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Review
Networks of interconnected nodes have long played a
key role in Cognitive Science, from artificial neural net-
works to spreading activation models of semantic mem-
ory. Recently, however, a new Network Science has
been developed, providing insights into the emergence
of global, system-scale properties in contexts as diverse
as the Internet, metabolic reactions, and collaborations
among scientists. Today, the inclusion of network theory
into Cognitive Sciences, and the expansion of complex-
systems science, promises to significantly change the
way in which the organization and dynamics of cognitive
and behavioral processes are understood. In this paper,
we review recent contributions of network theory at
different levels and domains within the Cognitive
Sciences.

Introduction
Humans have more than 1010 neurons and between 1014

and 1015 synapses in their nervous system [1]. Together,
neurons and synapses form neural networks, organized
into structural and functional subnetworks at many scales
[2]. However, understanding the collective behavior of
neural networks starting from the knowledge of their
constituents is infeasible. This is a common feature of
all complex systems, summarized in the famous motto
‘more is different’ [3]. The study of complexity has yielded
important insights into the behavior of complex systems
over the past decades, but most of the toy models that
proliferated under its umbrella have failed to find practical
applications [4]. However, in the past decade or so a
revolution has taken place. An unprecedented amount of
data, available thanks to technological advances, including
the Internet and the Web, has transformed the field. The
data-driven modeling of complex systems has led to what is
now known as Network Science [5].

Network Science has managed to provide a unifying
framework to put different systems under the same con-
ceptual lens [5], with important practical consequences [6].
The resulting formal approach has uncovered widespread
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properties of complex networks and led to new experiments
[4,7,8]. The potential impact on Cognitive Science is con-
siderable. The newly available concepts and tools have
already provided insights into the collective behavior of
neurons [9], but they have also inspired new empirical
work designed, for example, to identify large-scale func-
tional networks [10,11]. Moreover, very different systems
such as semantic networks [12], language networks [13],
and social networks [14,15] can now be investigated quan-
titatively using the unified framework of Network Science.

These developments suggest that concepts and tools
from Network Science will become increasingly relevant
to the study of cognition. Here, we review recent results
showing how a network approach can provide insights into
Cognitive Science, introduce Network Science to the inter-
ested cognitive scientist without prior experience of the
subject, and give pointers to further readings. After a
gentle overview of complex networks, we survey existing
work in three subsections concerning the neural, cognitive,
and social levels of analysis. A final section considers
dynamical processes taking place on networks, which is
likely to be an important topic for Cognitive Science in the
future.

Introduction to Network Science
The study of networks (or graphs) is a classical topic in
mathematics whose history began in the 17th century [16].
In formal terms, networks are objects comprising a set of
points, called vertices or nodes, joined in pairs by lines,
termed edges (see Figure 1 for basic network definitions).
They provide a simple and powerful representation of
complex systems comprising interacting units, with nodes
representing the units and edges denoting pairwise inter-
actions between units. Mathematical graph theory [17],
based mainly on the rigorous demonstration of the topo-
logical properties of particular graphs or in general extre-
mal properties, has been dramatically expanded by the
recent availability of large digital databases, which have
allowed exploration of the properties of very large real
networks. This work, mainly conducted within the statis-
tical physics community, has led to the discovery that
many natural and artificial systems can be usefully de-
scribed in terms of networks [8]. The new Network Science
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Glossary

Assortativity: the preference for nodes to attach to other vertices that are

similar in some way. Assortative mixing by degree, for example, describes the

case in which nodes of similar degree tend to form connections preferentially

among themselves. For instance, in most social networks, high-degree nodes

are connected to high-degree nodes and poorly connected vertices tend to link

each other. By contrast, disassortativity describes the opposite tendency (e.g.,

high-degree nodes tend to be connected to low-degree nodes in technological

networks).

Betweenness of a node: the number of shortest paths between pairs of

vertices passing through a given vertex.

Centrality: the centrality of a node measures its relative importance inside the

network; for example. in terms of degree, betweenness, or distance. In the

latter case, the so-called closeness centrality is defined as the inverse of the

sum of the shortest path lengths from the considered vertex to all other

vertices in the network.

Clique: a subset of a network where every pair of nodes is connected.

Clustering coefficient: ci of vertex i is defined as the ratio between ei, the actual

number of edges between its nearest neighbors, and the maximum possible

number ki(ki � 1)/2; that is,

ci ¼
2ei

k i ðki � 1Þ : [I]

The clustering coefficient quantifies the transitivity of a network, measuring the

probability that two vertices with a common neighbor are also neighbors of

each other. The average clustering coefficient hci is the average value of ci over

all vertices in a network; that is,

hci ¼ 1

N

X
i
ci [II]

In real networks, hci usually takes values of order unity, in stark contrast with the

clustering inversely proportional to network size that is expected for a random

network (Box 2).

Community: although the precise definition of community remains an open

question, a minimal and generally accepted description is that the subset of the

nodes in a community is more tightly connected to one another than to the rest

of the network.

Connected component: the maximal subset of vertices in a network such that

there is a path joining any pair of vertices in it.

Connectome: the detailed ‘wiring diagram’ of the neurons and synapses in the

brain.

Co-occurrence network: a network with nodes representing the elements

present in a given context (e.g., words in a text) and edges representing the ‘co-

occurrence’ in the same context according to some criterion; for example, in

the case of words in a text, a simple criterion is that they appear in the text one

next to the other.

Core of a network: a powerful subset of the network because of the high

frequency of occurrence of its nodes [54], their importance for the existence of

the remainder of nodes [53], or the fact that it is both densely connected and

central (in terms of graph distance) [55].

Degree: the degree of a vertex, ki, is defined as the number of other vertices to

which vertex i is connected (or the ‘number of neighbors’ [65]).

Degree distribution: the probability P(k) that a randomly chosen vertex has

degree k for every possible k. For large networks, the degree distribution

represents a convenient statistical characterization of a network’s topology.

Diameter: the longest of the shortest paths between any pair of vertices in a

network.

Directed network: a network in which each link has an associated direction of

flow.

Hubs: the vertices in a network with the largest degree (number of

connections).

Network or graph: a collection of points, called vertices (or nodes), joined by

lines, referred as edges (or links). Vertices represent the elementary

components of a system, whereas edges stand for the interactions or

connections between pairs of components.

PageRank: a network analysis algorithm that assigns a numerical weight to

each edge of a directed network, aimed at measuring its relative importance.

The algorithm is used by the Google search engine to rank Word Wide Web

search results.

Percolation threshold: percolation theory describes the behavior of connected

clusters in a graph. A network is said to percolate when its largest connected

component contains a finite fraction of the nodes that form the whole network.

Percolation depends in general on some topological quantity (e.g., the average

degree in the Erdös–Ré nyi random graph). The percolation threshold is the

value of this quantity above which the network percolates.

Rich-club phenomenon: property observed in many real networks in which the

hubs have a strong tendency to be connected to each other rather than with

vertices of small degree.

Scale-free networks: networks with a broad, heavy-tailed degree distribution

that can often be approximated by a power-law, P(k) � k�g, where g is a

characteristic exponent usually between 2 and 3. This heavy-tailed power-law

form underlies many of the surprising features shown by real complex

networks.

Shortest path length: the shortest path length, or distance, ‘ij, between

vertices i and j is the length (in number of edges) of the shortest path joining i

and j. The shortest path length thus represents a measure of the distance

between pairs of vertices. The average shortest path length h‘ i is the average

of the shortest path length over all pairs of vertices in the network; that is,

h‘i ¼ 2

NðN � 1Þ
X

i < j

‘i j ; [III]

where N is the total number of vertices in the network.

Small-world property: a property shown by many real complex networks that

exhibit a small value of the average shortest path length h‘ i, increasing with

network size logarithmically or slower. This property is in stark contrast to the

larger diameter of regular lattices, which grows algebraically with lattice size.

Strength of a node: the sum of the weights of the edges incident on a vertex.

Transitivity of a network : the propensity of two nodes in a network to be

connected by an edge if they share a common neighbor.

Tree: a network that has as many edges as vertices minus one and is

connected; that is, a walk from one node can reach any other node in the

network.

Weighted network: a network whose links are characterized by different

capacities, or weights, defining the strength of the interaction between the

nodes they connect.

Word-association network: a network where vertices are words and a link

connects a cue word with the word that is produced as response.
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has been successfully applied in fields ranging from com-
puter science and biology to social sciences and finance,
describing systems as diverse as the World Wide Web,
patterns of social interaction and collaboration, ecosys-
tems, and metabolic processes (see [7] for a review of
empirical results).

Interest in real complex networks has been boosted by
three empirical observations. The first is the so-called
small-world effect, first observed experimentally by the
social psychologist Stanley Milgram [18], which implies
that there is a surprisingly small shortest path length,
measured in traversed connections in direct paths, be-
tween any two vertices in most natural networks. In
Milgram’s experiment, a set of randomly chosen people
in Omaha, Nebraska, were asked to navigate their network
of social acquaintances to find a designated target, a person
living in Boston, Massachusetts. The navigation should be
performed by sending a letter to someone the recipients
knew on a first-name basis who they thought should be
closer to the target and asking them to do the same until
the target was reached. The average number of people that
the letters passed through before reaching the target led to
the popular aphorism ‘six degrees of separation’. Although
the number six is not universal, the average distance
between pairs of vertices in real networks is typically very
small in relation to network size.

The second observation concerns the high transitivity of
many real networks. The concept of transitivity is bor-
rowed from usage in the social sciences [19] and refers to
the fact that, for example, two friends of any given individ-
ual are themselves also likely to be friends. Transitivity
can be quantitatively measured by means of the clustering
coefficient [20], which takes large values in almost all real
networks.

Third, the connectivity structure of many real systems is
strongly heterogeneous, with a skewed distribution in the
number of edges attached to each vertex (the so-called
degree distribution) (Figures 2 and 3). This kind of network
has been dubbed scale free [21]. The scale-free hallmark
underlies many of the most surprising properties of complex
349
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Figure 1. Basic network properties. (A) Circles represent vertices; unbroken lines

connecting pairs of vertices correspond to edges. The degree k of a vertex is

given by the number of its neighbors; that is, the number of other vertices to

which it is connected by edges. For example, node C has degree k = 4. The

distance (shortest path length) ‘ between two nodes is given by the minimum

number of edges that connect them in a continuous path. For example, nodes A

and B are at distance ‘=3. (B) In a directed network, vertices are unidirectional,

indicating that the flow of information can proceed in only one direction

between adjacent nodes. The distance between nodes A and B is now ‘=6, node

C has in-degree kin = 3 and out-degree kout = 1, meaning that it can receive

information from three nodes and pass it to just one neighbor. (C) In a weighted

network, links have different capacities, or weights, indicating the amount of

information they can carry. Many definitions of distance can be adopted. The

path between nodes A and B highlighted in blue is obtained by following the

maximum weight link at each step. Beyond its degree, a node is characterized

also by its strength; that is, the sum of the weights of the links that connect it to

the rest of the network.
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networks, such as their extreme resilience to random
deletion of vertices coupled with extreme sensitivity to
the targeted deletion of the most connected vertices [22],
and strongly impacts processes such as the propagation of
diseases [23].

Applications of network theory in Cognitive Science
The brain and neural networks

The network framework provides a natural way to describe
neural organization [24]. Indeed, cognition emerges from
the activity of neural networks that carry information from
one cell assembly or brain region to another (Box 1). The
advent of Network Science suggests modifying the tradi-
tional ‘computer metaphor’ for the brain [25] to an ‘Internet
metaphor’, where the neocortex takes on the task of ‘packet
switching’ [26]. More broadly, network theory allows the
shift from a reductionist to a ‘complex-system’ view of brain
organization [2,9,10,27]. In this framework, optimal brain
functioning requires a balance between local processing
and global integration [28,29]. In particular, clustering
Box 1. Computing with networks

The central tenet of Cognitive Science is that thought is computation

and hence that the enormously rich network of neurons that

composes the human brain is a computational device. Thus, a

central intellectual challenge for Cognitive Science is to understand

how networks of simple neuron-like units can conduct the

spectacularly rich range of computations that underlie human

thought, language, and behavior. Connectionism, or parallel

distributed processing (see [150] for the historical pedigree), uses

networks comprising simplified neural processing units where

adjustments of the connections between units allow the models to

learn from experience. This approach has been applied to many

aspects of cognition from cognitive development [151] to language

[152], including connectionist implementations [153] of symbolic

semantic networks [114]. In parallel, an active tradition has aimed to

provide computational models of actual neural circuitry; such

models are more biologically realistic, but typically focus less on

abstract cognitive tasks and more on elementary processes of

learning, early visual processing, and motor control [154].

Since the 1980s, there has been increasing interest in a related,

but distinct, research program using networks to represent, make

inferences over, and learn complex probability distributions [155]. In

such probabilistic graphical models, nodes correspond to elemen-

tary states of affairs and links encode probabilistic relationships, or

even causal connections [156], between states of affairs. These

models have proved to be powerful tools for artificial intelligence

and machine learning, as well as the basis for many models in

Bayesian Cognitive Science (e.g., [157]). Crucially, inference and

learning in such models typically requires no ‘supervision’ – nodes

modify their level of activity in response to activity on incoming

links, while the strength of a link is modified in response to signals

at the nodes that it connects.

In both connectionist networks and probabilistic graphical

models, the network itself autonomously carries out inference and

learning. However, the possible relationship between biological

neural networks and these classes of psychological network model

is less well understood. One suggestion is that neuromodulation,

such as long-term potentiation (activity-dependent synaptic

strengthening), corresponds to strengthening a ‘connection’ in a

computational network; more concretely, the detection of ‘predic-

tion error’ (crucial in many network-learning models) relates to

activity of the dopamine system [158]. Moreover, populations of

neurons, and network operations over these, may implement

probabilistic calculations (e.g., [159]). Nonetheless, understanding

how networks can compute remains a central challenge for the

cognitive and brain sciences.
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Figure 2. Graphical representation of homogeneous and scale-free networks. In homogeneous networks (left), nodes have similar topological properties, which are well

captured by their average values. In heterogeneous networks (right), very different nodes coexist, including some so-called hubs (i.e., extremely well-connected nodes). In

both cases, the degree of each node is visually stressed by color and size. The left panel depicts an Erdös–Ré nyi random graph, the right a Barabasi–Albert graph, both

containing N = 100 nodes and the same average degree hki = 2.5.
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facilitates local processing, whereas a short path length (a
low degree of separation) across the neural network is
required for global integration of information among brain
regions. Indeed, these two factors may shape neural net-
work structure and performance [30,31].

The map of brain connectivity, the so-called connectome
(see Glossary) and its network properties are crucial for
understanding the link between brain and mind [29]. The
connectome is characterized by short path lengths (a small-
word topology), high clustering, and assortativity, the ten-
dency of hubs to be connected to hubs, forming a so-called
‘rich club’ and an overlapping community structure [32–35].
The latter observation challenges earlier reductionist views
of the brain as a highly modular structure (e.g., [36]).

Alterations of fundamental network properties are often
associated with pathologies [28,37–39]. For instance, smal-
ler clustering, larger path length, and greater modularity
100 10 1 10 2 10 3 10 4

k
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100

P(
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Figure 3. Degree distribution. The degree distribution of a network, P(k), tells us

the probability that a randomly chosen node will have degree k. Here, the degree

distribution of an Erdös–Ré nyi (ER) graph is plotted next to one of a scale-free

network (with P(k) � k�2.5). It is clear that, whereas in the ER graph the probability

of observing a node with degree k > 30 is practically zero, in the scale-free graph

there is a finite, if small, probability of observing hubs connected to thousands or

even tens of thousands of nodes. Both graphs have the size N = 106 nodes and the

same average degree hki = 10.5.
are found in autistic spectrum disorder [38]. Similarly,
the multimodal cortical network has a shorter path length
and a trend to increased assortativity in people with
schizophrenia [37]. It is unclear whether Alzheimer’s
disease has a unique signature at the brain network level,
but in different studies path lengths and clustering have
been found to be altered, both above and below controls
[28].

Intriguingly, Network Science may provide the tools to
describe different kinds of brain networks in a coherent
fashion and to compare their properties even across differ-
ent scales. Particularly remarkable is the identification of
large-scale brain networks, defined according to structural
connectivity or functional interdependence [10,27]. The
network approach has also been a driving force in the
analysis of functional networks in neuroimaging data
[2]. For example, functional MRI (fMRI) techniques, an
indirect measure of local neuronal activity [40], have
shown dynamic reconfiguration of the modular organiza-
tion of a large-scale functional network during learning
[41]. Moreover, various pathologies have been related to
alterations of the properties of large-scale networks [10].
Different neurodegenerative diseases have been connected
with the degradation of different large-scale functional
networks [42] and age-related changes in face perception
have been linked to the degeneration of long-range axonal
fibers [43].

Cognitive processes

At the level of cognition (i.e., the information-processing
operations in the brain), a wide range of networks has
been considered [44–49] (see http://www.lsi.upc.edu/
�rferrericancho/linguistic_and_cognitive_networks.html).
One of the most studied examples is networks of free word
associations, which are in general weighted and directed,
with weights reflecting the frequency of a given association
[12,50]. Short path lengths, high clustering, and assorta-
tivity have been reported across datasets [44,51]. High
clustering and short path lengths have been attributed
to a network dynamics combining ‘duplication’ and ‘rewir-
ing’ (Box 2).
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A key theoretical question is whether the properties of
networks at the level of information processing are inher-
ited from the brain network substrate or instead arise from
independent converging processes [10]. Cognitive im-
pairment was found to be associated with a decrease of
path lengths and an increase of clustering in word-fluency
networks in Alzheimer’s patients [46], whereas the oppo-
site trend (increased path lengths and decreased cluster-
ing) was found in associative networks of late talkers [52].
Understanding the relationship, if any, between these
alterations at the cognitive and neural levels is a challenge
for future research.

Network Science has also shown how to single out the
most important elements of a complex system. The sim-
plest approach focuses on the concept of ‘degree’; ‘hubs’ are
highly connected nodes whose removal causes greater
impact than low-degree nodes [22]. The internal organiza-
tion of cognitive networks has been analyzed also at a
larger scale, identifying the network’s ‘core’ [53–55] and
dividing ensembles of nodes into ‘communities’ that map
into semantic [56,57] or syntactic [45] categories. It has
been hypothesized that the lexicon may contain a basic
vocabulary from which the meaning of the remaining
words can be covered via circumlocution [58,59]. This
Box 2. Network models

The Erdös–Ré nyi random graph model (see Figures 2 and 3 in main

text) has been the paradigm of network generation for a long time. It

considers N isolated nodes connected at random, in which every

link is established with an independent connection probability p

[131]. The result is a graph with a binomial degree distribution that

is centered at the average degree and has little clustering. The

availability of large-scale network data made clear that different

models were needed to explain the newly observed properties, in

particular a large clustering coefficient and a power-law degree

distribution [8]. The Watts–Strogatz model is one attempt to

reconcile the high clustering characteristic of ordered lattices and

small shortest paths lengths observed in complex networks [20]. In

this model, in an initially ordered lattice, some edges are randomly

rewired. For a small rewiring probability, clustering is preserved,

whereas the introduction of a few shortcuts greatly reduces the

network diameter. The Barabá si–Albert model (see Figure 2 in main

text) represents a first explanation of the power-law degree

distributions found in many complex networks (see Figure 3 in

main text) [21]. It is based on the principle of growth and preferential

attachment. At each time step, a new node enters the network and

connects to old nodes proportionally to their degree; therefore,

‘richer nodes’ (nodes with higher degree) ‘get richer’. This rule leads

to a degree distribution scaling as P(k) � k�3. Exponents other than

three can be found by, for example, allowing for edge rewiring [22].

Other growth models displaying power-law degree distributions

have been considered, involving mechanisms such as duplicating a

node and its connections, with some edge rewiring [78,132], or

random growth by adding triangles to randomly chosen edges

[160]. Non-growing alternatives to the origin of a scale-free topology

have applied optimization mechanisms, seeking an explanation in

terms of trade-offs, optimizing the conflicting objectives pursued in

the set up of the network. Such models, elaborating on the highly

optimized tolerance framework [161], find examples in the class of

heuristically optimized trade-off (HOT) network models [162]. Other

approaches, such as the class of models with ‘hidden variables’

[163], represent a generalization of the classical random graph in

which the connection probability depends on some non-topological

(hidden) variable attached to each node. The proper combination of

connection probability and hidden variable distribution can lead to a

scale-free topology without reference either to growth or to

preferential attachment [164].
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hypothesis has been supported by the analysis of language
networks [13] of word co-occurrence in many languages
[60,61] and Web search queries [62], where the degree
distribution shows a power law with two regimes, one
containing essential vocabulary and the other containing
specialized terms. The two regimes may emerge naturally
from a type of preferential-attachment dynamics [54]
(Box 2). Similarly, a network analysis of cross-referencing
between dictionary entries has shown that dictionaries
have a so-called grounding kernel, a subset of a dictionary
comprising about 10% of words (typically with a concrete
meaning and acquired early) from which other words can
be defined [53].

As far as semantics is concerned [12], in word-associa-
tion networks, names of musical instruments or color
terms form strongly interconnected subsets of words; that
is, communities of nodes [56,57]. Similarly, parts of speech
(e.g., verbs and nouns) cluster together in a syntactic-
dependency network [45]. This organization may help
explain why brain damage can affect particular semantic
fields [63] or specific parts of speech [64].

Network theory offers many new perspectives for un-
derstanding cognitive complexity. The ease with which a
word is recognized depends on its degree or clustering
coefficient [65–67]. Network theory has also helped to
quantify the cognitive complexity of navigating labyrinths,
whose structure, including the distance between relevant
points, can be coded as a weighted network, distinguishing
purely aesthetic labyrinths from those that were designed
to have a complex solution [68]. The time needed to find the
way out of a labyrinth is strongly correlated with that
needed by a random walker (Box 3) to reach the exit
(absorption time), which is in turn strongly correlated with
the various network metrics including vertex strength and
betweenness [68]. An interesting possible research direc-
tion is to investigate whether similar analysis applies to
search problems in more abstract cognitive contexts, such
as problem solving or reasoning.

The study of sequential processing has also been im-
pacted by Network Science. For example, the length of a
dependency between two elements of a sequence provides a
measure of the cognitive cost of that relationship [69].
Thus, the mean of such lengths may measure the cognitive
cost of processing a sequence such as a sentence [70,71].
The minimum linear arrangement problem is to determine
the ordering of elements of the sequence that minimizes
such a sum of lengths, given a network defining the depen-
dencies between elements (Box 4, Figure 4) [70,72,73]. The
rather low frequency of dependency crossings in natural
language (Figure 4C,D) and related properties could be a
side effect of dependency length minimization [73–75],
suggesting that crossings and dependency lengths cannot
be treated as independent properties, as is customary in
Cognitive Sciences [70,76]. These findings suggest that a
universal grammar is not needed to explain the origins of
some important properties of syntactic-dependency struc-
tures; the limited capacity of the human brain may severe-
ly constrain the space of possible grammars. The network
approach additionally allows for a reappraisal of existing
empirical evidence. For example, the second moment of the
degree distribution, hk2i, is positively correlated with the



Box 3. Dynamical processes on networks

Processes taking place on networks are widespread across a large

number of domains, from epidemics spreading through the airplane

transportation network to gossip spreading through networks of

acquaintances [101]. In all cases, the topological properties of the

underlying networks play a crucial role in the behavior of the

process and extremely simple models can provide vital insights into

large classes of apparently distant phenomena. This is why the

study of processes occurring on networks has recently gained much

attention in Cognitive Science. In the main text, we describe how the

structure of the social network affects the spreading of a linguistic

innovation [15], while random walk processes have been used in

different contexts, from word-association experiments [121] to

language modeling [115].

The random walk is an ideal example to understand the insights

that studying an apparently trivial process can provide. At each time

step, a particle (the walker) hops from the node it occupies to a

randomly selected neighboring node. The properties of such simple

dynamics are enlightening in many respects. For example, the so-

called occupation probability ri of the walker (i.e., the asymptotic

probability of finding it on node i) is simply proportional to the

degree ki of that node (i.e., ri � ki in a connected network [165]. This

node degree is also crucial in many more complex situations [8].

Other important properties particularly relevant to the issues of

searching and spreading in networks are mean first-passage time

(MFPT) and coverage [166].

� The MFPT ti of a node i is the average time taken by the random

walker to arrive for the first time at vertex i, starting from a

random source. This corresponds to the average number of

messages that have to be exchanged among the nodes to identify

the location of vertex i. Interestingly, in typical cases, this time is

proportional to the inverse of the occupation probability.

� The coverage C(t) is defined as the number of different vertices

that have been visited by the walker at time t, averaged for

different random walks starting from different sources. The

coverage can thus be interpreted as the searching efficiency of

the network, measuring the number of different individuals that

can be reached from an arbitrary origin in a given number of time

steps.

Box 4. The minimum linear arrangement

The minimum linear arrangement problem comprises finding a

sequential ordering of the vertices of a network that minimizes the

sum of edge lengths [72]. If p(v) is the position of vertex v and u�v

indicates that that vertices u and v are connected, the length of the

edge u�v is the absolute value of the difference of their positions;

that is jp(v) � p(u)j. The sum of edge lengths is

D ¼
X

u � v

jpðvÞ � pðuÞj: [IV]

In a tree of n vertices, the mean distance between edges is hdi = D/

(2(n � 1)). Imagine that a tree has only three vertices that are labeled

with the numbers 1, 2, and 3. There are only 3! = 6 possible linear

arrangements of the vertices (see Figure 4A in main text), but the

minimum hdi (or equivalently the minimum D) is achieved by only

two orderings, (2, 1, 3) and its reverse (3, 1, 2), with hdi = 1 (see

Figure 4A in main text). We say that these two orderings are mini-

mum linear arrangements. hdi = 1.5 for the remainder of the order-

ings.

In a star tree, where all vertices have degree one except one (i.e.,

the hub) (see Figure 4B in main text), D is determined by the position

of the hub in the sequence. For that tree, the optimal placement of

the hub is at the center of the sequence [77].

The ordering of the words in the sentence given in Figure 4C in

main text, which yields hdi = 11/8 � 1.375, is also a minimum linear

arrangement; that is, none of the 9! = 362 880 permutations of the

words of the sentence is able to achieve a smaller hdi given the

syntactic dependency tree of the sentence. Finding the minimum

linear arrangement problem of a network is very difficult computa-

tional problem [72], but if the network is a tree (e.g., see Figure 4C in

main text), computationally efficient solutions exist [167,168].

hdi would grow linearly (hdi = (n + 1)/3) with the number of

vertices if the vertices were ordered at random [71]. By contrast,

hdi grows sublinearly as a function of the number of vertices in real

syntactic dependency trees [71].

k2
� �

, the degree second moment. determines the minimum value

that hdi could achieve [77].

hdi � nhk2i
8ðn � 1Þ þ

1

2
: [V]

The worst case is a star tree (see Figure 4B in main text) with the

maximum k2
� �

[77]. Therefore, the tendency to have ‘hubs’ (i.e., a

high degree variance in degrees of different vertices) and a low hdi
are incompatible.
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minimum sum of dependency lengths (Box 5) and therefore
sufficiently long sentences cannot have hubs [77]. Although
the minimum linear arrangement problem has so far been
investigated mostly in language, it applies whenever a
dependency structure over elements of a sequence is de-
fined by a network. A promising avenue for future research
is to extend network analysis to sequences of non-linguistic
behavior, such as music, dance, and action sequencing.

Various studies address the origin of the properties of
cognitive networks (Box 2). For example, the double power-
law degree distribution observed in word co-occurrence net-
works with two different exponents has been attributed to a
dynamics combining the growth and preferential-attach-
ment rules, where a pair of disconnected nodes becomes
connected with a probability proportional to the product of
their degrees [54]. The model is only a starting point,
because it fails to reproduce other important properties of
real networks; for example, the distribution of eigenvalues
of the corresponding adjacency matrix [60]. A different
model, not based on preferential attachment and mirroring
a previous model of protein-interaction networks [78],
introduced the concepts of growth via node duplication
and link rewiring to Cognitive Science, to provide a unified
explanation of the power-law distribution, the short path
length, and the high clustering of semantic networks
[44]. However, a simple network-growth dynamics is not
necessarily the best mechanism. In a network of Wikipedia
pages, the distribution of connected component sizes at the
percolation threshold was found to be inconsistent with a
randomly growing network [79]. In phonological similarity
networks, five key properties – the largest connected com-
ponent including about 50% of all vertices, small path
lengths, high clustering, exponential degree distribution,
and assortativity [80] – may arise from a network of pre-
defined vertices and connections defined simply by overlap
between properties of the node, rather than a growth model
[81]. Overall, the debate over the different origins of cogni-
tive networks highlights the importance of defining suitable
model selection methods (see Section IV).

The network approach also suggests potentially revolu-
tionary insights into the fast or even abrupt emergence of
new cognitive functions during development, as well as the
degradation of those functions with aging or neurodegen-
erative illness. Such abrupt changes can arise from smooth
change, if the system crosses a percolation threshold; that
is, a crucial point where the network becomes suddenly
connected (e.g., during development) or disconnected
(during aging or illness). The existence of such a point
has been demonstrated in a semantic network extracted by
353
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Figure 4. (A) The six possible linear arrangements of the three vertices of a tree. (B) Star trees of three, four, and five vertices. (C) The syntactic dependency tree of an

English sentence (borrowed from [169]). Vertices are words and edges indicate syntactic dependencies between words. (D) A random linear arrangement of the sentence in

(C) with nine edge crossings indicated by the numbers 1 to 9 (adapted from [73]). Two edges cross if they do not share vertices and one of the vertices making one of the

edges is placed between the pair of vertices making the other edge. For instance, the seventh crossing is formed by the edge between ‘loved’ and ‘she’ and the edge

between ‘had’ and ‘passed’.
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Wikipedia evolving by the addition of new pages [79].
Furthermore, the concept of percolation has inspired a
recent explanation of hyperpriming and related phenome-
na exhibited by Alzheimer’s disease patients in a theoreti-
cal model that qualitatively captures aspects of the
experimental data [82].

Social networks and cognition

Network Science has been fruitfully applied to the investi-
gation of networks of interactions between people, highlight-
ing the interplay between individual cognition and social
structure. For example, collaboration networks, both in
scientific publications [83] and in Wikipedia [84], where a
link is established between two authors if they have collab-
orated on at least one paper or page, provide insights into the
large-scale patterns of cooperation among individuals and
show a pronounced small-world property and high cluster-
ing [83]. Similarly, a ‘rich-get-richer’ phenomenon drives the
dynamics of citation networks, between both papers and
authors [21]. Scientific authors tend to cite already highly
cited papers, leaving importance or quality in second place
354
[85]. Moreover, pioneer authors benefit from a ‘first-mover
advantage’ according to which the first paper in a particular
topic often collects more citations than the best one [86]. The
same approach has also allowed identification of the mech-
anisms that govern the emergence of (unfounded) authority
among scientists, and their consequences [87].

One recent focus of research has been the large-scale
validation of the so-called Dunbar number. Dunbar com-
pared typical group size and neocortical volume in a wide
range of primate species [88], concluding that biological
and cognitive constraints would limit the immediate social
network of humans to 100–200 individuals [89]. Analyzing
a network of Twitter conversations involving 1.7 million
individuals, it has been possible to confirm that users can
maintain a limited number of stable relationships and
that this number agrees well with Dunbar’s predictions
[90].

Social networks also play a fundamental role in collec-
tive problem-solving tasks [91]. For example, the speed of
discovery of and convergence on an optimal solution is
strongly affected by the underlying topology of the group



Box 5. Frontiers in Network Science

In the main text, we reviewed key contributions of network theory to

Cognitive Science, highlighting that, along with the traditional study

of the properties of fixed networks (Section ‘Applications of network

theory in Cognitive Science’), a recent wave also considers

dynamical process on networks (Section ‘Simple dynamics on

networks’). Here, we sketch a brief overview of some topics at the

frontiers of Network Science [170] that may have a substantial

impact on Cognitive Science and many other disciplines in the near

future.

A first challenge concerns the problem of timescale separation.

Traditionally, two limits have been considered in the study of

dynamical processes on networks: either the network is considered

to be effectively static, meaning that it evolves on a timescale much

slower than the one of the process under consideration, or, by

contrast, it is described as rapidly varying with a pace that allows the

process to perceive only the statistical properties of the graph (e.g.,

the degree distribution only) [8]. The issue is now to develop tools to

describe what happens in the intermediate situations; that is, when

the timescale of the dynamical process is comparable to the rate of

network evolution [171]. Real-world examples of this can be found

in social and cognitive processes occurring on face-to-face interac-

tion networks [97] or on online messenger sites such as Twitter [90].

The second challenge is deeply connected to the first and goes

one step further. What happens when the dynamical process

coevolves with the underlying network, so that both dynamics

interact with each other through feedback mechanisms? Recent

research has shown that, when this is the case, interesting self-

organization phenomena may arise, such as the possible fragmen-

tation of social networks when links can be rewired depending on

the dynamical state (i.e., the opinion) of the nodes (i.e., the

individuals) they connect [172,173].

Finally, apart from the challenges of describing, modeling and

understanding complex networks, a further question is how they

can be controlled [174]. Control theory offers important mathema-

tical tools to address this question, but network heterogeneity

introduces non-trivial issues that have just started to be taken into

account. Identifying driver nodes that can guide the system’s entire

dynamics over time, for example, might help the engineering of an

observed system to a perform desired function or prevent

malfunctioning. Interestingly, such nodes tend not to be the hubs

of the network [174].
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in a way that depends on the problem at hand [14,92]. More
spatially based cliques seem to be advantageous for pro-
blems that benefit from broad exploration of the problem
space, whereas long-distance connections enhance the
results in problems that require less exploration [14],
despite recent experiments suggesting that long-distance
connections might always be advantageous [92]. Similarly,
the amount of accessible information impacts problem
solving in different ways on different social network struc-
tures, more information having opposite effects on differ-
ent topologies [93].

Human behavior in social interactions has been
revealed through the empirical analysis of telephone calls
[94,95] and face-to-face interaction networks [96,97]. This
research has clarified the relationship between the num-
ber and the duration of individual interactions or, put in
network terms, between the degree and the strength of the
nodes. Surprisingly, this relation differs in telephone
versus face-to-face interactions; the more calls an individ-
ual makes, the less time per call he or she will allot [98],
but for face-to-face interactions, popular individuals are
‘super-connectors’, with not only more but also longer
contacts [97]. Other insights into the effect of social net-
works have been obtained through controlled experiments
on the spread of a health behavior through artificially
structured online communities [99]. Behavior spreads
faster across clustered-lattice networks than across cor-
responding random networks. The impacts of network
structure in understanding how societies solve problems
and passing information may have strong parallels with
how the ‘society of mind’ [100] within a single individual is
implemented in information-processing mechanisms and
neural structure.

Simple dynamics on networks
So far we have considered the structure of networks and
the dynamical principles of growth or deletion (re)shaping
these structures. Recently, however, new approaches have
adopted a different perspective [101]: the neural, cognitive
or social process is modeled as a dynamic process taking
place on a network. Researchers can then ask how the
network structure affects the dynamics.

An illustrative example concerns interactions among
neural or cortical neurons, which often yield network-level
synchrony [102–104]. Various studies reveal that abnor-
mal synchrony in the cortex is observed in different pa-
thologies, ranging from Parkinson’s disease (excessive
synchrony) [105] to autism (weak synchrony) [106,107].
Neural avalanches constitute another important process
occurring on brain networks [108]. The size distribution of
these bursts of activity approximate a power law, often a
signature of complex systems [109]. The Kinouchi–Copelli
(KC) model suggested that the neuronal dynamic range is
optimized by a specific network topology tuned to signal
propagation among interacting excitable neurons that
leads to neural synchronization as a side-effect [110].
Remarkably, the predictions of this model have been con-
firmed empirically in cultures of cortex neurons where
excitatory and inhibitory interactions were tuned pharma-
cologically [111]. Similar phenomena have been identified
in connection to maximal synchronizability [103], informa-
tion transmission [108,112], and information capacity
[112] in cortical networks.

In the same way, it is interesting to speculate that some
aspects of memory, thought, and language may be usefully
modeled as navigation (i.e., the process of finding the way
to a target node efficiently [48,113,114]) or exploration (i.e.,
navigation without a target) on network representations of
knowledge by means of various strategies, such as simple
random walks [57,115] or refined versions combining local
exploration and ‘switching’ [116]. Statistical regularities
such as Zipf’s law can arise even from a random walk
through a network where vertices are words [115]. Seman-
tic categories and semantic similiarity between words can
then emerge from properties of random walks on a word-
association network [57]. Improved navigation strategies
(random walks with memory) help to build efficient maps of
the semantic space [117]. Furthermore, people apparently
use nodes with high closeness centrality to navigate from
one node to another in an experiment on navigating an
artificial network [48,118]. These nodes are reminiscent of
the landmarks used to navigate in the physical environ-
ment [119].

Network analysis casts light on the so-called ‘function’
words [120] (e.g., in, the, over, and, of). These are hubs of
355
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the semantic network and they are indeed ‘authorities’
according to PageRank, a sophisticated technique used by
Google to determine the importance of a vertex (e.g., a
word) from its degree and the importance of its neighbors
[47]. Such hubs provide efficient methods for the explora-
tion of semantic networks [116]. Moreover, the ease with
which a word is recognized depends on its degree [65] and
its clustering coefficient [66,67]. PageRank is a better
predictor of the fluency with which a word is generated
by experimental participants than the frequency or the
degree of a word [118].

Another example is found in the collective dynamics of
social annotation [121], occurring on websites (such as
Bibsonomy) that allow users to tag resources; that is, to
associate keywords to, for example, photos or links. First, a
co-occurrence graph is obtained by establishing a link
between two tags if they appear together in at least one
post. The study of the network’s evolution generates inter-
esting observations, such as yet another power law, Heaps’
law, which relates the number of word types (‘the observed
vocabulary size’) and word tokens in a language corpus
[122]. In addition, the mental space of the user is repre-
sented in terms of a synthetic semantic network and a
single synthetic post is then generated by a finite random
walk (Box 3) exploring this graph. Many synthetic random
walk-generated posts are then created and an artificial co-
occurrence network is built. Different synthetic mental
spaces are then tested. The artificial co-occurrence network
reproduces many of the features of the real graph, if the
synthetic semantic graph has the small-world property
and finite connectivity [121].

In the study of language dynamics and evolution, social
networks describing the interactions between individuals
have been central [15,123]. The role of the topology of such
networks has been studied extensively for the Naming
Game [124,125], a simple model of the emergence of shared
linguistic conventions in a population of individuals. When
the social network is fully connected, the individuals reach
a consensus rapidly, but the possibility of interacting with
anybody else requires a large individual memory to take
into account the conventions used by different people [125].
When the population is arranged on a lattice, however,
individuals are forced to interact repeatedly with their
neighbors [126], so that while local agreement emerges
rapidly with the agents using a very little memory, global
convergence is reached slowly through the competition of
the different locally agreeing groups (local clusters). Small-
world networks, by contrast, are optimal in the sense that
finite connectivity allows the individuals to use a finite
amount of memory, as in lattices, whereas the small-world
property prevents the formation of local clusters [15,127].
Similar analyses have been performed for the case of
competition not between specific linguistic conventions,
but between entire languages [128–130]. Overall, these
studies highlight the importance of the properties of social
networks for the emergence and maintenance of complex
cognition, language, and culture. The study of dynamics
on networks is also likely to clarify the relevance of prop-
erties of network structure, such as path lengths and
clustering, for cognitive processes and their pathologies.
A take-home message from this research is that network
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theory challenges radically the view that the unique re-
quirement for complex cognition and its multiple manifes-
tations is the human brain. Instead, the key for the
emergence and maintenance of such skills might be the
properties of the network defining how the individuals
interact.

Methodological issues for future research
Despite of the enormous potential of network theory for the
cognitive and brain sciences, important methodological
challenges remain regarding network construction, analy-
sis, and modeling.

Challenges for network construction

A basic challenge for the analysis of co-occurrence net-
works is determining whether two vertices have co-oc-
curred above chance – that is, inferring whether an edge
should be drawn between them (an issue that arises in the
parallel literature on probabilistic graphical models
[131,132]). In networks of co-occurrence, typically no sta-
tistical filter is used [133] or the filter is not well defined
[61]. For this reason, proper statistical filters (e.g., [134]) or
more precise ways of linking vertices have been considered;
for example, syntactic dependency instead of word occur-
rence [135,136]. In general, however, defining an appro-
priate null hypothesis for the existence of an edge is
crucial. In cases of networks induced from co-occurrences
of elements in a sequence [133,137], this would distinguish
between significant above-random properties, identified by
the ensemble of permutations of the original sequence (e.g.,
the permutations of a text), and non-significant findings.
Even the latter are important, however, as they may
suggest that some features of the network could be a side
effect purely of the frequency with which the elements
occur. The issue is a general one; in brain network re-
search, it arises when determining whether the activities
of two brain regions is really correlated [138], whereas in
collaboration networks, connecting two scientists because
they have ‘co-occurred’ in the coauthor list of an article does
not imply that they have actually collaborated [83]. This
variety of applications highlights the value of Network
Science in offering a unified framework to the various
areas of Cognitive Science.

Challenges for network analysis

The most commonly used null hypothesis for the statistical
properties of a network is the Erdös–Rényi (or binomial)
network (Box 2, Figures 2 and 3). A better null hypothesis
is a network that preserves the original degree sequence
but in which edges are randomized [8], which in general
clarifies the role of the degree distribution and how it could
be responsible for the properties of the observed network.
For instance, a power-law distribution of degrees may lead
to an apparently large clustering coefficient in networks of
not too large a size [8]. Other properties, however, can
depend on further details apart from the degree distribu-
tion. For example, apparently harmless manipulations
such as banning loops (edges from a node to itself) and
multiple edges (more than two edges joining a pair of
nodes) can lead to degree correlations and disassortative
behavior in power-law degree distributions [139].



Table 1. Cognitive Science through the eyes of network theory: translation of Cognitive Science terms into network theory
concepts

Cognitive Science and neighboring fields Network theory

Semantic field Community in a network (e.g., word-association network) [56,57]

Island Connected component [80]

Brain module Community in a brain network [35]

Semantic memory Semantic network [57]

Mental exploration (mental navigation without a target) Random walk in a cognitive network [57,115]

Tagging activity by users Random walk in a mental semantic network [121]

Landmark (in a way-finding problem) Node with high closeness centrality [48]

Pathological brain or pathological cognition Anomalous network metrics; for example, clustering and path lengths [28,46,52]

Unfounded scientific authority, first-mover advantage Rich-get-richer phenomenon on a citation network [86,87]

Box 6. Outstanding questions

� Is network theory a framework that can unify the representation of

structure across levels and domains in Cognitive Science and

neighboring disciplines (e.g., from neural organization to knowl-

edge representation)?

� To what extent do the underlying brain networks determine the

properties of cognitive networks and vice versa? Which well-

known properties of brain networks are also found at higher levels

in cognitive networks and vice versa?

� What are the optimal values of path lengths and/or clustering for

proper brain functioning, cognitive processing, or social dy-

namics? Do these optimal values depend on the cognitive

domain? Do very low or high values indicate pathology? If so,

do such indicators apply across different explanatory levels; for

example, do the aberrant statistical properties of brain networks

observed in Alzheimer’s disease, schizophrenia, or autism also

arise at the cognitive level?

� Are the properties of the network structure in social interactions a

key factor for the emergence of complex individual abilities such

as language (e.g., syntax)? Conversely, to what extent are the

properties of these social interactions determined by individual

cognitive abilities (e.g., Dunbar’s number)?
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Another challenging problem concerns the degree dis-
tribution, which is often assumed to be a power law (Box 2).
First, where a power law is certain (Figure 3), direct
regression methods to determine the degree exponent
are potentially biased and an estimation by maximum
likelihood is more convenient [140]. However, various dis-
tributions, not only the power law, are able to mimic an
approximate straight line in double logarithmic scale
[141,142] and a power-law degree distribution has been
found not to be sufficiently supported in biological net-
works, contrary to previous beliefs [143,144]. In general,
the analysis of the degree distribution would require the
use of standard model-selection techniques from an en-
semble of candidate distributions [145]. Equivalent eva-
luations of a power law in cognitive networks are not
available as far as we know.

Challenges for dynamical models

A big challenge for understanding the dynamical processes
underlying brain and cognitive networks is determining
which underlying network model is most appropriate.
Because many network models can account for a power-
law distribution (Box 2), other network features must be
introduced in the evaluation of the most likely model.
However, perhaps the most valuable information is how
the network has evolved to reach a certain configuration.
Different dynamical rules may lead to the same end prod-
uct and it is possible to use sophisticated techniques to
assess the importance of different evolutionary mecha-
nisms [146–148]. These methods could help clarify the
debate on the dynamical principles guiding the evolution
of semantic networks; for example, preferential attach-
ment and its variants in normal and late talkers
[52,149]. Incorporating the statistical methods mentioned
above is vital to harness the power of Network Science to
reveal the dynamical principles by which the brain is
structured and by which brain functions emerge, develop,
and decay.

Concluding remarks and outlook
Our survey of the vast literature on network theory
for brain and Cognitive Sciences has necessarily been
selective, but it allows us to draw several encouraging
conclusions. Network Science offers concepts for a new
understanding of traditional terms in Cognitive Science
(Table 1) and illuminates a wide range of phenomena,
such as the organization of pathological brains or cogni-
tion (e.g., [38]), the development of vocabulary in children
(e.g., [47,149]), and language competition (e.g., [130])
under the same theoretical umbrella. Many new ques-
tions arise concerning how far network properties at the
neural level translate into network properties at higher
levels and vice versa (Box 6). Network theory also may
help bridge the gap between the brain and the mind,
shedding new light on how knowledge is stored and
exploited as well as reducing the gulf that separates
the study of individual and collective behavior. Moreover,
understanding the origin of the observed properties of
networks through the tools of Network Science may help
unify research on the development of cognition during
childhood with the study of processing in the adult state
and its decay during aging or illness. Network Science is a
young discipline (Box 5), but it promises to be a valuable
integrative framework for understanding and relating
the analysis of mind and behavior at a wide range of
scales, from brain processes to patterns of social and
cultural interaction. Overall, network theory can help
Cognitive Science become more internally coherent and
more interconnected with the many other fields where
network theory has proved fruitful.
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relevant work and helpful discussions. R.F-i-C. was supported by the
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