 

distributional learning (e.g., Gómez & Gerken, 1999; Saffran, Aslin, & Newport, 1996; see 

Gómez & Gerken, 2000; Saffran, 2003 for reviews), and importantly, they are capable of 

multiple-cue integration (Mattys, Jusczyk, Luce, & Morgan, 1999; Morgan & Saffran, 1995). 

When facing the bootstrapping problem, children probably also benefit from characteristics of 
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child-directed speech, such as the predominance of short sentences (Newport, Gleitman & 

Gleitman, 1977) and exaggerated prosody (Kuhl et al., 1997). 

In summary, phonological information helps to distinguish function words from content 

words and nouns from verbs. Prosodic information helps word and phrasal/clausal segmentation, 

thus serving to uncover syntactic structure. Distributional characteristics aid in labeling and 

segmentation, and may provide further cueing of syntactic relations. Despite the value of each 

source, none of these cues in isolation suffices to solve the bootstrapping problem. The learner 

must integrate these multiple cues to overcome the limited reliability of each individually. This 

review has indicated that a range of language-internal cues is available for language acquisition, 

that these cues affect learning and processing, and that mechanisms exist for multiple-cue 

integration. What is yet unknown is how far these cues can be combined to solve the 

bootstrapping problem (Fernald & McRoberts, 1996). Here we present connectionist simulations 

to demonstrate that efficient and robust computational mechanisms exist for multiple-cue 

integration (see also the chapters in this volume by Hannon, Kirkham, and Saffran, for evidence 

from human infant learning).  

SIMULATION 1: MULTIPLE-CUE INTEGRATION 
Although the multiple-cue approach is gaining support in developmental psycholinguistics, its 

computational efficacy still remains to be established. The simulations reported in this chapter 

are therefore intended as a first step toward a computational approach to multiple-cue 

integration, seeking to test its potential value in syntax acquisition. Based on our previous 

experience with modeling multiple-cue integration in speech segmentation (Christiansen, Allen, 

& Seidenberg, 1998), we used a simple recurrent network (SRN; Elman, 1990) to model the 

integration of multiple cues. The SRN is feed-forward neural network equipped with an 
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additional copy-back loop that permits the learning and processing of temporal regularities in the 

stimuli presented to it (see Figure 5.1). This makes it particularly suitable for exploring the 

acquisition of syntax, an inherently temporal phenomenon.  

INSERT FIGURE 5.1 ABOUT HERE 

The networks were trained on corpora of artificial child-directed speech generated by a 

grammar that includes three probabilistic cues to grammatical structure: word length, lexical 

stress, and pitch. The grammar (described further below) was motivated by considering frequent 

constructions in child-directed speech in the CHILDES database (MacWhinney, 2000). 

Simulation 1 demonstrates how the integration of these three cues benefits the acquisition of 

syntactic structure by comparing performance across the eight possible cue combinations ranging 

from the absence of cues to the presence of all three.  

 Method  

Networks 

Ten networks were trained per condition, with an initial randomization of network connections in 

the interval [–0.1, 0.1]. Learning rate was set to 0.1, and momentum to 0. Each input to the 

networks contained a localist representation of a word (one unit = one word) and a set of cue 

units depending on cue condition. Words were presented one by one, and networks were required 

to predict the next word in a sentence along with the corresponding cues for that word. With a 

total of 44 words (see below) and a pause marking boundaries between utterances, the networks 

had 45 input units. Networks in the condition with all available cues had an additional five input 

units. The number of input and output units thus varied between 45 and 50 across conditions. 

Each network had 80 hidden units and 80 context units. 
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Materials 

We constructed an idealized but relatively complex grammar based on independent analyses of 

child-directed speech corpora (Bernstein-Ratner, 1984; Korman, 1984) and a study of child-

directed speech by mother–daughter pairs (Fisher & Tokura, 1996). As illustrated in Table 5.1, 

the grammar included three primary sentence types: declarative, imperative, and interrogative 

sentences. Each type consisted of a variety of common utterances reflecting the child’s exposure. 

For example, declarative sentences most frequently appeared as transitive or intransitive verb 

constructions (the boy chases the cat, the boy swims), but also included predication using be (the 

horse is pretty) and second person pronominal constructions commonly found in child-directed 

corpora (you are a boy). Interrogative sentences were composed of wh-questions (where are the 

boys?, where do the boys swim?), and questions formed by using auxiliary verbs (do the boys 

walk?, are the cats pretty?). Imperatives were the simplest class of sentences, appearing as 

intransitive or transitive verb phrases (kiss the bunny, sleep). Subject–verb agreement was upheld 

in the grammar, along with appropriate determiners accompanying nouns (the cars vs. *a cars).  

Each word was assigned a unit for input into the model, and we added a number of units 

to represent cues. Two basic cues were available to all networks. The fundamental distributional 

information inherent in the grammar could be exploited by all networks in this simulation. As a 

second basic cue, utterance-boundary pauses signaled grammatically distinct utterances with 

92% reliability (Broen, 1972). This was encoded as a single unit that was activated at the end of 

all but 8% of the sentences. Other semireliable prosodic and phonological cues accompanied the 

phrase-structure grammar: word length, stress, and pitch. Network groups were constructed using 

different combinations of these three cues. Cassidy and Kelly (1991) demonstrated that syllable 

count is a cue available to English speakers to distinguish nouns and verbs. They found that the 



 172 

probability of a single syllable word to be a noun rather than a verb is 38%. This probability rises 

to 76% at two syllables, and 92% at three. We selected verb and noun tokens that exhibited this 

distinction, whereas the length of the remaining words was typical for their class (i.e., function 

words tended to be monosyllabic). Word length was represented in terms of three units using 

thermometer encoding—that is, one unit would be on for monosyllabic words, two for bisyllabic 

words, and three for trisyllabic words. Pitch change is a cue associated with syllables that 

precede pauses. Fisher and Tokura (1996) found that these pauses signaled grammatically 

distinct utterances with 96% accuracy in child-directed speech, allowing pitch to serve as a cue 

to grammatical structure. In the networks, this cue was a single unit that would be activated at 

the final word in an utterance. Finally, we used a single unit to encode lexical stress as a possible 

cue to distinguish stressed content words from the reduced, unstressed form of function words. 

This unit would be on for all content words.  

INSERT TABLE 5.1 ABOUT HERE 

Procedure 

Eight groups of networks, one for each combination of cues (all cues, 2 cues, 1 cue, or none), 

were trained on corpora consisting of 10,000 sentences generated from the grammar. Each 

network within a group was trained on a different randomized training corpus. Training consisted 

of 200,000 input/output presentations (words), or approximately 5 passes through the training 

corpus. Each group of networks had cues added to its training corpus depending on cue 

condition. Networks were expected to predict the next word in a sentence, along with the 

appropriate cue values. A corpus consisting of 1,000 novel sentences was generated for testing. 

Performance was measured by assessing the networks’ ability to predict the next set of 

grammatical items given prior context. Importantly, this measure did not include predictions of 
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cue information, and all network conditions were thus evaluated by exactly the same 

performance criterion. 

To provide a statistical benchmark with which to compare network performance, we 

trained bigram and trigram models on the same corpora as the networks. These finite-state 

models, borrowed from computational linguistics, provide a simple prediction method based on 

strings of two (bigrams) or three (trigrams) consecutive words. Comparisons with these simple 

models provide an indication of whether the networks are learning more than simple two- or 

three-word associations.  

Results  
After training, SRNs trained with localist output representations will produce a distributional 

pattern of activation closely corresponding to a probability distribution of possible next items. In 

order to assess the overall performance of the SRNs, we made comparisons between network 

output probabilities and the full conditional probabilities given the prior context. For example, 

the full conditional probabilities given the context of  “The boy chases...” can be represented as a 

vector containing the probabilities of being the next item in this sentence for each of the 44 

words in the vocabulary and the pause. To ensure that our performance measure can deal with 

novel test sentences not seen during training, we estimate the prior conditional probabilities 

based on lexical categories rather than individual words (Christiansen & Chater, 1999). Suppose, 

in the example above, that every continuation of this sentence fragment in the training corpus 

always involved the indefinite determiner “a” (as in “The boy chases a cat”). If we did not base 

our full conditional probability estimates on lexical categories, we would not be able to assess 

SRN performance on novel sentences in which the definite determiner “the” followed the 



 174 

example fragment (as in “The boy chases the cat”’). Formally, we thus have the following 

Equation 1 with ci denoting the category of the ith word in the sentence: 

 (5.1) 

where the probability of getting some member of a given lexical category as the pth item, cp, in a 

sentence is conditional on the previous p–1 lexical categories. Note that for the purpose of 

performance assessment, singular and plural nouns are assigned to separate lexical categories 

throughout Simulations 1–4, as are singular and plural verbs. Given that the choice of lexical 

items for each category is independent, and that each word in a category is equally frequent, the 

probability of encountering a particular word wn, which is a member of a category cp, is simply 

inversely proportional to the number of items, Cp, in that category. So, overall, we have the 

following equation: 

 (5.2) 

If the networks are performing optimally, then the vector of output unit activations should 

exactly match these probabilities. We evaluate the degree to which each network performs 

successfully by measuring the mean squared error between the vectors representing the 

network’s output and the conditional probabilities (with 0 indicating optimal performance). 

All networks achieved better performance than the standard bigram/trigram models (p-

values < .0001), suggesting that the networks had acquired knowledge of syntactic structure 

beyond the information associated with simple pairs or triples of words. Figure 5.2A illustrates 

the best performance achieved by the trigram model as well as SRNs provided with no cues (the 

baseline network), a single cue (length, stress, or prosody), and three cues. The nets provided 
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with one or more phonological/prosodic cues achieved significantly better performance than 

baseline networks (p-values < .02). Using trigram performance as criterion, all multiple-cue 

networks surpassed this level of performance faster than the baseline networks as shown in 

Figure 5.2B (p-values < .002). Moreover, the three-cue networks were significantly faster than 

the single-cue networks (p-values < .001). Finally, using Brown-Forsyth tests for variability in 

the final level of performance, we found that the three-cue networks also exhibited significantly 

more uniform learning than the baseline networks (F(1,18) = 5.14, p < .04), as depicted in Figure 

5.2C.  

INSERT FIGURE 5.2 ABOUT HERE 

SIMULATION 2: SENTENCE COMPREHENSION IN 2-YEAR-OLDS 
Simulation 1 provides evidence for the general feasibility of multiple-cue integration for 

supporting syntax learning. To further demonstrate the relevance of the model to language 

development, closer contact with human data is needed (Christiansen & Chater, 2001). In the 

current simulation, we demonstrate that the three-cue networks from Simulation 1 are able to 

accommodate experimental data showing that 2-year-olds can integrate grammatical markers 

(function words) and prosodic cues in sentence comprehension (Shady & Gerken, 1999: 

Experiment 1). In this study, children heard sentences, such as (1) [see below], in one of three 

prosodic conditions depending on pause location: early natural [e], late natural [l], and unnatural 

[u]. Each sentence moreover involved one of three grammatical markers: grammatical (the), 

ungrammatical (was), and nonsense (gub).  

1. Find [e] the/was/gub [u] dog [l] for me.  

The child’s task was to identify the correct picture corresponding to the target noun (dog). 

Children performed the task best when the pause location delimited a phrasal boundary 
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(early/late), and with the grammatical marker the. Simulation 2 models these data by using 

comparable stimuli and assessing noun unit activations.   

Method  

Networks 

Twelve three-cue networks of the same architecture and training used in Simulation 1 were used 

in each prosodic condition in the infant experiment. This number was chosen to match the 

number of infants in the Shady and Gerken (1999) experiment. An additional unit was added to 

the networks to encode the nonsense word (gub) in Shady and Gerken’s experiment.  

Materials 

We constructed a sample set of sentences from our grammar that could be modified to match the 

stimuli in Shady and Gerken. Twelve sentences for each prosody condition (pause location) were 

constructed. Pauses were simulated by activating the utterance-boundary unit. Because these 

pauses probabilistically signal grammatically of distinct utterances, the utterance-boundary unit 

provides an approximation of what the children in the experiment would experience. Finally, the 

nonsense word was added to the stimuli for the within group condition (grammatical vs. 

ungrammatical vs. nonsense). Adjusting for vocabulary differences, the networks were tested on 

comparable sentences, such as (2):  

2. Where does [e] the/is/gub [u] dog [l] eat?  

Procedure 

Each group of networks was exposed to the set of sentences corresponding to its assigned pause 

location (early vs. late vs. unnatural). No learning took place, since the fully trained networks 

were used. To approximate the picture selection task in the experiment, we measured the degree 
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to which the networks would activate the groups of nouns following the/is/gub. The two 

conditions were expected to affect the activation of the nouns.   

Results  
The human results for the prosody condition in Shady and Gerken (1999) is depicted in Figure 

5.3A. They reported a significant effect of prosody on the picture selection task. The same was 

true for our networks (F(2,33) = 1,253.07, p < .0001), and the pattern of noun activations closely 

resembles that of the toddlers’ correct picture choice as evidenced by Figure 5.3B. The late 

natural condition elicited the highest noun activation, followed by the early natural condition, 

and with the unnatural condition yielding the least activation. The experiment also revealed an 

effect of grammaticality as can be seen from the human data shown in Figure 5.3C. We similarly 

obtained a significant grammaticality effect for our networks (F(2,70) = 69.85, p < .0001), 

which, as illustrated by Figure 5.3D, produced the highest noun activation following the 

determiner, followed by the nonsense word, and lastly for the ungrammatical word. Again, the 

network results match the pattern observed for the toddlers. One slight discrepancy is that the 

networks are producing higher noun activation following the nonsense word compared to the 

ungrammatical marker. This result is however consistent with the results from a more sensitive 

picture selection task, showing that children were more likely to end up with a semantic 

representation of the target following nonsense syllables compared to incorrectly used 

morphemes (Carter & Gerken, 1996). Thus, the results suggest that the syntactic knowledge 

acquired by the networks mirrors the kind of sensitivity to syntactic relations and prosodic 

content observed in human children. Together with Simulation 1, the results also demonstrate 

that multiple-cue integration may both facilitate syntax acquisition, and underlie some patterns of 

linguistic skill observed early on in human performance. In the next simulation, we show that the 
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multiple-cue perspective can simulate possible prosodic scaffolding that occurs much earlier in 

development: prenatal attunement to prosody. 

INSERT FIGURE 5.3 ABOUT HERE 

SIMULATION 3: THE ROLE OF PRENATAL EXPOSURE 
Studies of 4-day-old infants suggest that the attunement to prosodic information may begin prior 

to birth (Mehler et al., 1988). We suggest that this prenatal exposure to language may provide a 

scaffolding for later syntactic acquisition by initially focusing learning on certain aspects of 

prosody and gross-level properties of phonology (such as word length) that later will play an 

important role in postnatal multiple-cue integration. In the current simulation, we test this 

hypothesis using the connectionist model from Simulations 1 and 2. If this scaffolding 

hypothesis is correct, we would expect that prenatal exposure corresponding to what infants 

receive in the womb would result in improved acquisition of syntactic structure.  

Method  

Networks 

Ten SRNs were used in both prenatal and nonprenatal groups, with the same initial conditions 

and training details as Simulation 1. Each network was supplied with the full range of cues used 

in Simulation 1.  

Materials 

A set of “filtered” prenatal stimuli was generated using the same grammar as previously (Table 

5.1), with the exception that input/output patterns now ignored individual words and only 

involved the units encoding word length, stress, pitch change and utterance boundaries. The 

postnatal stimuli were the same as in Simulation 1.  
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Procedure 

The networks in the prenatal group were first trained on 100,000 input/output filtered 

presentations drawn from a corpus of 10,000 new sentences. Following this prenatal exposure, 

the nets were then trained on the full input patterns exactly as in Simulation 1. The nonprenatal 

group only received training on the postnatal corpora. As previously, networks were required to 

predict the following word and corresponding cues. Performance was again measured by the 

prediction of following words, ignoring the cue units.  

Results 
Both network groups exhibited significantly higher performance than the bigram/trigram models 

(F(1,18) = 25.32, p < .0001 for prenatal, F(1,18) = 12.03, p < .01 for nonprenatal), again 

indicating that the networks are acquiring complex grammatical regularities that go beyond 

simple adjacency relations. We compared the performance of the two network groups across 

different degrees of training using a two-way analysis of variance with training condition 

(prenatal vs. nonprenatal) as the between-network factor and amount of training as within-

network factor (five levels of training measured in 20,000 input/output presentation intervals). 

There was a main effect of training condition (F(1,18) = 12.36, p < .01), suggesting that prenatal 

exposure significantly improved learning. A main effect of degrees of training (F(9,162) = 15.96, 

p < .001) reveals that both network groups benefited significantly from training. An interaction 

between training conditions and degrees of training indicates that the prenatal networks learned 

significantly better than postnatal networks (F(1,18) = 9.90, p < .01). Finally, as illustrated by 

Figure 5.4, prenatal input also resulted in faster learning (measured in terms of the amount of 

training needed to surpass the trigram model; F(1,18) = 9.90, p < .01). The exposure to prenatal 

input—void of any information about individual words—promotes better performance on the 
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prediction task as well as faster learning overall. This provides computational support for the 

prenatal scaffolding hypothesis, derived as a prediction from the multiple-cue perspective on 

syntax acquisition.  

INSERT FIGURE 5.4 ABOUT HERE 

SIMULATION 4: MULTIPLE-CUE INTEGRATION WITH USEFUL AND 
DISTRACTING CUES 
So far, simulations have demonstrated the importance of cue integration in syntax acquisition, 

that integration can match data obtained in infant experiments, and that this perspective can 

provide novel predictions in language development. A possible objection to these simulations is 

that our networks succeed at multiple-cue integration because they are only provided with cues 

that are at least partially relevant for syntax acquisition. Consequently, performance may 

potentially drop significantly if the networks themselves had to discover which cues were 

partially relevant and which are not. Simulation 4 therefore tests the robustness of our multiple-

cue approach when faced with additional, uncorrelated distractor cues. Accordingly, we added 

three distractor cues to the previous three reliable cues. These new cues encoded the presence of 

word-initial vowels, word-final voicing, and relative (male/female) speaker pitch—all 

acoustically salient in speech, but which do not appear to cue syntactic structure.  

Method  

Networks 

Networks, groups, and training details were the same as in Simulation 3, except for three 

additional input units encoding the distractor cues.  
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Materials 

The three distractor cues were added to the stimuli used in Simulation 3. Two of the cues were 

phonetic and therefore available only in postnatal training. The word-initial vowel cue appears in 

all words across classes. The second distractor cue, word-final voicing, also does not provide 

useful distinguishing properties of word classes. Finally, as an additional prenatal and postnatal 

cue, overall pitch quality was added to the stimuli. This was intended to capture whether the 

speaker was female or male. In prenatal training, this probability was set to be extremely high 

(90%), and lower in postnatal training (60%). In the womb, the mother’s voice naturally provides 

most of the input during the final trimester when the infant’s auditory system has begun to 

function (Rubel, 1985). The probability used here was intended to capture the likelihood that 

some experience would derive from other speakers as well. In postnatal training, this probability 

drops, representing exposure to male members of the linguistic community, but still favoring 

mother–child interactions.  

Procedure 

Prenatal stimuli included the three previous semireliable cues, and only the additional prosodic, 

distractor cue encoding relative speaker pitch. In the postnatal stimuli, all three distractor cues 

were added. Training and testing details were the same as in Simulation 3.  

Results  
As in Simulations 1 and 3, both groups performed significantly better than the bigram/trigram 

models (F(1,18) = 18.95, p < .0001 for prenatal, and F(1,18) = 14.27, p < .001 for nonprenatal). 

We repeated the two-factor analysis of variance computed for Simulation 2, revealing a main 

effect for training condition (F(1,18) = 4.76, p < .05) and degrees of training (F(9,162) = 13.88, 

p < .0001). This indicates that the presence of the distractor cues did not hinder the improved 
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performance following prenatal language exposure. As in Simulation 3, the prenatal networks 

learned comparatively faster than the nonprenatal networks (F(1,18) = 5.31, p < .05). To 

determine how the distractor cues affected performance, we compared the prenatal condition in 

Simulation 3 with that of the current simulation. There was no significant difference in 

performance across the two simulations (F(1,18) = 0.13, p = .72). Moreover, as shown in Figure 

5.5, there was no difference in the speed of learning between the SRNs trained only with good 

cues and those whose input included distractor cues (F(1,18) = .57, p = .46). A further 

comparison between these nonprenatal networks and the bare networks in Simulation 1 showed 

that the networks trained with cues of mixed reliability significantly outperformed networks 

trained without any cues (F(1,18) = 14.27, p < .001). This indicates that the uncorrelated cues did 

not prevent the networks from integrating the partially reliable ones toward learning grammatical 

structure. Together with the first three simulations, Simulation 4 demonstrates that SRNs can 

integrate multiple cues efficiently when exposed to relatively complex artificial corpora. Next, 

we scale up the model to deal with naturalistic child-directed speech. 

INSERT FIGURE 5.5 ABOUT HERE 

SIMULATION 5: MULTIPLE-CUE INTEGRATION WITH FULL-BLOWN 
CHILD-DIRECTED SPEECH  
In this final simulation, we take a further step toward describing the computational 

underpinnings of multiple-cue integration. The previous series of simulations have demonstrated 

that SRNs provide a suitable model for integrating multiple cues when exposed to input 

generated by a psychologically motivated artificial grammar. Here we further show that the SRN 

scales up to deal with real child-directed speech. In particular, we seek to determine the extent to 

which these networks are sensitive to the lexical category information present in the set of 



 183 

phonological cues. To accomplish this task, we set up two identical groups of networks, each 

provided with a different encoding of the corpus. The encoding of the first corpus was based on 

16 phonological cues, previously shown by Monaghan et al. (2005) to provide information useful 

for syntax acquisition. The second set of input was encoded using the same cue vectors but 

randomized across lexical categories. Possible performance differences in networks trained with 

these different input sets would be due to lexical category information revealed by the multiple 

phonological cues.  

Method 

Networks 

Ten SRNs were used for the phonetic-input condition and the random-input condition, with an 

initial weight randomization in the interval [–0.1, 0.1]. A different random seed was used for 

each simulation. Learning rate was set to 0.1 and momentum to 0.7. Each input to the network 

contained a thermometer encoding for each of the 16 phonological cues from Monaghan et al. 

(2005), listed in Table 5.2. This encoding required 43 units (each of them in a range from 0 to 1) 

and a pause marking boundaries between utterances, resulting in the networks having 44 input 

units. Each output was encoded using a localist representation consisting of 14 different lexical 

categories and a pause marking boundaries between utterances, resulting in networks with 15 

output units. Each network furthermore was equipped with 88 hidden units and 88 context units. 

INSERT TABLE 5.2 ABOUT HERE 

Materials 

We trained and tested the network on a corpus of child-directed speech (Bernstein-Ratner, 1984). 

This corpus contains speech recorded from nine mothers speaking to their children over a 4- to 5-

month period when the children were between the ages of 1 year and 1 month to 1 year and 9 
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months. The corpus includes 1,371 word types and 33,035 tokens distributed over 10,082 

utterances. The sentences incorporate a number of different types of grammatical structures, 

showing the varied nature of the linguistic input to children. Utterances range from declarative 

sentences (Oh you need some space) to wh-questions (Where's my apple) to one-word utterances 

(“Uh” or “hello”). Each word in the corpus corresponded to one of the 14 following lexical 

categories: nouns (19.5%), verbs (18.5%), adjectives (4%), numerals (<0.1%), adverbs (6.5%), 

articles (6.5%), pronouns (18.5%), prepositions (5%), conjunctions (4%), interjections (7%), 

complex contractions (8%), abbreviations (<0.1%), infinitive markers (1.2%), and proper names 

(1.2%). The training set consisted of 9,072 sentences (29,930 word tokens) from the original 

corpus. A separate test set consisted of 963 additional sentences (2,930 word tokens). 

Each word was encoded in terms of the following 16 phonological cues from Table 5.2: 

number of phonemes (1–11), number of syllables (1–5), stress position (0 = no stress, 1 = 1st 

syllable stressed, etc.), proportion of reduced vowels (0–1), proportion of coronal consonants (0–

1), number of consonants in onset (1–3), consonant complexity (0–1), initial /D/ (1 if begins /D/, 

0 otherwise), reduced first vowel (1 if first vowel is reduced, 0 otherwise), any stress (0 if no 

stress, 1 otherwise), final inflection (0 if none, /@d/ or /Id/, 1 if present), stress vowel position 

(from front to back, 1–3), vowel position (mean position of vowels, from front to back, 1–3), 

final consonant voicing (0: vowel, 1: voiced, 2: unvoiced), proportion of nasal consonants (0–1) 

and mean height of vowels (0–3). The cues that assume only binary values were encoded using a 

single unit (e.g., “any stress”, “initial /D/”). The cues that take on values between 0 and 1 (e.g., 

proportion of vowel consonants) were also encoded using a single unit with a decimal number, 

whereas the cues that assume values in a broader range (e.g., number of syllables) were 

represented using a thermometer encoding; for example, one unit would be on for monosyllabic 
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words, two for bisyllabic words, and so on. Finally we used a single unit that would be activated 

at pauses between utterances.  

The random-input networks were trained using input for which we randomly distributed 

the multiple-cue vectors among all the words in the corpus. Thus, the vector encoding for a given 

word would be randomly reassigned to a different word in the corpus regardless of its lexical 

category. Each phonological vector was assigned to only one word. Moreover, each token of a 

word was represented using the same random vector for all occurrences of that word in the test 

and training sets.  

Procedure 

Ten networks were trained on phonological cues and 10 control networks were trained on the 

random vectors. Training consisted of one pass through the training corpus. We used the same 10 

random seeds for both simulation conditions. The networks were trained to predict the lexical 

category of the next word. The task of mapping phonological cues onto lexical categories may 

seem somewhat artificial because children are not provided directly with the lexical categories of 

the words to which they are exposed. However, children do learn early on to use pragmatic and 

other cues to discover the meaning of words. Given that the networks in our simulations only 

have access to linguistic information, we see lexical categories as a “stand-in” for more 

ecologically valid cues that we hope to be able to include in future work. 

Results 
We recorded the output vectors for the two groups of networks. Because the output consisted of 

localist representations for each lexical category (one unit = one lexical category) along with the 

utterance-final pause, we could use Equation 5.1 to estimate the full conditional probabilities, 

comparing network predictions to the full conditional probabilities for the next lexical category 
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using the mean cosine of the angle between the two vectors (with 1 corresponding to optimal 

performance). We compared the predictions of the phonetic-input networks with those of the 

random-input networks. Figure 5.6A shows a comparison of test–set performance for the 

phonetic-input networks with that of the random-input networks. The phonetic-input networks 

were significantly better than the random-input networks at predicting the next combination of 

lexical categories (p-values < .00005). These results suggest that distributional information is 

generally a stronger cue than phonological information, even though the latter does lead to better 

learning overall. However, phonological information may provide the networks with a better 

basis for processing novel lexical items. Next, we probe the internal representations of the two 

sets of networks in order to gain further insight into their performance differences. 

INSERT FIGURE 5.6 ABOUT HERE 

Probing the Internal Representations 
Simulation 5 indicated that the phonetic-input networks did not benefit as much as one perhaps 

would have expected from the information provided by the phonological cues. However, the 

networks may nonetheless use this information to develop internal representations that better 

encode differences between lexical categories. This may allow them to go beyond the phonetic 

input and integrate it with the distributional information derived from the sequential order in 

which these vectors were presented. To investigate these possibilities, we carried out a series of 

discriminant analyses of network hidden unit activations as well as of the phonetic input vectors, 

focusing on the representations of nouns and verbs. 

Method 
Informally, a linear discriminant analysis allows us to determine the degree to which it is 

possible to separate a set of vectors into two (or more) groups based on the information 



 187 

contained in those vectors. In effect, we attempt to use a linear plane to split the hidden unit 

space into a group of noun vectors and a group of verb vectors. Using discriminant analyses, we 

can statistically estimate the degree to which this split can be accomplished given a set of 

vectors. 

We recorded the hidden unit activations from the two sets of networks in Simulation 5. 

The hidden unit activations were recorded for 200 novel nouns and 200 novel verbs occurring in 

unique sentences taken from other CHILDES corpora (MacWhinney, 2000). The hidden unit 

activations were labeled such that each corresponded to the particular lexical category of the 

input presented to the network (though the networks did not receive this information as input). 

For example, a vector would be labeled a noun vector when the hidden unit activations were 

recorded for a noun (phonetic) input vector. We also included a condition in which the noun/verb 

labels were randomized with respect to the hidden unit vectors for both sets of networks, in order 

to establish a random control. 

Results 
We first compared the categorization performance of the two sets of networks, as illustrated in 

Figure 5.6B. The phonetic-input networks had developed hidden unit representations that 

allowed them to correctly separate 80.30% of the 400 nouns and verbs. This was significantly 

better than the random-input networks, which only achieved 73.15% correct separation (t(8) = 

5.89, p < .0001). Both sets of networks surpassed their respective randomized controls (phonetic-

input control: 69.05% – t(8) =11.51, p < .0001; random-input control: 68.20% – t(8 )= 3.92, p < 

.004). The controls for the two sets of networks were not significantly different from each other 

(t(8) = 0.82, p > .43). As indicated by our previous analyses of phonetic cue information in child-

directed speech (Monaghan et al., 2005), the phonetic input vectors contained a considerable 
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amount of information about lexical categories, allowing for 67.25% correct separation of nouns 

and verbs, but still significantly below the performance of the phonetic-input networks (t(4) = 

25.97, p < .0001). The random-input networks also surpassed the level of separation afforded by 

their input vectors (59.00% – t(4) = 12.80, p < .0001). 

The results of the hidden-unit discriminant analyses suggest that not only did the 

phonetic-input networks develop internal representations better suited for distinguishing between 

nouns and verbs, but they also went beyond the information afforded by the phonetic input and 

integrate it with distributional information. Crucially, the phonetic-input vectors were able to 

surpass the random-input networks, despite that the latter was also able to use distributional 

information to go beyond the input. Consistent phonological information thus appears to be 

important for network generalization to novel nouns and verbs. 

GENERAL DISCUSSION 
As described in an earlier part of this chapter, children who are learning syntax face a complex 

“chicken-and-egg” bootstrapping problem. A growing bulk of evidence from developmental 

cognitive science has suggested that a solution may come from a process of integrating multiple 

sources of probabilistic information, each of which is individually unreliable, but jointly 

advantageous (cf. Smith & Pereia chapter in this volume). What has so far been lacking is a 

demonstration of the computational feasibility of this approach and the series of simulations 

reported here takes a first step toward accomplishing this. We have demonstrated that providing 

SRNs with prosodic and phonological cues significantly improves their acquisition of syntactic 

structure (Simulation 1), and that the three-cue networks can mimic children’s sensitivity to both 

prosodic and grammatical cues in sentence comprehension (Simulation 2). The model illustrates 

the potential value of prenatal exposure (Simulation 3) and provides evidence for the robustness 
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of multiple-cue integration, since highly unreliable cues did not interfere with the integration 

process (Simulation 4). Finally, we expanded these results by showing that SRNs can also utilize 

highly probabilistic information found in 16 phonological cues in the service of syntactic 

acquisition when trained on a naturalistic corpus of child-directed speech (Simulation 5). 

Analysis of the networks’ hidden unit activations provided further evidence that the integration 

of phonological and distributional cues during learning leads to more robust internal 

representations of lexical categories, at least when it comes to distinguishing between the two 

major categories of nouns and verbs.  

Overall, the simulation results presented in this chapter provide support not only for the 

multiple-cue integration approach in general, but also for using neural network architectures to 

explore the integration of distributional, prosodic, and phonological information in language 

acquisition. Some researchers have challenged the value of multiple probabilistic cues (e.g., 

Fernald & McRoberts, 1996), but we have computationally demonstrated that their integration 

results in faster, better, and more uniform learning, even in the face of distracting information. 

Our simulations, along with artificial language learning experiments (Billman, 1989; Brooks et 

al., 1993; McDonald & Plauche, 1995; Morgan et al., 1987), underscore multiple-cue integration 

as a means of facilitating the complex task of syntax acquisition. 

We have elsewhere explored the evolutionary emergence of phonological cues in agent-

based simulations (Christiansen & Dale, 2004). In these evolutionary simulations, languages 

were mutated slightly across generations of randomized SRN learners. For any given generation, 

the languages best learned by the networks were allowed to be passed down to the next 

generation. Results showed that there emerges cross-linguistic variation in stable linguistic cues. 

Nevertheless, observed stable cue systems were consistent in that syntactic categories were 
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marked by phonological cues, as found in English, French, Japanese, and other languages (as 

reviewed above). This stability was particularly strong when languages had larger lexicons, 

indicating that multiple-cue integration may have contributed to language evolution by aiding a 

learner’s acquisition of growing set of lexical items and classes. 

Because different natural languages employ different constellations of cues to signal 

syntactic distinctions, an important question for further research is exactly how a child’s learning 

mechanisms discover which cues are relevant and for which aspects of syntax. This problem is 

compounded by the fact that the same cue may work in different directions across different 

languages. A case in point is that nouns tend to contain more vowels and fewer consonants than 

verbs in English, whereas nouns and verbs in French show the opposite pattern (Monaghan et al., 

2007). So how can the child learn which cues are relevant and in which direction? One 

possibility may be to encode the correlations between cues in the linguistic environment. This 

view is supported by related mathematical analyses based on the Vapnik-Chervonenkis (VC) 

dimension (Abu-Mostafa, 1993), showing that the integration of multiple “hints” or cues of 

correlated information reduces the number of hypotheses a learning system has to entertain. The 

VC dimension specifies an upper bound for the amount of input needed by a learning process 

that starts with a set of hypotheses about a task solution. Cue information may lead to a reduction 

in the VC dimension by weeding out unhelpful hypotheses and thus lowering the number of 

examples needed to find a solution. In other words, the integration of multiple cues may reduce 

learning time by reducing the number of steps necessary to find an appropriate function 

approximation, as well as reduce the set of candidate functions considered, thus potentially 

ensuring better generalization.  
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More generally, the development of computational multiple-cue integration models is 

still in its infancy. There now exists a wealth of support for the usefulness of multiple 

probabilistic cues for language acquisition, and although theoretical models abound (e.g., 

Gleitman & Wanner, 1982; and contributions in Morgan & Demuth, 1996; Weissenborn & 

Höhle, 2001), only a few psychologically plausible computational models for multiple-cue 

integration are on offer (e.g., Cartwright & Brent, 1997). Extant models tend to capture the end-

state of learning rather the developmental process itself. This approach cannot identify the time 

course of different cues as they become important for acquisition. For example, the ability to use 

visual context information to resolve a syntactically ambiguous sentence does not appear until 

about 8 years of age, considerably later than the knowledge of constraints on constructions that 

may follow specific verbs (Snedeker & Trueswell, 2004). To reveal cue integration and its 

development, models must capture the developmental trajectory of cue use across different 

phases of language acquisition. We anticipate that the availability of so-called “dense” corpora, 

which sample the child’s input at a higher frequency (e.g., Behrens, 2006; Maslen, Theakston, 

Lieven, & Tomasello, 2004), will help the development of such constructivist-oriented models of 

language acquisition. 

Future work should therefore provide more detailed analysis of the developmental 

trajectory of multiple-cue integration. Most work on cue availability in the child’s environment 

makes the simplifying assumption that all information is available to the child simultaneously. 

This is an oversimplification: Children’s productions indicate that the whole of language is not 

acquired in one step, but that overlapping phases of acquisition occur, where learning progress at 

any one time relies on progress that preceded it. Attempts to explain and exploit these learning 

phases in computational models has been successful in accounting for early processing 
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constraints that facilitate later learning of complex syntactic structures (Elman, 1993), phrasal 

productions and errors in young children (Freudenthal, Pine, & Gobet, 2005), and the 

development of the lexicon (Steyvers & Tenenbaum, 2005). Such approaches could equally be 

applied to the computational simulation of multiple-cue integration reported in this chapter: The 

reliability of phonological, prosodic, or distributional cues could be based on the most frequent, 

or earliest-learned words, and constructed incrementally, and such a constructivist approach 

would enhance the cognitive plausibility of the availability and process of use of such cues by 

the developing child. 

The wide array of phonological, prosodic, and distributional information sources in 

primary linguistic input may make the child’s learning task substantially easier than it might 

seem when we consider only the complexities of syntax that they acquire. A domain-general 

learning mechanism, such as the SRN architecture used here, can capitalize on this rich 

information to acquire deep domain-specific knowledge that emerges through developmental 

time. Along with this language-internal information, surely innate and language-external 

constraints also contribute to the task, and future work should aim to integrate all three 

fundamental sources of constraints. We have nevertheless shown that even with relatively simple 

domain-general assumptions about the learner, multiple-cue integration can facilitate the 

complex task of syntax acquisition. Theories of the language learner therefore should not 

overburden innate and language-external constraints where language-internal multiple-cue 

integration can help. 
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Table 5.1 The Stochastic Phrase-Structure Grammar Used to Generate Training Corpora for Simulations 1–4 

S → Imperative [0.1] | Interrogative [0.3] | Declarative [0.6] 

Declarative → NP VP [0.7] | NP-ADJ [0.1] | That-NP [0.075] | You-P [0.125] 

NP-ADJ → NP is/are adjective 

 That-NP → that/those is/are NP 

 You-P → you are NP 

Imperative → VP 

Interrogative → Wh-Question [0.65] | Aux-Question [0.35] 

 Wh-Question → where/who/what is/are NP [0.5] |  

  Where/who/what do/does NP VP [0.5] 

 Aux-Question → do/does NP VP [0.33] |  

  Do/does NP wanna VP [0.33] |  

  is/are NP adjective [0.34] 

NP → a/the N-sing/N-plur 

VP → V-int | V-trans NP 

 
 

Table 5.2 Phonological Cues that Distinguish between Lexical Categories 

Nouns and Verbs 

Nouns have more syllables than verbs (Kelly, 1992) 

Bisyllabic nouns have 1st syllable stress, verbs tend to have 2nd syllable stress (Kelly & Bock, 1988) 

Inflection -ed is pronounced /d/ for verbs, /@d/ or /Id/ for adjectives (Marchand, 1969) 

Stressed syllables of nouns have more back vowels than front vowels. Verbs have more front vowels than back 

vowels (Sereno & Jongman, 1990) 

Nouns have more low vowels, verbs have more high vowels (Sereno & Jongman, 1990) 

Nouns are more likely to have nasal consonants (Kelly, 1992) 

Nouns contain more phonemes per syllable than verbs (Kelly, 1996) 
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Table 5.2 Phonological Cues that Distinguish between Lexical Categories 

Nouns and Verbs 

Function and Content Words 

Function words have fewer syllables than content words (Morgan, Shi & Allopenna, 1996) 

Function words have minimal or null onsets (Morgan, Shi & Allopenna, 1996) 

Function word onsets are more likely to be coronal (Morgan, Shi & Allopenna, 1996) 

/D/ occurs word-initially only for function words (Morgan, Shi & Allopenna, 1996) 

Function words have reduced vowels in the first syllable (Cutler, 1993) 

Function words are often unstressed (Gleitman & Wanner, 1982) 

 

Figure 5.1 The general architecture of the simple-recurrent network (SRN) employed across simulations. An 

input layer representing information relevant for individual words along with an utterance boundary marker feeds 

into a hidden layer, and then to an output that predicts information relevant to the following word in a corpus. The 

hidden layer copies itself to a context layer, which supplies a limited memory for past words.  

Figure 5.2  Comparison of learning performance for different cue combinations in Simulation 1, showing that 

multiple-cue integration leads to (A) better learning (as measured by the lowest error obtained on the test corpus), 

(B) faster learning (measured in terms of the amount of training needed to surpass the performance of the trigram 

model), and (C) more uniform learning (as indicated by less variance across the performance of the different 

instances of the network). (Error bars = S.E.M.) 

Figure 5.3  The effect of prosody and grammatical markers on human and SRN sentence processing. (A) Percent 

correct picture identification by 2-year-olds in the prosody condition of the Shady and Gerken (1999) experiment, 

with pauses inserted early, late, or in the unnatural position between the determiner and the noun. (B) Total 

activation of nouns by the SRN when exposed to the same prosodic manipulation as the human children. (C) 

Picture identification performance in the grammatical marker condition in Shady and Gerken (1999), involving a 

grammatical, nonsense, or ungrammatical word before the target noun. (D) Matching SRN activation of nouns for 

the same three types of grammatical markers. (Error bars = S.E.M.) 

Figure 5.4  Speed of learning for networks trained with or without prenatal exposure to prosody and gross-level 

properties of phonology. (Error bars = S.E.M.) 

Figure 5.5  Speed of learning for networks trained with or without distractor cues. (Error bars = S.E.M.) 

Figure 5.6  Performance of the network models trained on full-blown child-directed speech. (A) Test performance 

for networks provided only with distributional cues and networks provided with both phonological and 
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distributional cues. (B) Results of the discriminant analyses, comparing the ability of the two types of networks to 

place themselves in a “noun state” and a “verb state” when processing novel nouns and verbs, respectively. (Error 

bars = S.E.M.) 


