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Statistical Learning and Language:

An Individual Differences Study
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Although statistical learning and language have been assumed to be intertwined, this the-
oretical presupposition has rarely been tested empirically. The present study investigates
the relationship between statistical learning and language using a within-subject design
embedded in an individual-differences framework. Participants were administered sep-
arate statistical learning tasks involving adjacent and nonadjacent dependencies, along
with a language comprehension task and a battery of other measures assessing verbal
working memory, short-term memory, vocabulary, reading experience, cognitive mo-
tivation, and fluid intelligence. Strong interrelationships were found among statistical
learning, verbal working memory, and language comprehension. However, when the
effects of all other factors were controlled for, performance on the two statistical learn-
ing tasks was the only predictor for comprehending relevant types of natural language
sentences.
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differences; verbal working memory; memory span; fluid intelligence; lexical knowl-
edge; cognitive motivation

Introduction

Statistical learning has been proposed as centrally connected to language ac-
quisition and development. Succinctly defined as the discovery of structure
by way of statistical properties of the input, such learning has been theorized
to be robust and automatic and has been observed to be demonstrated across
a variety of both linguistic and nonlinguistic contexts, including speech seg-
mentation (Saffran, Aslin, & Newport, 1996), learning the orthographic and
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morphological regularities of written words (Pacton, Fayol, & Perruchet, 2005;
Pacton, Perruchet, Fayol, & Cleeremans, 2001), learning artificial phonotactic
patterns (Dell, Reed, Adams, & Meyer, 2000; Warker & Dell, 2006; Warker,
Dell, Whalen, & Gereg, 2008), forming phonetic categories (Maye, Weiss, &
Aslin, 2008; Maye, Werker, & Gerken, 2002), forming syntactic categories
(Gerken, Wilson, & Lewis, 2005; Gómez & Lakusta, 2004), segmenting hu-
man action sequences (Baldwin, Andersson, Saffran, & Meyer, 2008), visual
processing (Fiser & Aslin, 2002a, 2002b), visuomotor learning (Hunt & Aslin,
2001), tactile sequence learning (Conway & Christiansen, 2005), and non-
linguistic, auditory processing (Saffran, Johnson, Aslin, & Newport, 1999;
Tillmann & McAdams, 2004). However, important issues still surround the
general scope of statistical learning, especially with respect to how much of
complex language structure can be captured by this type of learning.

Statistical learning research has sometimes also been studied as “artificial
grammar learning” (AGL; Reber, 1967) or more broadly under the rubric of
“implicit learning” (see Perruchet & Pacton, 2006). Such work has shown that
infant and adult learners—upon brief and passive exposure to strings gen-
erated by an artificial grammar or continuous sequences of nonwords from
an artificial lexicon—can incidentally acquire and evince knowledge for the
predictive relations embedded within the stimuli (for reviews, see Gómez &
Gerken, 2000; Saffran, 2003). Further, stimuli used within this paradigm may
be devised so as to model structural properties specific to natural language,
instantiating dependencies that may be characterized as either “adjacent” or
“nonadjacent.” For example, Saffran (2001) documented adults’ and children’s
successes in incidentally learning a simplified artificial grammar that employed
predictive dependencies among adjacent form classes (e.g., D-E in the string
ADE, where each letter represents a form class defined by a set of elements).
Such relationships are characteristic of natural language, in which phrasal
units may be statistically signaled by dependencies between lexical members
(e.g., that determiners in English predict upcoming nouns). Similarly, Gómez
(2002) investigated adults’ and infants’ learning for an artificial grammar that
generated three-element strings in which initial and final items formed a non-
adjacent dependency pair (e.g., a-d of aXd). Informed by the observation that
certain elements in natural language belong to relatively small sets (function
morphemes like a, was, –s, and –ing), whereas others belong to very large
sets (open-class items such as nouns and verbs), Gómez manipulated the set
size (i.e., 2, 6, 12, or 24 elements) from which she drew the middle items
(X s), and found that participants were better able to detect the nonadjacent
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dependencies when the variability of the middle items was at its highest (i.e.,
set size 24).

Given these experimental paradigms, statistical learning appears to take
place using fundamentally similar computational principles and constraints
within different kinds of artificial language learning (phonological, lexical, and
syntactic), across concurrent levels (e.g., the simultaneous statistical learning
of lexical units and syntactic phrase structure; Saffran & Wilson, 2003), and
between levels (e.g., in facilitating the mapping of subsequent lexical meanings
to nonwords from a statistically segmented acoustic stream; Graf Estes, Evans,
Alibali, & Saffran, 2007; Mirman, Magnuson, Graf Estes, & Dixon, 2008).
Such evidence suggests that statistical learning mechanisms subserving the
discovery of syntactic structure need not be distinct from those subserving the
learning of nonsyntactic aspects of language such as phonology, lexicon, and
semantics. However, some empirical findings have pointed to a potential dis-
tinction between forms of statistical learning that involve sequentially adjacent
versus nonadjacent dependencies. Specifically, learning for these two types of
dependencies have been shown to differ in their macro-level developmental
trajectories and facilitative learning contexts. Within the statistical learning lit-
erature, sensitivity to nonadjacent conditional probabilities is documented later
in human infancy than the earliest behavioral demonstrations of sensitivity to
adjacent conditional probabilities (see Gómez & Maye, 2005, contra Saffran
et al., 1996). Additionally, compared to tracking adjacent relations, most human
learners generally have a harder time tracking nonadjacent dependencies (e.g.,
Cleeremans & McClelland, 1991; Newport & Aslin, 2004) and require more
facilitative contexts to do so successfully, such as conditions that manipulate the
variability of interposed items and/or exploit perceptual similarity cues (e.g.,
Gebhart, Newport, & Aslin, 2009; Gómez, 2002; Onnis, Christiansen, Chater,
& Gómez, 2003).

This contrast between adjacent/nonadjacent statistical learning can also be
seen in how researchers have typically designed studies that isolate learning
for either adjacent or nonadjacent dependencies. Accordingly, the instantia-
tion of statistical regularities among adjacent or nonadjacent stimulus tokens
in these artificial grammar tasks often aims to mirror respectively the kinds
of local or long-distance relations among phonemic, lexical, and phrasal con-
stituents that individuals process in natural language. Skill in discerning both
types of artificial dependencies would therefore appear relevant for many as-
pects of language learning, such as segmenting words and identifying phrasal
boundaries (adjacent relationships) and properly inflecting morphemes and
processing embeddings (nonadjacent relationships). Yet, it is unknown if these
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two manifestations of statistical learning are separable skills within individuals
rather than denoting differing aspects of the same ability. More generally, it also
remains to be fully evidenced whether and to what extent statistical learning
and natural language are subserved by the same underlying mechanism(s).

The present experiment therefore employs an individual-differences frame-
work to explore the hypothesis that statistical learning and language are
integrally interrelated. The aim is to document the nature of empirical in-
terrelationships among learner differences, informed by the observation that
individual differences are substantive and ubiquitous across language. To the
extent that statistical learning and language are subserved by the same underly-
ing mechanism(s), differences in language should systematically relate to and
be informative of differences in statistical learning.

Next, we briefly review findings relevant to differences in statistical learn-
ing, and then discuss the individual-difference factors of specific interest in this
study.

Individual Differences in Statistical Learning
To date, findings across the statistical learning and language literatures suggest
that the probabilistic knowledge resulting from statistical, implicit learning
processes may substantially underpin learners’ acquisition of language (e.g.,
for a review concerning first-language [L1] development, see Gómez, 2007;
for a review that relates such effects to second-language [L2] acquisition, see
N. Ellis, 2002). Whereas individual differences in language (both L1 and L2
learning/processing) have received some attention to date (for some overviews,
see Bates, Dale, & Tal, 1995; Dörnyei, 2005; R. Ellis, 2004; Farmer, Misyak,
& Christiansen, in press; MacDonald & Christiansen, 2002; Michael & Gollan,
2005; Vasilyeva, Waterfall, & Huttenlocher, 2008), less is known about indi-
vidual differences in statistical learning within the normal population. Most
evidence suggesting the presence of systematic variation in statistical learn-
ing pertains to developmental differences, atypical populations, or from studies
using putative dissociations in performance between implicit and explicit learn-
ing tasks to investigate Reber’s predictions (e.g., see Reber, 1993) for implicit
learning as IQ-independent and age-invariant.

Thus, although seemingly present throughout development, Saffran (2001)
observed consistent performance dissimilarities between children and adults
in one of her artificial language studies. Additionally, Arciuli and Simpson
(in press) have reported improvements in statistical learning performance as
a function of increasing age in years (from 5 to 12) within typically devel-
oping children. Further, within atypical populations, performance differences
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on AGL or statistical learning tasks have been documented for individuals
with language-related impairments: agrammatic aphasia (Christiansen, Kelly,
Shillcock, & Greenfield, 2010), developmental dyslexia (Pothos & Kirk, 2004;
although see counterclaims by Kelly, Griffiths, & Frith, 2002), specific lan-
guage impairment (Evans, Saffran, & Robe-Torres, 2009; Hsu, Tomblin, &
Christiansen, 2009), language/learning-disabled adults (Grunow, Spaulding,
Gómez, & Plante, 2006; Plante, Gómez, & Gerken, 2002), and Williams syn-
drome children and adults (albeit not after factoring group differences in work-
ing memory or nonverbal intelligence; Don, Schellenberg, Reber, DiGirolamo,
& Wang, 2003).

Finally, within the normal population, some differences in AGL have been
explored in relationship to psychometric intelligence. Accordingly, Reber,
Walkenfeld, and Hernstadt (1991) claimed that AGL was unrelated to intel-
ligence, as they did not detect a significant association within their study be-
tween AGL and IQ scores from the Wechsler Adult Intelligence Scale-Revised
(WAIS-R; Wechsler, 1981), nor did McGeorge, Crawford, & Kelly (1997).
However, Robinson (2005) reported a negative association between WAIS-R
IQ and AGL scores in a group of experienced L2 learners. Conversely, other
studies (Brooks, Kempe, & Sionov, 2006; Kempe & Brooks, 2008; Kempe,
Brooks, & Kharkhurin, 2010) showed that Culture Fair Intelligence Test (CFIT;
Cattell, 1971) scores mediated successful learning on miniature L2 learning
tasks bearing resemblance in their design and learning demands to those in-
voked by traditional AGL tasks.

Therefore, although these few studies have looked at individual differences
in statistical learning (sometimes with equivocal outcomes), they have not di-
rectly sought to link such differences to variations in language abilities within
the normal adult population. Finding correlations between individual differ-
ences in statistical learning and language is crucial to determining whether the
two may overlap in terms of their underlying mechanisms. We thus set out to
explore such associations in a comprehensive study of statistical learning and
language differences using a within-subject design.

Overview of Study Measures
To determine the potential role of different types of statistical learning, we
used two standard artificial grammars to isolate the learning of adjacent and
nonadjacent information within individuals. We then studied differences on
these tasks in relation to differences in comprehending sentences whose pri-
mary manipulation entails the tracking of adjacent and/or nonadjacent natu-
ral language dependencies. As the statistical learning of adjacencies and the
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processing of local language dependencies both require sensitivity to adja-
cent sequential information, we expected that measures tapping into both of
these should be more strongly interrelated than potential associations obtaining
between adjacent statistical learning and the comprehension of long-distance
natural language structures—and, analogously, similar expectations hold for
the sensitivity to nonadjacent sequential information entailed by the statistical
learning of nonadjacencies and the processing of long-distance language de-
pendencies. Thus, the inclusion of both aspects of statistical learning allowed
us to probe for any differential associations with our language measures, under
the assumption that sensitivity to such dependencies is an integral component
of language comprehension.

We also included in our study other potential contributing factors to vari-
ation across language and statistical learning. These measures were intended
to assess differences in memory-related factors (verbal working memory and
short-term memory), broad language-relevant variables (lexical knowledge and
print exposure), and nonverbal abilities/aptitudes (fluid intelligence and cog-
nitive motivation). Memory-related factors have become arguably the most
studied individual-differences cognitive factors in the language processing lit-
erature and so we included them here. Verbal working memory (vWM) in
particular, as conventionally gauged by reading span tasks, has been correlated
with native language comprehension abilities across various experiments (for
a review, see MacDonald & Christiansen, 2002). It has also begun to be ex-
tensively researched in the L2 learning literature, with studies supporting an
association between L2 reading span and L2 reading skill proficiency (e.g.,
Harrington & Sawyer, 1992), albeit not with online processing for L2 garden-
path sentences in preliminary analyses (Juffs, 2004). Research has also im-
plicated a role for phonological short-term memory differences in L1 word
learning and lexical knowledge (Baddeley, Gathercole, & Pagano, 1998) as
well as in L2 acquisition (N. Ellis, 1996).

Regarding broad language-relevant variables, lexical knowledge (vocabu-
lary) is a significant contributor to reading comprehension abilities in adoles-
cents and adults (Baddeley, Logie, Nimmo-Smith, & Brereton, 1985; Braze,
Tabor, Shankweiler, & Mencl, 2007), making it a relevant variable to account
for in our study of college-aged participants. Print exposure, in turn, has been
reported to be a significant predictor of lexical knowledge, even after control-
ling for working memory, age, and education differences (Stanovich, West,
& Harrison, 1995; West, Stanovich, & Mitchell, 1993). More generally, print
exposure and lexical knowledge can be considered substantial correlates for
individuals’ amount of reading experience, which may be logically expected to
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contribute to differences in reading skill. The inclusion of these two measures
is therefore of potential importance in assessing the specific contribution of
differences in statistical learning skills to language comprehension variance in
our sample.

Finally, we incorporated two nonverbal variables in our design: fluid in-
telligence and cognitive motivation. Although it has been suggested that AGL
is largely independent of intelligence (e.g., Reber, 1993), measures of fluid
intelligence, using a nonverbal test of IQ, have been found to significantly pre-
dict individual differences on miniature L2 learning tasks (e.g., Brooks et al.,
2006). We therefore included a nonverbal, fluid intelligence measure to test for
an association with statistical learning performance in our tasks and to factor
this variable out, as necessary, if it correlated with our statistical learning and
language measures. Similarly, as motivational differences in our participants’
eagerness to be engaged in demanding cognitive tasks (such as the ones em-
ployed throughout this experiment) may be a common underlying factor cutting
across many of these measures, we measured cognitive motivation to control
for this possibility.

Method

Participants and Materials
Thirty monolingual, native English speakers from the Cornell undergraduate
population (23 women and 7 men; M = 19.9 years, SD = 1.4, range = 18–
23) participated for course credit or money. To study the relationship between
individual differences in statistical learning and language, we administered a
test battery assessing two types of statistical learning, language comprehension,
lexical knowledge, reading experience, vWM, short-term memory (STM) span,
fluid intelligence (IQ), and cognitive motivation. (A summary of the tasks and
measures is given in Table 1.)

Statistical Learning
Two statistical learning tasks, each implementing one of two types of artificial
grammars, involving either adjacent or nonadjacent dependencies were con-
ducted. We employed these two types of statistical learning given the possible
distinction between these forms suggested by findings and approaches in the
literature (see the Introduction). These types of statistical dependencies also
have clear parallels within natural language structure, as sensitivity to adja-
cent dependencies is important for the discovery of the relationship between
words within phrases and between the phrases themselves (e.g., Saffran, 2001),
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whereas sensitivity to nonadjacent relationships between constituents is im-
portant for embeddings and long-distance dependencies (e.g., Gómez, 2002).
Moreover, it has recently been suggested that different brain systems may be
involved in the learning of adjacent and nonadjacent dependencies, with only
the latter relevant for language (Friederici, Bahlmann, Heim, Schubotz, &
Anwander, 2006).

The auditory stimuli and design structure for the statistical learning tasks
were typical of those successfully used in the literature to assess statistical
learning (e.g., Gómez, 2002). In particular, stimuli strings were constructed by
combining individual nonword tokens recorded from a trained female, native
English speaker. Assignment of particular tokens (e.g., pel) to particular stim-
ulus variables (e.g., the c in cXf for the nonadjacent statistical learning task,
see further below) was randomized for each participant to avoid learning biases
due to specific sound properties of words. Nonwords were presented with a
250-ms interstimulus interval (ISI) within strings and a 1,000-ms ISI between
strings.

For both tasks, training lasted about 25 min and was followed by a 40-item
test phase. Prior to training, participants were informed that they should pay
attention to the auditory sequences because they would later be tested on them,
but no allusion was made to the existence of any regularities or patterns. After
training, participants were informed that the sequences they just heard had
been generated according to rules specifying the ordering of the nonwords.
They then completed a two alternative forced choice (2AFC) test in which
they were requested to discriminate grammatical strings from ungrammatical
ones, with the encouragement to use “gut instinct” and impressions of familiar-
ity/unfamiliarity to guide their judgments. Test-item pairs were presented within
two blocks that counterbalanced the presentation order of grammatical and un-
grammatical string versions. Half of the test pairs contained novel components
that required the participant to be able to generalize the appropriate regularities
to new material. These consisted of novel strings for the adjacent statistical
learning task and familiar dependency pairs with novel middle elements for the
nonadjacent statistical learning task. The other half of test pairs required the
participant to recognize previously heard material. These involved the exact
strings presented during training. Ungrammatical strings for all test-pair items
differed from grammatical ones by only one element.

For the adjacent statistical learning task, the grammar was adapted with
minor modification from Friederici, Steinhauer, and Pfeifer (2002) and con-
tained adjacent dependencies occurring both within and between phrases
(see Figure 1, left). Regarding phrase internal dependencies, a D constituent
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Figure 1 The two artificial grammars used to assess statistical learning of adjacent
(left) and nonadjacent (right) dependencies.

always perfectly predicted and occurred prior to an A constituent, whereas an
E constituent always directly preceded a C constituent that, in turn, occurred
before an A constituent (i.e., E C A). Between-phrase dependencies resulted
from every B phrase (BP) being consistently preceded by an A phrase (AP) and
optionally followed by another AP. The language was instantiated through 10
distinct nonword tokens (biv, dupp, hep, jux, lum, meep, rauk, sig, tam, zoet)
distributed over these lexical categories such that there were three A members,
three B members, two C members, one D member, and one E member. From
a set of 270 unique strings belonging to the grammar, a subset of 60 was se-
lected as training material common to all participants and was presented in
three blocks. Ungrammatical strings were produced by replacing a nonword
in the string with another from a different category. For instance, if the gram-
matical string involved the following sequence of category constituents, D A
B D A, a violation could entail a replacement of the second D with an A,
yielding the ungrammatical string, ∗D A B A A (e.g., “jux hep lum jux biv” vs.
“jux hep lum hep biv”). The position of the ungrammaticality was distributed
equally across categories with the exception that no violations occurred at the
first or last nonword of a string (because such violations are easy to detect;
Knowlton & Squire, 1996). Although strings were constructed by selecting
nonwords from categories, it is important to point out that participants were ex-
posed to all possible adjacent dependencies during familiarization. Therefore,
significant discrimination by participants would reflect knowledge of adjacent
structure.

Regarding nonadjacent dependencies, the ability to track relationships
among remote dependencies is a fundamental linguistic ability. Previous work
has shown that the statistical learning of nonadjacent dependencies is facilitated
in infants and adults when there is high variability in the material that comes
between the dependent elements (Gómez, 2002; Gómez & Maye, 2005; Onnis
et al., 2003; Onnis, Monaghan, Christiansen, & Chater, 2004). We capital-
ized on this by only exposing learners to a nonadjacent dependency language
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incorporating high variability. Thus, for the nonadjacent statistical learning
task, the grammar conformed to that of Gómez’s (2002) high-variability lan-
guage and consisted of three sets of dependency pairs (i.e., a-d, b-e, c-f ), each
separated by a middle X element (see Figure 1, right). The string-initial (a, b, c)
and string-final (d, e, f ) elements that comprise the nonadjacent pairings were
instantiated with monosyllabic nonwords (dak, pel, vot; jic, rud and tood). The
intervening X s were drawn from 24 distinct disyllabic nonwords (balip, benez,
chila, coomo, deecha, feenam, fengle, gensim, gople, hiftam, kicey, laeljeen,
loga, malsig, nilbo, plizet, puser, roosa, skiger, suleb, taspu, vamey, wadim,
and wolash). All 72 unique sentences generated from this grammar were pre-
sented through six blocks of training. Ungrammatical strings were produced
by disrupting the nonadjacency relationship with an incorrect element, thus
producing strings of the form ∗aXe, ∗bXf , and ∗cXd.

Language Comprehension
Significant differences can be found in healthy adults’ ability to process sen-
tences (see, e.g., Farmer et al., in press, for a review). We used a self-paced
reading task to investigate the degree to which individual differences in lan-
guage comprehension are associated with individual differences in statistical
learning performance. Sentences were presented individually on a monitor us-
ing a standard word-by-word, moving window paradigm (cf. Just, Carpenter,
& Woolley, 1982) and followed by “yes/no” questions probing for compre-
hension accuracy. Although reading times were recorded, the measures of in-
terest for our analyses were the comprehension scores that served as offline
correlates of language ability.1 The sentence material consisted of sentences
drawn from three different prior studies of various aspects of language pro-
cessing (see Table 2) and chosen for this study because they entail the tracking
of adjacent and/or nonadjacent dependencies in natural language. Thus, the
sentence set involving clauses with animate/inanimate noun constructions (ab-
breviated herein as A/IN; Trueswell, Tanenhaus, & Garnsey, 1994) contained
both adjacent dependencies—that is, between the animate or inanimate main
clause object-noun and its modifying relative clause (e.g., defendant/evidence
[. . .]RC), as well as nonadjacent dependencies holding across the relative clause,
between the object-noun and the main verb (e.g., defendant/evidence [. . .]RC

turned). The sentence set involving noun/verb homonyms with phonologically
typical or atypical noun/verb resolutions (abbreviated herein as PT; Farmer,
Christiansen, & Monaghan, 2006) required tracking adjacent relations between
the sentence’s ambiguous homonym and the material that immediately follows
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Table 2 The three language comprehension sets, with corresponding examples for each
version of a given target sentence

Subject-Object Relative Clauses (S/OR)
Subject relative:

The reporter that attacked the senator admitted the error.

Object relative:

The reporter that the senator attacked admitted the error.

Animate-Inanimate Noun Clauses (A/IN)
Animate reduced/[unreduced]:

The defendant [who was] examined by the lawyer turned out to be unreliable.

Inanimate reduced/[unreduced]:

The evidence [that was] examined by the lawyer turned out to be unreliable.

Ambiguities involving Phonological Typicality (PT)
Noun-like homonym with noun/verb resolution:

Chris and Ben are glad that the bird perches [seem easy to install]/[comfortably in the cage].

Verb-like homonym with noun/verb resolution:

The teacher told the principal that the student needs [were not being met]/[to be more focused].

it and locally resolves the ambiguity (e.g., bird percheshomonym seemverb vs. bird
percheshomonym comfortablyadverb). The sentence set with subject-object relative
clauses (abbreviated herein as S/OR; Wells, Christiansen, Race, Acheson, &
MacDonald, 2009) required tracking both complex nonadjacent relationships
(e.g., between the head-noun and the matrix verb across the embedded clause;
reporter [. . .]RC admitted) and relatively simpler, more adjacent relationships
(e.g., between the embedded noun and embedded verb; senator attacked). Four
sentence lists were prepared, each incorporating 12 initial practice items, 40
sentences with subject-object relative clauses (S/OR), 28 sentences involving
clauses with animate/inanimate noun constructions (A/IN), and 20 sentences in-
volving noun/verb homonyms with phonologically typical or atypical noun/verb
resolutions (PT). Sentence versions for each target sentence were counterbal-
anced across the four lists and presented in random order. A comprehension
question was presented after each sentence. For example, after reading the last
word of the sentence “The defendant examined by the lawyer turned out to be
unreliable,” the participant would press a “GO” key, which would present a
new screen display with the question “Did the lawyer question the defendant?”
After recording their response to the question by pressing either the “yes” or
“no” key, participants would receive a new sentence and subsequent compre-
hension probe. Each participant was randomly assigned to a sentence list, and
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their comprehension accuracy was computed for each set of materials: S/OR,
A/IN, and PT.

Lexical Knowledge
As a broad index of language skill spanning across our participants, the Shipley
Institute of Living Scale (SILS) Vocabulary Subtest (Zachary, 1994), a stan-
dardized measure based on nationally representative norms, was used to assess
lexical knowledge, or vocabulary. It is a paper-and-pencil measure consisting
of 40 multiple-choice items in which the participant is instructed to select from
among four choices the best synonym for a target word. Participants had to
complete the task within 10 min.

Reading Experience
Measures of print exposure, as intended indicators of reading experience, have
been found to be a significant predictor of individual differences relevant
to sentence comprehension, such as vocabulary and orthographic processing
(Stanovich & West, 1989; Stanovich et al., 1995). We thus used the Author
Recognition Test (ART; Stanovich & West, 1989) as a traditional proxy mea-
sure of relative reading experience to assess the extent to which this may
account for variance in our participants’ language comprehension scores. The
questionnaire required participants to check off the names of popular authors
on a list. The names belonging to popular writers were chosen from a variety
of print media and genres, avoiding standard school curriculum authors. The
list was updated from its original form and included 40 actual authors and 40
foils. Two effort probes (the names Edgar Allen Poe and Stephen King) were
also included within the list to check for attentiveness in completing the ques-
tionnaire, as these are author names that should be recognized by contemporary
monolingual students attending an American college or university.

Verbal Working Memory
Differences in vWM have been associated with individual variations in sentence
processing abilities (see MacDonald & Christiansen, 2002, for a review). To
determine the degree to which performance on our statistical learning tasks
can explain variations in sentence processing skill over and above individual
differences in vWM, we used the Waters and Caplan (1996) reading span task as
an assessment of our participants’ vWM.2 Participants formed yes/no semantic
plausibility judgments for sets of sentences, presented one by one. At the end of
a set, participants had to recall all sentence-final words in that set. The number
of sentences in each set increased incrementally from two to six, with three
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trials at each level. Reading span was defined as the maximum level at which a
participant correctly recalled all sentence-final words in two out of three trials,
with no more than one failed trial at each of the preceding levels and with half
of a point added if one trial had been correct at the next highest level.

Short-Term Memory Span
Whereas the above-mentioned span task is designed to measure vWM relevant
for language processing, we also included an auditory Forward Digit Span
(FDS) task, derived from the standardized WAIS-R subtest (Wechsler, 1981),
to measure rote memory span. Among psychometric measures of individual
differences in verbal short-term memory, the auditory digit span is the most
widely used in the literature (Baddeley et al., 1998). A recording played a
sequence of digits spoken in monotone at 1-s intervals. A standard tone after
each sequence cued the participant to repeat out loud the digits they had heard
in their proper order. Sequences progressed in length from two to nine digits,
with two distinct sequences given for each level. Similar to WAIS-R scoring
procedures, the dependent measure was the number of correctly recalled trials
prior to failure on two consecutive trials.

Fluid Intelligence
General intelligence is another factor that has been suggested to affect indi-
vidual differences in language and cognition (e.g., Dionne, Dale, Boivin, &
Plomin, 2003). Moreover, Brooks et al. (2006) recently found that scores from
the Culture Fair Intelligence Test predicted successful learning on an artificial
language learning task in many ways similar to our statistical learning tasks.
We therefore included this IQ test as a measure of individual differences in
intelligence. We used Scale 3, Form A of the CFIT (Cattell, 1971), which is
a nonverbal test of fluid intelligence or Spearman’s (1927) g. The test con-
tained four individually timed subsections (Series, Classification, Matrices,
Typology), each with multiple-choice problems progressing in difficulty and
incorporating a particular aspect of visuospatial reasoning. Raw scores on each
subtest were summed together to form a composite score, which may also be
converted into a standardized IQ.

Cognitive Motivation
As there may be differences across our participants in their cognitive motivation,
we gauged such differences using the Need for Cognition (NFC) Questionnaire
(Cacioppo & Petty, 1982) and intended to factor these out in our analyses. The
NFC questionnaire provided a scaled quantification of participants’ predisposi-
tion to engage in and enjoy effortful cognitive activities. Participants indicated
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the extent of their agreement/disagreement to 34 particular statements (e.g., “I
prefer life to be filled with puzzles that I must solve”). We planned to exam-
ine how this measure correlates with language and statistical learning and to
incorporate it as a covariate if necessary.

Procedure
Participants were individually administered the tasks during two sessions con-
ducted on separate days (within a span of 2–9 days apart; mean interval =
5.2 days, SD = 2.0). For each participant, one of the two statistical learning
tasks was randomly assigned for the beginning of the first session, and the other
was given at the start of the second session. The remaining tasks were divided
into two sets with fixed order. Set A consisted of the self-paced reading task,
followed by the SILS vocabulary assessment, the NFC, and then the FDS; Set B
consisted of the CFIT, the vWM span task, and then the ART. Each participant
was randomly assigned one of these sets (A or B) for the first session, with the
other set administered during the second session.

Results

The means, standard deviations, and range for all measures are provided in
Table 1. Average performance on the two statistical learning tasks—62.1%
(SD = 14.3%) and 69.2% (SD = 24.7%) for adjacent and nonadjacent ma-
terials,3 respectively—was significantly above chance-level classification and
indicative of learning at the group level; t(29) = 4.63, p < .0001 for the adjacent
statistical learning task and t(29) = 4.26, p = .0002 for the nonadjacent statis-
tical learning task. Each of the statistical learning tasks contained a balanced
number of generalization and recognition test items (incorporating “novel” and
“familiar” components respectively, as detailed under the Methods section).
The average gain in accuracy for generalization items compared to recognition
items was 1.2% (SE = 2.3) for the adjacent statistical learning task [matched
pairs t test: t(29) = 0.51, p = .61] and was –0.8% (SE = 2.0) for the nonadja-
cent statistical learning task [matched pairs t test: t(29) = 0.39, p = .70]. As
participants did not significantly differ in their performances on generalization
and recognition tests, we collapse across these tests in subsequent analyses.
Due to the experiment design, some participants received the adjacent statis-
tical learning task during their first session (n = 18), whereas others received
the nonadjacent statistical learning task first (n = 12). However, there was no
main effect of statistical learning task order on participants’ statistical learning
scores, F(1,28) < 1, p = .64.
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Figure 2 Participants’ accuracy scores for the adjacent statistical learning (SL) task
(x-axis) plotted against their accuracy scores for the nonadjacent SL task (y-axis).

The first objective in our analyses was to determine the relation between
adjacent and nonadjacent dependency learning. Based on whether these cor-
related significantly, we intended to conduct either partial correlation analyses
(in the affirmative case) or standard bivariate analyses (if no correlation was
obtained). Using as our central language measures the three language scores
derived from the self-paced reading task (i.e., comprehension subscores, dif-
ferentiated by sentence-type),4 we planned to explore significant correlations
found between the three language measures and each of the two statistical
learning measures as well as the other individual difference factors, when the
effects of all measures other than a given predictor were held constant. We
found no correlation between the two statistical learning tasks (r = .14, p =
.45), as shown in Figure 2. We then computed the correlations between all task
measures, as shown in Table 3. Regarding statistical learning, adjacent depen-
dency learning (Adj-statistical learning) was positively associated with com-
prehension for the sentence set involving phonological-typicality ambiguities
(PT comprehension), comprehension for the sentence set involving subject-
object relative clauses (S/OR comprehension), vWM, and FDS; nonadjacent
dependency learning (Nonadj-statistical learning) was positively associated
with comprehension for the sentence set involving animate-inanimate noun
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Table 3 Intercorrelations between task measures

Statistical learning
Lang.

comprehension Other lang./cognition factors

Adjacent Nonadj. A/IN PT S/OR SILS ART vWM FDS CFIT

NA-SL .14
A/IN −.02 .41∗

PT .49∗∗ .12 .18
S/OR .39∗ .42∗ .11 .46∗

SILS .05 .26 .28 .33 −.07
ART −.17 .16 .37∗ .14 −.05 .33†

vWM .46∗ .53∗∗ .37∗ .40∗ .39∗ .35† .22
FDS .40∗ .13 .02 .32† .33† .11 −.20 .36†

CFIT .23 .19 .20 .02 .01 .21 .07 .28 .16
NFC .22 .15 .33† .32† .03 .34† .20 .27 .03 −.08

Note. NA-SL = Nonadj. = nonadjacent statistical learning, A/IN = animate/inanimate
noun clauses, PT = ambiguities involving phonological typicality, S/OR = subject-
object relative clauses, SILS = Shipley Institute of Living Scale, ART = Author Recog-
nition Test, vWM = verbal working memory, FDS = Forward Digit Span, CFIT =
Culture Fair Intelligence Test, NFC = Need for Cognition.
†p < .09.
∗p < .05.
∗∗p < .01 (two-tailed, n = 30).

clauses (A/IN comprehension), S/OR comprehension, and vWM. As can be
seen in Table 3, all statistically significant correlations were of medium size,
ranging between .39 and .53.

For the language-processing measures, A/IN comprehension—in addi-
tion to the positive correlation with nonadjacent statistical learning noted
earlier—correlated with ART and vWM. PT comprehension, as well as cor-
relating with adjacent statistical learning (see above), was further positively
associated with S/OR comprehension and vWM. S/OR comprehension—in
addition to correlating with adjacent statistical learning, nonadjacent sta-
tistical learning, and PT comprehension—correlated with vWM. Note then
that there was considerable overlap in the language correlations obtained
between (and among) adjacent statistical learning, nonadjacent statistical
learning, and vWM. Additionally, the specific pattern of intercorrelations
between statistical learning and vWM/STM indicate that adjacent statis-
tical learning is relatively strongly associated with both vWM and STM
performance (r = .46 and .40, respectively). The vWM measure is also
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Table 4 Intercorrelations between language comprehension measures (left column) and
statistical learning and memory-span measures (top row)

Adj.-SL NA-SL vWM FDS

A/IN −.02 .41∗ .37∗ .02
PT .49∗∗ .12 .40∗ .32†

S/OR .39∗ .42∗ .39∗ .33†

Note. Adj.-SL = adjacent statistical learning, NA-SL = nonadjacent statistical learning,
vWM = verbal working memory, FDS = Forward Digit Span, A/IN = animate/inanimate
noun clauses, PT = ambiguities involving phonological typicality, S/OR = subject-
object relative clauses.
†p < .09.
∗p < .05.
∗∗p < .01 (two-tailed, n = 30).

correlated substantially with nonadjacency learning (r = .53), whereas STM
performance only has a very weak correlation with such statistical learning
(r = .13, p > .09). Thus, the kind of learning and memory skills involved in
the vWM task may be more closely related to the learning of nonadjacencies
than adjacencies. In contrast, the STM measure may be more closely associated
with mechanisms subserving the learning of adjacent dependencies.

To ease direct comparisons between the statistical learning and memory-
related measures, their intercorrelations from Table 3 are transcribed more
compactly in Table 4. As evident in Table 4, vWM is well correlated with lan-
guage performance in general, whereas each type of statistical learning appears
to be associated more specifically with a subset of the sentence structures (as
examined further in the next set of analyses).

To determine how well each measure predicted language comprehension,
when controlling for all other predictors, we obtained the regression coefficient
values of our individual-differences variables for each dependent language
measure (Table 5). For A/IN, none of the predictors reached significance. For
PT, however, Adj-statistical learning (but none of the other variables) showed a
strong positive relationship to language comprehension when all other factors
were held constant (β = .42, p < .05, one-tailed t test). For S/OR, only Nonadj-
statistical learning was strongly related to language comprehension (β = .38,
p < .05, one-tailed t test).5 Notably, the regression coefficients for vWM were
weaker (i.e., .18 or less) and much farther from reaching significance (all ps >

.24). In each case then, when controlling for the effect of all other predictors,
the only predictor that makes a significant and substantial contribution to the
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Table 5 Regression coefficients of predictor variables for each of the dependent lan-
guage comprehension measures

Statistical learning Other predictors

Adjacent Nonadjacent SILS ART vWM FDS CFIT NFC

A/IN −.20 .25 −.03 .20 .18 .01 .16 .27
PT .42∗ −.08 .24 .14 .12 .15 −.18 .07
S/OR .28 .38∗ −.20 .04 .13 .18 −.17 −.09

Note. A/IN = animate/inanimate noun clauses, PT = ambiguities involving phonological
typicality, S/OR = subject-object relative clauses, SILS = Shipley Institute of Living
Scale, ART = Author Recognition Test, vWM = verbal working memory, FDS =
Forward Digit Span, CFIT = Culture Fair Intelligence Test, NFC = Need for Cognition.
∗p < .05 (one-tailed, n = 30).

PT and S/OR language-processing measures was either of the two statistical
learning measures.

Finally, we note that any comparisons between statistical learning and
vWM/STM measures are clearly limited by the tasks used to assess them.
If the tasks used to assess a construct are poorer than those used to assess
the comparative construct(s), then the beta weights for the former predictor in
regression analyses could be misleadingly attenuated in relation to the others.
In principle, this could be true for vWM, although we used an established read-
ing span task with high internal consistency and reliability (Waters & Caplan,
1996). In principle, this caveat is also applicable to our statistical learning mea-
sures; specifically in that regard, our nonadjacency task may have been prone to
a ceiling effect (see Figure 2), which may have limited upper range variability
in our sample and potentially reduced what would otherwise have been an even
larger beta value.

Discussion

Only a few prior statistical learning studies have reported quantitative differ-
ences in performance across participants. First, with regard to adjacent sta-
tistical learning, adults performed within the range of 41–83% accuracy in
the test phase of a linguistic segmentation task studied by Saffran, Newport,
Aslin, Tunick, and Barrueco (1997; as reported in Evans et al., 2009). A similar
range is evident upon inspection of the figures in Saffran et al. (1999), wherein
the average lower bound for adult performance on nonlinguistic segmentation
tasks is approximately 49% and the average upper bound is approximately
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89%. The lowest and highest performances respectively across the multiple
studies in Saffran et al. (1999) appear to be 33% and 97%. Although our ad-
jacent statistical learning task involves learning an artificial grammar rather
than an artificial lexicon, these observations are nonetheless consistent with
our reported performance range from 40% to 97.5%.

Secondarily, with regard to our study’s nonadjacent statistical learning
task, which replicates the design of Gómez’s (2002) high-variability condi-
tion, Gómez had noted that two thirds of learners in this condition showed
perfect discrimination on a grammaticality-endorsement test measure. Analo-
gously, we also observed perfect to near-ceiling (≥95%) performances by 11
learners in this study. Although this is proportionally less than that reported by
Gómez, mean performance in the original high-variability condition was also
substantially higher, at 90% accuracy, than in subsequent replications for which
average performance is comparable to the more modest level reported herein
(see Van den Bos, Misyak, & Christiansen, 2010). Thus, although there are few
documented details regarding statistical learning variation in normal adults, the
variance captured by our tasks generally accords with what is known within the
standard literature. This study is among the first to methodically record such
information, and we encourage future researchers to include such information
in their reported results.

Although it has been traditionally assumed that statistical learning pro-
cesses (as commonly studied here, using AGL tasks) are largely invariant
across individuals (e.g., Reber, 1993), our findings instead documented sys-
tematic variability in statistical learning performance within the normal adult
population. This coincides not only with a recently emerging recognition that
individual differences may exist, as even conceded in Reber and Allen (2000),
but also with the development of newer paradigms intended to specifically tap
into such differences (e.g., Karpicke & Pisoni, 2004; Misyak, Christiansen, &
Tomblin, 2010b). As an initial investigation into these differences using a com-
prehensive within-subject design, our results indicated that statistical learning
scores are substantially and reliably interrelated with vWM and language com-
prehension. Moreover, when controlling for the effects of all other predictors
in the regression analyses, statistical learning ability, rather than vWM, was
the only predictor of comprehension accuracy for two of the main types of
sentence materials. Following MacDonald and Christiansen (2002; see also
Wells et al., 2009), these results are consistent with the likely role of vWM as
another index of processing skill for language comprehension and statistical
learning, rather than a functionally separate capacity or mechanism. Indeed, dif-
ferences in statistical learning have been recently shown to capture key online
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language-processing patterns previously attributed to vWM differences
(Misyak et al., 2010a).

Furthermore, the specific pattern of correlations between statistical learn-
ing measures and language comprehension subscores suggests that individual
differences in detecting adjacent and nonadjacent dependencies may map onto
variations in corresponding skills relevant to processing similar kinds of depen-
dencies as they occur in natural language. Thus, comprehending subject-object
relative constructions in the S/OR material entails tracking long-distance re-
lationships spanning across lexical constituents (e.g., relating the object of an
embedded clause to the subject and main verb of the sentence). Analogously,
the processing of items in the PT set relies upon sensitivity to adjacent informa-
tion, in which the ambiguous homonym is disambiguated and locally resolved
by the next word.

Because of the correlation first reported by Brooks et al. (2006) between
CFIT scores and their language learning task, we had computed the correlations
between CFIT and our statistical learning tasks but did not detect any significant
associations. Scores, though, for nearly all of our participants were above their
reported median and likely comprised a narrower range. Moreover, the lack
of any associations may be consistent with subsequent findings by Gebauer
and Mackintosh (2007), in which fluid intelligence correlated with AGL when
participants were given detailed instructions for how to intentionally look for
patterns in the training material, but not when participants were administered
AGL tasks under typical instructions (as here) that promoted more incidental
learning. However, our sample size combined with the probably narrower range
of observed CFIT scores may have conversely limited our power to detect any
potential associations.

Our experimental design included a battery of other measures that have
previously received attention in studies of L1 and L2 learning, such as lexical
knowledge (vocabulary), reading experience, cognitive motivation, and short-
term memory span. Among these, lexical knowledge marginally correlated
with print exposure (as also replicated by significant findings in Braze et al.,
2007), supporting arguments for amount of reading as the best contributor to
vocabulary breadth (De Temple & Snow, 2003; Krashen, 1989; Nagy & Ander-
son, 1984; Stanovich, 1986). The short-term memory measure (assessed via the
FDS task) was found to correlate positively with adjacent, but not nonadjacent,
statistical learning. Karpicke and Pisoni (2004) also had reported a correlation
of equal magnitude between auditory digit span and AGL performance on an
implicit sequence-learning task involving auditory or auditory-visual stimuli.
Thus, the ability to recall successive elements of numerical series may covary
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with adjacent statistical learning skill, but this finding does not necessarily entail
that a parallel relationship exists between short-term memory of phonological
sequences and nonadjacency learning.

With the exception of short-term memory span and adjacency learning,
then, the fact that the present study did not detect significant, strong inter-
relationships between most of these other variables and statistical learning
performance or language comprehension does not deny their potential impor-
tance within accounts of language learning. It is furthermore possible that some
of these canonical measures may be relatively weak proxies for their intended
constructs (e.g., for discussion of potential limitations associated with using the
ART to assess reading experience, see Acheson, Wells, & MacDonald, 2008).
However, it does preliminarily support the thesis that individual differences
in statistical learning skills themselves, which have been much overlooked in
many explanations to date, may account for a larger proportion of language vari-
ance than the more standard measures typically used for individual differences
research.

Conclusion

Overall, our findings substantiate this study’s motivating rationale that variation
within the normal population should provide a suitable framework for testing
the empirical relatedness of language and statistical learning. As a confirmation
of this approach, we found that individual differences in statistical learning ex-
ist and that sensitivity to particular kinds of statistical regularities (i.e., adjacent
or nonadjacent) in the artificial grammars is predictive of processing ability for
different types of sentence constructions (i.e., involving the tracking of either
local or long-distance relationships). Admittedly, our study is limited by the
correlational nature of its design, which cannot reveal causality, and by the rela-
tively low number of participants, which reduces statistical power. Nonetheless,
the significant results obtained here are encouraging and should be followed
up by a larger scale study incorporating structural equation modeling to test
these hypothesized relationships. Importantly, these findings begin to estab-
lish a heretofore missing empirical link within individuals between statistical
learning and language processing (see also Conway, Bauernschmidt, Huang, &
Pisoni, 2010; Misyak et al., 2010a, 2010b).

Our results may also have wider theoretical relevance to questions regard-
ing the nature of underlying mechanism(s) for statistical learning. Although
group performances for adjacent and nonadjacent grammar tasks have been
documented, the research presented here is the first to assess within-subject
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differences across these tasks. The lack of any significant correlation detected
between them, and possibly the differentiation of their predictive relations to
the language measures, raises an intriguing question as to whether the two
types of statistical learning may be subserved by separate mechanisms (see
also Friederici et al., 2006). However, it is also possible that differences in
learning strategies or task demands across the two tasks may explain the lack of
association between adjacency and nonadjacency learning. Potential bimodal-
ity in the distribution of nonadjacency scores may also contribute to the lack
of association. If so, this concern might be addressed with future work using
newer tasks that more sensitively assess statistical learner differences (e.g., as
in Misyak et al., 2010b, in which a fairly continuous and normal distribution
of nonadjacency differences was documented).

The overall pattern of findings is consistent with an overlap among under-
lying mechanisms for both types of statistical learning and those involved for
language. Counter to the claims of Friederici et al. (2006), then, we have
also found that adjacency learning is substantially implicated in language
for the types of sentence structures studied here. More broadly, the notion
that statistical learning abilities and language may share common neurocogni-
tive mechanisms also converges with other recent neural evidence (see, e.g.,
Christiansen, Conway, & Onnis, 2007; Conway & Pisoni, 2008; Friederici et al.,
2002; Petersson, Forkstam, & Ingvar, 2004) and with the behavioral findings
relating group differences in statistical learning to language-impaired popula-
tions (as noted within the Introduction). More research that, as here, makes
within-subject comparisons across tasks is needed to understand the proper
relation between different types of statistical learning and the degree to which
they may be relying on the same or different neural underpinnings. Future work
examining individual differences in language and statistical learning should
thus aim to study in more detail the relationship between specific types of
statistical structure and linguistic processing, while elucidating the nature of
the underlying mechanisms upon which statistical learning and language may
commonly supervene.

Revised version accepted 8 September 2010

Notes

1 Because typical AGL test measures of statistical learning, as used here, involve a
substantial metacognitive component for participants’ offline judgments, we
considered these offline language comprehension scores to be a suitable measure for
comparisons across the two tasks. Additionally, comprehension accuracy for our
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participants was below ceiling, with significant variation in performance to serve as
an appropriate individual-differences measure.

2 The Waters and Caplan version was used because it was reported to have greater
test-retest reliability than the original Daneman-Carpenter measure (Waters &
Caplan, 1996).

3 Because 5 participants received an erroneous 2AFC test-pair item on the
nonadjacent statistical learning task (prior to the test pair being corrected during the
course of the experiment), scores are reported as the proportion correct (with the
erroneous test-pair item removed for the affected individuals). The erroneous test
pair contained two ungrammatical test strings (∗ a X7 e vs. ∗ b X7 d) before being
corrected to ∗ a X7 e versus b X7 e. None of the other test-pair items consisted of
any of these specific strings (i.e., ∗ a X7 e, ∗ b X7 d, and b X7 e).

4 There were a few coding errors in the programs for presenting some of the sentence
lists, resulting in the following: one fewer presented item in the sentence set
corresponding to the PT manipulation for Lists 2 and 3; four fewer sentences (one
S/OR item, one A/IN item, and two PT items) in List 1. List 4 was error-free.
However, there was no significant effect of List on comprehension accuracy for the
sentence-type sets, F(3, 26) < 1, p = .42.

5 As we had specifically predicted the direction of the correlation between the
statistical learning and language comprehension measures to be positive, one-tailed
tests were used. However, two-tailed t tests would still yield marginally significant
correlations between adjacent statistical learning and PT comprehension (p = .0596)
and between nonadjacent statistical learning and S/OR comprehension (p = .0751).
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Gómez, R. L., & Gerken, L. A. (2000). Infant artificial language learning and language
acquisition. Trends in Cognitive Sciences, 4, 178–186.
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