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Abstract

Prediction-based processes appear to play an important role in language. Few studies, however,

have sought to test the relationship within individuals between prediction learning and natural lan-

guage processing. This paper builds upon existing statistical learning work using a novel paradigm

for studying the on-line learning of predictive dependencies. Within this paradigm, a new ‘‘predic-

tion task’’ is introduced that provides a sensitive index of individual differences for developing prob-

abilistic sequential expectations. Across three interrelated experiments, the prediction task and

results thereof are used to bridge knowledge of the empirical relation between statistical learning and

language within the context of nonadjacency processing. We first chart the trajectory for learning

nonadjacencies, documenting individual differences in prediction learning. Subsequent simple recur-

rent network simulations then closely capture human performance patterns in the new paradigm.

Finally, individual differences in prediction performances are shown to strongly correlate with partic-

ipants’ sentence processing of complex, long-distance dependencies in natural language.

Keywords: Prediction; Sentence processing; Language comprehension; Statistical learning; Nonadja-

cent dependencies; Serial reaction time task; Simple recurrent network

1. Introduction

Most individuals can relate to the common, albeit occasionally vexing, experience of hav-

ing someone else anticipate and finish one’s own sentence before one has completed saying

it. Such behavior is but one simple reflection of the human ‘‘drive to predict,’’ which may

serve as a ‘‘powerful engine for learning and provides important clues to latent abstract
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structure’’ (Elman, 2009, p. 572). The broader processes underlying such ordinary acts have

accordingly received attention as an integral component for successful learning, understand-

ing, and use of language. For example, implicit learning of sequential regularities has been

linked to an individual’s ability to utilize contextual and lexically predictive information in

comprehending spoken language; listeners who are better at extracting statistical relation-

ships contained within an aural sequence are also more adept in predicting the sentence-final

words of a noisy speech signal (Conway, Bauernschmidt, Huang, & Pisoni, in press). Across

other areas of language, empirical data suggest that learned knowledge of probabilistic

structure forms the basis for generating implicit expectations of upcoming linguistic input,

and that the on-line engagement of such predictive skills comprises an important role in

language acquisition and processing (for reviews, see Federmeier, 2007; Kamide, 2008;

Van Berkum, 2008).

Statistical learning mechanisms that have been proposed for tracking predictive depen-

dencies in language (Saffran, 2001; for reviews, see Gómez & Gerken, 2000; Saffran, 2003)

may thus be viewed as tapping into this prediction-based process. More generally, outside

of language, sequence-learning work has similarly examined basic abilities for the rapid

anticipation of discrete, temporal elements under incidental learning conditions. However,

while traditional artificial grammar learning (AGL; Reber, 1967) tasks have been fruitfully

deployed towards studying statistical learning, they fail to provide a clear window onto the

temporal dynamics of the learning process. In contrast, serial reaction time (SRT; Nissen &

Bullemer, 1987) tasks have been used widely in sequence-learning research to trace individ-

uals’ trial-by-trial progress, but primarily with a focus on learning fixed, repeated structure.

Despite their natural commonalities then, rarely have methodological advantages of each

paradigm been jointly subsumed under a single task for exploring the on-line development

of prediction-based learning.

Nonetheless, notable exceptions include the work of Cleeremans and McClelland (1991),

who implemented a noisy finite-state grammar within a visual SRT task to study the encod-

ing of contingencies varying in temporal distance; and of Hunt and Aslin (2001), who

employed a visual SRT paradigm for examining learners’ processing of sequential transi-

tions varying in conditional and joint probabilities. Moreover, Howard, Howard, Dennis,

and Kelly (2008) adapted the visual SRT task to manipulate the types of statistics governing

triplet structures; and Remillard (2008) controlled nth-order adjacent and nonadjacent con-

ditional information to probe SRT learning for visuospatial targets. Across these studies,

participants evinced complex, procedural knowledge of the sequence-embedded relations

upon extensive training over 20, 48, 6, or 4 sessions, respectively, spanning separate days.

Reaction time measures collected throughout exposure enabled insights into the processing

of the predictive dependencies.

In a similar vein, we employ a novel paradigm that directly implements an artificial
language within a two-choice SRT task. Distinct from previous statistical learning methods,

our paradigm specifically aims to reveal the continuous timecourse of statistical processing,

rather than contrasting or altering the types of statistics. The paradigm is designed for the

briefer exposure periods typical of many AGL studies and flexibly accommodates the use of

linguistic stimuli-tokens and auditory cues. More generally, the task shares similarities to
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standard AGL designs in the language-like nature of string-sequences, the smaller number

of training exemplars, and the greater transparency to natural language structure. Crucially,

however, it uses the dependent variable of reaction times and an adapted SRT layout to indi-

rectly assess learning while focusing attention through a cover task. By coupling strengths

intrinsic to AGL and SRT methods, respectively, the ‘‘AGL-SRT paradigm’’ is intended

to complement existing approaches to research on the statistical learning of predictive

relations.

Understanding how learners process nonadjacent dependencies constitutes an ongoing

area of such work, with importance for theories implicating statistical learning in

language. Natural language characteristically contains many long-distance dependencies

that proficient learners need to track on-line (e.g., subject-verb agreement, embedded

clauses, and relations between auxiliaries and inflectional morphemes). Even with the

growing bulk of statistical learning work aiming to address the acquisition of

nonadjacencies (e.g., Gómez, 2002; Newport & Aslin, 2004; Onnis, Christiansen,

Chater, & Gómez, 2003; Pacton & Perruchet, 2008; inter alia), it is yet unknown

exactly how such learning unfolds, the precise mechanisms subserving it, and the degree

to which statistical learning of nonadjacencies empirically relates to natural language

processing.

Our AGL-SRT paradigm offers a novel entry point into the study of statistical nonadja-

cency learning by augmenting current knowledge with finer-grained, temporal data to illu-

minate how nonadjacent dependencies may be processed and anticipated over time. As

such, Experiment 1 studies the timecourse of nonadjacency learning, using our novel

AGL-SRT paradigm and incorporating a ‘‘prediction task’’ (rather than the kind of standard

grammaticality test typically used; e.g., Gómez, 2002). Subsequently, Experiment 2 shows

how the prediction-based, associative learning principles exemplified by simple recurrent

networks closely accommodate human performances on this prediction task. Experiment 3

then probes the relevance of statistical prediction-task performance to on-line natural

language processing.

2. Experiment 1: Statistical learning of nonadjacencies in the AGL-SRT paradigm

In infants and adults, it has been established that relatively high variability in the set-size

from which an ‘‘intervening’’ middle element of a string is drawn facilitates learning of the

nonadjacent relationship between the two flanking elements (Gómez, 2002). That is, when

aurally familiarized to artificial strings of the form aXd and bXe, individuals show sensitiv-

ity to the nonadjacencies (i.e., the a_d and b_e dependencies) when the set of elements from

which X is drawn comprise a large set of exemplars (e.g., |X| = 18 or 24). Performance is

poorer, however, when variability of the set-size for the X is intermediate (e.g., |X| = 12) or

low (e.g., |X| = 2). Similar facilitation in high-variability conditions have also been docu-

mented for adults when the grammar is alternatively instantiated with visual shapes as

elements (Onnis et al., 2003). Thus, although past research has begun to document learning

in specific contexts for both infants and adults, we know little about the timecourse for
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acquiring predictive nonadjaencies as it actually unfolds. Here, we employ our novel AGL-

SRT paradigm towards that aim.

2.1. Method

2.1.1. Participants
Thirty monolingual, native English speakers from the Cornell undergraduate population

(age: M = 20.6, SD = 4.2) were recruited for course credit.

2.1.2. Materials
Throughout training, participants observed auditory-visual strings (composed of three

nonwords) belonging to the artificial high-variability, nonadjacency language of Gómez’s

(2002). Strings therefore had the form aXd, bXe, and cXf, with ending nonword-items (d, e,

f) predictably dependent upon beginning nonword-items (a, b, c). Monosyllabic nonwords

(pel, dak, vot, rud, jic, and tood) instantiated the string-initial and final stimulus tokens (a, b,

c; d, e, f); bisyllabic nonwords (wadim, kicey, puser, fengle, coomo, loga, gople, taspu,

hiftam, deecha, vamey, skiger, benez, gensim, feenam, laeljeen, chila, roosa, plizet, balip,

malsig, suleb, nilbo, and wiffle) instantiated the set of 24 middle X-tokens. The assignment

of particular tokens (e.g., pel) to specific stimulus variables (e.g., the c in cXf) was random-

ized across participants to avoid learning biases attributable to the specific sound properties

of words. Auditory forms of the nonwords were recorded by a female native English speaker

with equal lexical stress and length-edited to 500 and 600 ms for mono- and bi-syllabic

nonwords, respectively. Written forms of nonwords were presented in Arial font (all caps)

with standard spelling and appeared on a computer screen that was partitioned into a 2 · 3

grid of uniform rectangles, as depicted in Fig. 1. The leftmost column of the computer grid

contained only the initial items of strings (a, b, c), the center column the middle items

Fig. 1. The grid display for presenting the stimulus strings on each trial. In this example, ‘‘dak’’ and ‘‘pel’’ are

initial-string items (a, b, or c elements) appearing in the leftmost column; ‘‘fengle’’ and ‘‘wadim’’ are middle-

string items (belonging to the set of 24 X-elements) appearing in the center column; and ‘‘tood’’ and ‘‘rud’’ are

final-string items (d, e, or f elements) appearing in the rightmost column. For expository purposes only, some

nonwords are underlined here to distinguish the target string (dak fengle tood) from the foil string (pel wadim
rud) in this example.
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(X1…X24), and the rightmost column the final items (d, e, f). Ungrammatical strings were

generated by substituting an incorrect final element that disrupted the nonadjacency relation-

ship, thus producing strings of the form: *aXe, *aXf, *bXd, *bXf, *cXd, and *cXf.

2.1.3. Procedure
Each trial began by displaying the computer grid with a written nonword centered in each

rectangle, with each column containing a nonword from a correct (target) and an incorrect

(foil) stimulus string. Positions of targets and foils were randomized and counterbalanced

such that they were contained equally often within the upper and lower rectangles. Only the

set of items that could legally occur within a given column (initial, middle, final) were used

to draw the foils. For example, for the string dak fengle tood, the leftmost column might

display dak and the foil pel, the center column fengle and the foil wadim, and the rightmost

column tood and the foil rud, as shown in Fig. 1.

After 250 ms of familiarization to the six written nonwords, auditory versions of the three

nonwords were played over headphones. Participants used a computer mouse to click inside

the rectangle containing the correct (target) written nonword as soon as they heard it, with

instructions emphasizing both speed and accuracy. The first nonword (e.g., dak) was played

automatically after the familiarization period, whereas the subsequent two nonwords were

played once the participant had responded to the previously played word (e.g., fengle was

played after a response was recorded for dak, and tood, in turn, after the participant

responded to fengle). Thus, when listening to dak fengle tood, the participant should first

click dak upon hearing dak (Fig. 2, left), then fengle when hearing fengle (Fig. 2, center),

and finally tood after hearing tood (Fig. 2, right). After the participant clicks the rightmost

target, the screen clears and a new set of nonwords appears 750 ms later.

Fig. 2. The sequence of mouse clicks associated with the auditory stimulus string ‘‘dak fengle tood’’ for a single

trial. All trials for each of the blocks (training, ungrammatical, and recovery) followed this general pattern

of sequence clicks (from left, to center, to right column clicks corresponding to the selections for the respective

elements of a target string).
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Per design, each nonword occurs equally often (within a column) as a target and as a foil.

Thus, participants cannot anticipate beforehand which is the target and which is the foil for

the first two responses of a given trial (leftmost and center columns). However, following

the rationale of standard SRT experiments, if participants learn to anticipate the nonadjacent

dependencies inherent in the stimulus strings, then they should respond increasingly faster

to the final target. As our dependent measure, we thus recorded on each trial the reaction

time (RT) for the predictive, final element, subtracted from the RT for the nonpredictive,

initial element to control for practice effects and serve as a baseline.

Participants were first exposed to six training blocks, each of which consisted of a random

presentation of 72 unique strings (24 strings · 3 dependency-pairs), for exposure to a total

of 432 grammatical strings. After this, participants were presented with 24 ungrammatical

strings, with endings that violated the nonadjacent dependency (in the manner noted above).

A final training ‘‘recovery’’ block of 72 grammatical strings then followed this brief

ungrammatical block. Transitions between all blocks were seamless and unannounced.

Upon completing the eight exposure blocks, participants performed the ‘‘prediction task’’

of key interest here because it provides a direct measure of the degree to which participants

have learned the nonadjacency patterns. They were told that there were rules specifying the

ordering of nonwords for the auditory sequences, and were asked to indicate the endings for

12 subsequent strings upon being cued with only the first two sequence-elements. In other

words, participants observed the same grid display as before and followed the same proce-

dure for the nonpredictive initial and middle columns (e.g., selections corresponding to dak
fengle… in Fig. 2), but then they had to select which nonword in the predictive final column

(e.g., tood or rud) they thought best completed the string without hearing the ending (and

without feedback).

2.2. Results

Since instructions emphasized speed in addition to accuracy, there was a small proportion

of errors made by participants, as is commonly reported in SRT studies. Thus, only accurate

string trials (with only one selection response for each of the three targets) were used for

analyses. These averaged 90.0% (SD = 5.6) of training block trials, 84.7% (SD = 15.7) of

ungrammatical trials, and 87.1% (SD = 12.3) of recovery trials.1 Final-element RTs were

subtracted from initial-element RTs on each trial, with means of these resultant RT differ-

ence scores computed for each block. Fig. 3 plots group averages for these difference scores,

with positive values reflecting nonadjacency learning.

A one-way repeated-measures analysis of variance (anova) with block as the within-sub-

jects factor was performed on mean RT difference scores. Mauchly’s test indicated a viola-

tion of the sphericity assumption (v2(27) = 111.82, p < 0.001), so Greenhouse-Geisser

estimates (e = 0.36) were used to correct degrees of freedom. There was a significant effect

of block on RT scores, F(2.55, 73.96) = 8.97, p < 0.001. As shown in Fig. 3, RT differences

gradually increased across blocks, albeit with an expected performance decrement in the

ungrammatical seventh block. As also evidenced by the group trajectory, sensitivity to non-

adjacent dependencies required considerable exposure (an average of five blocks) before
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reliably affecting responses; this is consistent with Cleeremans and McClelland’s (1991)

finding that learning for long-distance contingencies emerges less rapidly than for adjacent

dependencies.

Following interpretations in the sequence learning literature for comparing RTs to struc-

tured versus unstructured material (e.g., Thomas & Nelson, 2001), we specifically assessed

performance differences across the final training block, ungrammatical block, and recovery

block. Planned contrasts confirmed that mean RT differences significantly decreased in the

ungrammatical block compared to performances in both the preceding training block,

t(29) = 2.11, p = 0.04, and succeeding recovery block, t(29) = 3.22, p < 0.01. This relative

performance drop in the ungrammatical block (Block 6 minus Block 7: M = )34.8 ms,

SE = 16.5; Block 8 minus Block 7: M = 77.3 ms, SE = 24.0 ms) provides a confirmation of

nonadjacency learning using an established SRT measure.

Of central focus to the interrelated experiments that follow next, accuracy scores on the

prediction task were calculated for each individual. Participants averaged 61.1%, with a

large standard deviation (21.4%) and group range (25–100%) reflecting substantial interindi-

vidual variation. Group-level performance was above chance [t(29) = 2.85, p < 0.01] pro-

viding a gauge of predictive skills for anticipating the statistical nonadjacencies. But what

kind of computational mechanism may subserve the kind of learning evidenced by this pre-

diction task and, more generally, by the on-line AGL-SRT task? We address this question in

Experiment 2, before going on to show in Experiment 3 that the performance on the predic-

tion task provides a sensitive index of individual differences in on-line language processing.

3. Experiment 2: Computational simulations of on-line nonadjacency learning

The new paradigm in Experiment 1 highlights the gradual statistical learning of non-

adjacencies in prediction-based performance; however, the computational mechanisms

Fig. 3. Group learning trajectory (as a plot of mean RT difference scores) and prediction accuracy in Experiment 1.
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that can accommodate such findings remain to be investigated. Cleeremans and

McClelland (1991) have previously shown that the simple recurrent network (SRN;

Elman, 1990) can capture performance on AGL-like SRT tasks. Furthermore, the antici-

pation of unfolding temporal structure and implicit prediction-based feedback are dis-

tinctive, fundamental features of the SRN’s associative architecture (see, e.g., the

discussion in Altmann & Mirković, 2009). We thus chose to closely model on-line per-

formance from our task with SRN simulations based on the exact same exposure and

input as in the human case.

The SRN is essentially a standard feed-forward network equipped with context units con-

taining a copy of hidden unit activation at the previous timestep, thus providing partial

recurrent access to prior internal states. The context layer’s limited maintenance of sequen-

tial information over past timesteps allows the SRN to potentially discover temporal contin-

gencies spanning varying distances in the input. Next, we use the SRN’s graded output

values and prediction-based learning mechanism to model human RTs and prediction scores

from Experiment 1.

3.1. Method

3.1.1. Networks
Simulations were conducted with 30 individual networks, one corresponding to each

human participant, and each randomly initialized with a different set of weights within the

interval ()1, 1) to approximate learner differences. Localist representations were employed

for the 30 input and output units, with one unique unit corresponding to each nonword. The

hidden layer had 15 units. The networks were trained using standard backpropagation with a

learning rate of 0.1 and momentum at 0.8.

3.1.2. Materials
The SRNs received the same input as human participants, presented using the same ran-

domization process as in Experiment 1, and tested on the same ‘‘prediction task’’ strings

(with the same target-foil pairings).

3.1.3. Procedure
Networks received the exact same amount of exposure to the statistical dependencies as

the human participants (i.e., 6 grammatical blocks of 72 string-trials, an ungrammatical

block of 24 trials, a recovery block of 72 trials, and a 12-item prediction task)—and no addi-

tional training. Context units were reset between string-sequences by setting values to 0.5;

this simulated the screen-clear and between-trial pauses that human participants observed.

Weight changes were carried out continuously throughout training, except for the prediction

task items at the very end, when weights were ‘‘frozen’’ (reflecting the fact that human par-

ticipants received no auditory input ⁄ feedback for selecting the final elements of prediction-

task strings).
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3.2. Results

The networks’ continuous outputs were recorded, and performance was evaluated by

computing a Luce ratio difference score for string-final predictions on each trial. A Luce

ratio is calculated by dividing a given output-unit’s activation value by the sum of the acti-

vation values of all output units. During processing, the representation formed at the output

layer of the SRN approximates a probability distribution for the network’s prediction of the

next element. Thus, on the timestep where a middle (X) element is received as input, if the

network has become sensitive to the nonadjacent dependencies, it should most strongly acti-

vate the output unit corresponding to the correct, upcoming string-final nonword. The Luce

ratio essentially quantifies the proportion of total activity owned by this output unit.

To approximate human RT difference scores, we subtracted the Luce ratio for the foil

unit from the Luce ratio for the target unit. Since networks cannot erroneously select a foil

in the same way that humans occasionally do (and which were excluded from analyses, as

noted earlier, in line with standard SRT protocol), accurate trials for the networks were

defined as those in which the Luce ratio for the target exceeded that for the foil. As in

Experiment 1, only responses ⁄ outputs from accurate trials were analyzed.

A one-way repeated-measures anova with block as the within-subjects factor was per-

formed. As Mauchly’s test indicated a violation of the sphericity assumption

(v2(27) = 66.947, p < 0.001), degrees of freedom were corrected using Greenhouse-Geisser

estimates (e = 0.60). There was a main effect of block on mean Luce ratio difference,

F(4.21, 121.96) = 35.57, p < 0.001. As in the human case, difference scores gradually

increased, with a performance decrement in the seventh (ungrammatical) block. This drop

was significant in relation to both the preceding and succeeding grammatical blocks,

t(29) = 6.76, p < 0.0001; t(29) = 7.80, p < 0.0001.

The networks’ mean Luce ratio difference scores across blocks are plotted in Fig. 4,

alongside the human learning trajectory from Experiment 1.2 Both trajectories are indicative

of a gradually developing sensitivity to the nonadjacent dependencies, with a steeper ascent

Fig. 4. Comparison of group learning trajectories for SRN (squares) and human (circles) learners.
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from blocks 4 to 6. The simulated block scores further account for 78% of the variance in

human RT difference scores (p < 0.01).

As the analog to the human prediction task, in which SRNs received the same test-strings

with foil-pairings as the humans, we considered the network’s selection to be the nonword

corresponding to the unit with a higher Luce ratio (from among the two choices for an end-

ing). Prediction task accuracy as a proportion correct out of the 12 items was then computed

accordingly. The SRNs’ scores averaged 56.4% (SD = 13.4%), which was above chance-

level, t(29) = 2.61, p = 0.01. As seen in Fig. 5, the distribution of the networks’ prediction

scores were also not significantly different from that of humans’, t(58) = 1.025, p > 0.30.

Although the networks exhibited somewhat less variability, they captured the identical full

range of human performance from 25% to 100% accuracy. Thus, the SRN is able to closely

match human performance both across training in the AGL-SRT task as well as on the pre-

diction task. Given that this type of connectionist model has been used extensively to model

the processing of nonlocal dependencies in natural language (e.g., Christiansen & Chater,

1999; Christiansen & MacDonald, 2009; Elman, 1991; MacDonald & Christiansen, 2002),

we next explore whether the ability to predict correct nonadjacency relations in Experiment

1 is associated with the processing of long-distance dependencies in language.

4. Experiment 3: Individual differences in language processing and statistical learning

While Experiment 2 attests to the kind of computational mechanisms that may subserve

performance on the AGL-SRT and prediction tasks, the relevance of the new paradigm for

the processing of complex long-distance dependencies in natural language remains to be

probed. In the language literature, individual differences have been prominently studied

within the context of subject-object relative (OR) clause processing phenomena. Center-

embedded OR sentences (illustrated in 2) are generally more difficult to process and com-

prehend than subject relative sentences (SRs; such as 1), with the structural difference

A B

Fig. 5. Prediction task means for humans and networks (A) and corresponding score distributions of both groups

(B).
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between the two residing in how the embedded verb (attacked) relates to its object (but see

Reali & Christiansen, 2007). For ORs, the embedded verb enters into a nonadjacent depen-

dency with the nonlocal head-noun (reporter), whereas for SRs the embedded verb’s object

(senator) is situated more locally. The greater processing difficulty associated with ORs can

be construed as a reflection of changing, probabilistic expectations for the continuation of

the sentence as its temporarily indeterminate (and relative to SRs, less frequent and irregu-

lar) structure unfolds (Gennari & MacDonald, 2008).

1. The reporter that attacked the senator admitted the error.

2. The reporter that the senator attacked admitted the error.

The locus of this greater processing difficulty for ORs compared to SRs is evidenced at

the main verb, where reading times (RTs) for ORs are protracted. King and Just (1991) first

reported individual differences in the degree of comparative difficulty, which they linked to

verbal working memory differences on a reading span task. Interpretations of these findings,

however, have been in dispute between experience-based versus capacity-based accounts

(e.g., Just & Carpenter, 1992; MacDonald & Christiansen, 2002; see also Waters & Caplan,

1996).

While capacity-based views impute low-span individuals’ poorer processing of ORs to

limitations in memory resources, experience-based views emphasize exposure-related fac-

tors that shape linguistic expectations and modulate the processing difficulty that readers

encounter. In support of the latter approach, MacDonald and Christiansen (2002) conducted

SRN simulations whereby they qualitatively fit the SR ⁄ OR RT patterns attributed to low-

and high-span individuals as a function of the amount of relative clause exposure received

by their networks. In addition, a human training study by Wells, Christiansen, Race, Ache-

son, and MacDonald (2009) documented that increased experience in reading relative

clauses (compared to a control condition) altered participants’ RT profiles towards matching

those of ostensibly high-span individuals (and the aforementioned high-trained SRNs).

These studies imply a crucial role for statistical learning as a mediator of experience-

driven effects on shaping readers’ (probabilistic) expectations, thus facilitating subsequent

RTs for ORs. If implicit prediction-based processes, as tapped by statistical learning

mechanisms, are indeed important to such processing phenomena and sensitively reflected

in prediction-task scores from our AGL-SRT paradigm, then individual differences in

statistical predictive skills from Experiment 1 should systematically vary with differences in

relative clause processing. Experiment 3 thus empirically tests this hypothesis using a

within-subjects design.

4.1. Method

4.1.1. Participants
The last 20 participants in Experiment 1 were recruited to participate afterwards in this

experiment for additional credit. Data from four of these participants were excluded (one

for refusal to participate, and three due to equipment malfunction).
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4.1.2. Materials
SR ⁄ OR sentence pairs from Wells et al. (2009) were used to prepare two counterbal-

anced, experimental sentence lists. Each list contained 12 initial practice items, 40 experi-

mental items (20 SRs, 20 ORs), and 48 filler items. Semantic plausibility information for

subject ⁄ object nouns was controlled in the experimental sentences, with comprehension

questions (Yes ⁄ No format) following each sentence item.

4.1.3. Procedure
Participants were randomly assigned to an experimental list, which was presented using a

standard self-paced reading, moving-window paradigm (Just, Carpenter, & Woolley, 1982).

Sentence items were thus presented in random order, with both millisecond RTs for each

word and accuracy for each comprehension probe recorded.

4.2. Results

Raw RTs corresponding to practice items and those in excess of 2,500 ms (1.01% of

data) were excluded from analyses. RTs were length-adjusted by computing a regres-

sion equation for each participant based on the character-length of a word, and subtract-

ing observed RT values from predicted values (Ferreira & Clifton, 1986). Means from

these residual RTs were then calculated across subject- and object-relative clauses for

the same sentence regions that have been analyzed in prior related work (see, e.g.,

Wells et al., 2009). Consistent with past studies, greater processing difficulty for ORs

was reflected by substantially increased RTs at the main verb. Also in-line with prior

findings, overall comprehension rate was high (86.8%, SD = 8.1), with significantly

poorer accuracy observed for ORs (74.7%, SD = 19.0) than for SRs (85.6%, SD = 9.6),

t(15) = 2.66, p = 0.02.

To test our hypothesis about the involvement of statistical predictive skills in relative

clause processing, we correlated individuals’ prediction task scores from Experiment 1

with their length-adjusted RTs at the main verb of the relative clauses, with results illus-

trated in Fig. 6. For SRs, there was no significant association (r = )0.10, p = 0.72), as

expected, because experience has not been shown to be a factor for further facilitating

processing of this comparatively easier clause-type. For ORs, however, higher prediction

task scores were associated with lesser reading difficulty (r = )0.59, p = 0.02). More-

over, individual differences in prediction task scores were not predictive of RTs for any

other standard SR ⁄ OR sentence regions except, crucially, at the main verb of ORs—the

anticipated locus of observed processing difficulty. This pattern is additionally evidenced

and clearly reflected in the RTs of participants when subdivided into ‘‘high’’ and ‘‘low’’

groups based on prediction task scores (with chance-level performance of 50% as the

cutoff-level). As seen in Fig. 7, ‘‘low pred’’ participants (n = 9, M = 42.6%, SD = 8.8)

differed from ‘‘high pred’’ participants (n = 7, M = 73.8%, SD = 4.8) only for process-

ing at the critical OR main verb. The overall pattern of RTs for both SR and OR sen-

tences closely mirrors qualitatively the pattern of ‘‘high’’ versus ‘‘low’’ experience of

participants in Wells et al. (2009).
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These findings support the hypothesis that prediction-based processes tapped by

statistical learning mechanisms (as assessed through prediction-task performances in the

AGL-SRT paradigm) are substantially involved in individuals’ on-line natural language

processing. This conclusion is also corroborated by results from an individual-differences

study by Misyak and Christiansen (2007), in which both adjacent and nonadjacent statistical

learning performance was an even better predictor of sentence comprehension than verbal

working memory span scores. The current study thus expands on those findings by docu-

menting that differences in nonadjacent statistical learning vary systematically with the

on-line tracking of nonadjacent dependencies exemplified by OR sentences.

A B

Fig. 7. Length-adjusted reading times across sentence regions of subject-relatives (A) and object-relatives (B) in

Experiment 3 for participants with ‘‘low’’ (filled circles) and ‘‘high’’ (open circles) prediction task scores from

Experiment 1.

A B

Fig. 6. Length-adjusted reading times at the main verb of subject- (A) and object-relatives (B), plotted against

prediction task scores.
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5. Discussion

Nonadjacent dependency learning was investigated here across three interconnected

experiments, using results from a novel AGL-SRT paradigm. The new task investigated

individuals’ learning of nonadjacencies as it unfolded on-line. Individual differences in per-

formance on the statistical prediction task were shown to correlate with the processing of

complex, long-distance dependencies occurring in natural language, as well as to compel-

lingly appear to recruit upon the kind of associative-based learning principles exemplified

by SRNs.

But how does the individual variation in statistical learning manifest itself in our

AGL-SRT statistical learning task? Inspection of micro-level trajectories from Experi-

ment 1 for good and poor statistical learners (as measured by prediction task scores)

indicates distinct differences during nonadjacency learning. Thus, there are contrasts in

the shape of the statistical learning trajectory, final training performance, and the

response to ungrammatical items. In particular, the poor prediction-task performers do

not show evidence of learning until the very end of training, contributing to the strong

recovery effect on this block observable in Fig. 3. We expect that future work into

such individual differences in statistical learning will benefit from closer attention to

predictive processing as it unfolds over time, investigated using on-line methods such

as the AGL-SRT task used here.

In broader theoretical terms, our close modeling of human performance with SRNs

in Experiment 2 argues against the assumption that verbal working memory capacity

operates as a basic constraint for the human results in Experiments 1 and 3; it also

establishes a connection with the results from MacDonald and Christiansen (2002) in

terms of common mechanisms. Their simulations with SRNs predicted that increased

exposure to relative clause sentences should differentially affect ORs. Wells et al.

(2009) empirically confirmed those predictions and further hypothesized that statistical

learning may be centrally involved—but did not otherwise speak to what the underly-

ing mechanisms may be. The combination of results from the three experiments

reported here, however, directly supports Wells et al.’s hypothesis. In particular, not

only did individual differences in statistical prediction performance correlate uniquely

with on-line language processing measures at the key main verb region in OR sen-

tences, as would be expected on an experience-based account, but prediction perfor-

mance for high- and low-performing individuals on SR ⁄ OR processing also closely

conformed to the pattern obtained for participants measured to have high ⁄ low verbal

working memory spans in King and Just (1991), as well as those of the high ⁄ low

experience manipulations for SRNs and humans in MacDonald and Christiansen and

Wells et al., respectively. Together with previous findings that statistical learning

overall is a better predictor of sentence processing skills than verbal working memory

(Misyak & Christiansen, 2007), these results provide converging evidence for

statistical learning as a key contributing factor to individual differences in language,

and as a mechanism for producing sequential expectations for upcoming linguistic

material.
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Notes

1. As analyzed trials required accuracy for all three string-elements composing a string-

trial (rather than for single-selection responses defining one ‘‘trial’’ in standard SRT

designs), this criterion is quite conservative, and it may underestimate participants’

total accuracy across all single responses. For example, final-element selection accu-

racy across trial-types was 95.9% (2.4), 93.2% (6.5), and 94.2% (6.1).

2. Because the learning metric for humans subtracts final- from initial-element RTs (to

control for potential motor effects) whereas that for the SRNs uses only final-element

values, Y-axes are equalized with block 1 level performance as the baseline.
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