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Acquiring formulaic language
A computational model

Stewart M. McCauley and Morten H. Christiansen
Cornell University

In recent years, psycholinguistic studies have built support for the notion that 
formulaic language is more widespread and pervasive in adult sentence pro-
cessing than previously assumed. These findings are mirrored in a number 
of developmental studies, suggesting that children’s item-based units do not 
diminish, but persist into adulthood, in keeping with a number of approaches 
emerging from cognitive linguistics. In the present paper, we describe a simple, 
psychologically motivated computational model of language acquisition in 
which the learning and use of formulaic expressions represents the foundation 
for comprehension and production processes. The model is shown to capture 
key psycholinguistic findings on children’s sensitivity to the properties of mul-
tiword strings and use of lexically specific multiword frames in morphological 
development. The results of these simulations, we argue, stress the importance 
of adopting a developmental perspective to better understand how formulaic 
expressions come to play an important role in adult language use.

Keywords: language acquisition, formulaic expressions, computational 
modeling, chunking, statistical learning, cognitive linguistics

Formulaic expressions have long been held to be a key component of language 
use within cognitive linguistics (e.g., Croft, 2001; Langacker, 1987; Wray, 2002).1 
Lending support to this perspective, a number of psycholinguistic studies have 
demonstrated that adults are sensitive to the frequency of multiword sequences. 
These include reaction time studies (Arnon & Snider, 2010; Jolsvai, McCauley, 
& Christiansen, 2013), as well as studies of complex sentence comprehension 

1. For the purposes of the present paper, we define “formulaic expression” according to Wray 
(1999): a sequence, continuous or discontinuous, of words or other meaning elements, which is, or 
appears to be, prefabricated: that is, stored and retrieved whole from memory at the time of use, 
rather than being subject to generation or analysis by the language grammar.
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(Reali & Christiansen, 2007), self-paced reading and sentence recall (Tremblay,  
Derwing, Libben, & Westbury, 2011), and event-related brain potentials (Tremblay  
& Baayen, 2010). Similar findings have been shown for production, with naming 
latencies decreasing as a function of phrase frequency (Janssen & Barber, 2012) 
and reduced phonetic duration for frequent multiword strings in spontaneous 
and elicited speech (Arnon & Cohen-Priva, 2013). Together, these studies suggest 
the active use of fixed multiword sequences as linguistic units in their own right, 
implying a far greater role for formulaic language processing than has previously 
been assumed.

Importantly, such results have been mirrored in psycholinguistic studies with 
young children (Arnon & Clark, 2011; Bannard & Matthews, 2008). In addition 
to lending support to usage-based approaches (which hold that linguistic produc-
tivity emerges from abstraction over multiword sequences; e.g., Tomasello, 2003), 
such findings suggest that children’s item-based linguistic units — and their active 
use during processing — do not diminish, but persist throughout development 
and into adulthood. If this is indeed the case, it holds that researchers can bet-
ter understand the role of formulaic sequences in adult language by studying the 
processes and mechanisms whereby children discover and use multiword units 
during the acquisition process.

The aim of the present paper is to take the first steps toward establishing the 
computational foundations of a developmental approach to adult formulaic lan-
guage use. To this end, we describe two simulations performed using a compu-
tational model of acquisition which instantiates the view that the discovery and 
on-line use of concrete multiword units forms the backbone for children’s early 
language processing. The model tests explicit mechanisms for the acquisition of 
formulaic language and is used to evaluate the extent to which children’s linguistic 
behavior can be accounted for using concrete multiword units. Importantly, the 
role of multiword sequences in the model grows rather than diminishes over time, 
in keeping with the perspective that children’s linguistic units persist throughout 
development and into adulthood. Moreover, the model takes usage-based theory 
to its natural conclusion; the model learns by attempting to comprehend and pro-
duce utterances, such that no distinction is made between language learning and 
language use. By avoiding a separate process of grammar induction, the model 
captures the usage-based notion that linguistic knowledge arises gradually through 
what is learned during concrete usage events (the notion of learning by doing).

In what follows, we first discuss the psychological and computational features 
of the model, as well as its inner workings,2 before evaluating the model’s ability 

2. All source code for the model and simulations will be made publicly available in the near 
future. Interested parties can contact the authors for model-specific code.
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to account for key psycholinguistic findings on young children’s formulaic lan-
guage use.

The Chunk-Based Learner (CBL) Model

As our model is primarily concerned with the learning and use of concrete multi-
word linguistic units, or “chunks,” we refer to it as the Chunk-Based Learner (CBL; 
McCauley & Christiansen, in preparation; McCauley, Monaghan, & Christiansen, 
in press; see also McCauley & Christiansen, 2011). We designed CBL with a num-
ber of key psychological and computational features in mind:

1. Incremental, on-line processing: In the model, all input and output is pro-
cessed in a purely incremental, on-line, word-by-word fashion, as opposed to 
involving batch learning or whole-utterance optimization, reflecting the in-
cremental nature of human sentence processing (e.g., Altmann & Steedman, 
1988; Borovsky, Elman, & Fernald, 2012). At any given point in time, the mod-
el can only rely on what has been learned from the input encountered thus far.

2. Psychologically inspired learning mechanisms and knowledge representa-
tion: The model learns by calculating simple statistics tied to backward tran-
sitional probabilities, to which both infants (Pelucchi, Hay, & Saffran, 2009) 
and adults (Perruchet & Desaulty, 2008) have been shown to be sensitive. 
Moreover, the model learns from local linguistic information as opposed to 
storing entire utterances, in accordance with evidence for the primacy of local 
information in sentence processing (e.g., Ferreira & Patson, 2007). In keep-
ing with evidence for the unified nature of comprehension and production 
(Pickering & Garrod, 2013), comprehension and production are two sides 
of the same coin in the model, relying on the same statistics and linguistic 
knowledge.

3. Usage-based learning: In the model, the problem facing the learner is charac-
terized as one of learning to process language. All learning takes place during 
individual usage events; that is, specific attempts to comprehend and produce 
utterances. 

4. Naturalistic linguistic input: To ensure representative, naturalistic input, 
the model is trained and evaluated using corpora of child and child-directed 
speech taken from the CHILDES database (MacWhinney, 2000).

This combination of features makes CBL unique among computational models 
of language development, in terms of psychological plausibility. Language devel-
opment in the CBL model involves learning — in an unsupervised manner — to 
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perform two tasks: (1) “comprehension,” which is approximated by the segmenta-
tion of incoming utterances into phrase-like units useful for arriving at the utter-
ances’ meanings, and (2) “production,” which involves the incremental generation 
of utterances using the same multiword units discovered during comprehen-
sion. Importantly, comprehension and production in the model form a unified 
framework, as they rely on the same sets of chunks and statistics (cf. McCauley &  
Christiansen, 2013).

Architecture of the Model

Comprehension

The model processes input word-by-word as it is encountered, from the very be-
ginning of the input corpus. At each time step, the model updates frequency in-
formation for words and word-pairs, which is used on-line to track the backward 
transitional probability (BTP) between words.3 While processing each utterance 
incrementally, the model maintains a running average of the mean BTP calcu-
lated over the words encountered in the corpus so far. Peaks are defined as those 
BTPs which match or rise above this average threshold, while dips are defined as 
those which fall below it (allowing the avoidance of a free parameter). When a 
peak in BTP is encountered between two words, the word-pair is chunked togeth-
er such that it forms part (or all) of a chunk. When a dip in BTP is encountered, a 
“boundary” is placed and the resulting chunk (which consists of the one or more 
words preceding the inserted boundary) is placed in the model’s chunkatory, an 
inventory of chunks consisting of one or more words.

Importantly, the model uses its chunk inventory to assist in segmenting input 
and discovering further chunks as it processes the input on-line. As each word-
pair is encountered, it is checked against the chunk inventory. If the sequence has 
occurred before as either a complete chunk or part of a larger chunk, the words 
are automatically chunked together regardless of their transitional probability. 
Otherwise, the BTP is compared to the running average threshold with the same 
consequences as usual (see McCauley & Christiansen, 2011, for further detail).

Because there are no fixed limits on the number or size of chunks that the 
model can learn, the resulting chunk inventory contains a mixture of words and 
multiword units. Aside from the aforementioned role of the chunk inventory in 

3. BTPs were chosen over forward transitional probabilities because BTPs involve evaluating 
the probability of a sequence based on the most recently encountered item, as opposed to mov-
ing back one step in time (as is necessary when calculating forward transitional probabilities).
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processing input, chunks stored in the model’s inventory are treated as separate 
and distinct units; chunks may contain overlapping sequences without interfer-
ence. Moreover, chunks do not weaken or decay due to overlap or disuse. These 
representational properties allow the model to function without free parameters 
(in contrast to other well-known computational models of distributional learn-
ing, such as PARSER; Perruchet & Vinter, 1998).

The model’s comprehension performance can be evaluated against the per-
formance of shallow parsers (sophisticated tools widely used in natural language 
processing), which segment texts into series of non-overlapping, non-embedded 
phrases. We chose to focus on shallow parsing in evaluating the model in accor-
dance with a number of recent psycholinguistic findings suggesting that human 
sentence processing is often shallow and underspecified (e.g., Ferreira & Patson, 
2007; Frank & Bod, 2011; Sanford & Sturt, 2002), as well as the item-based man-
ner in which children are hypothesized to process sentences in usage-based ap-
proaches (e.g., Tomasello, 2003).

Production

As the model makes its way through a corpus, segmenting utterances and dis-
covering chunks in the service of comprehension, it encounters utterances made 
by the target child of the corpus, which are the focus of the production task. The 
production task begins with the idea that the overall message the child wishes to 
convey can be roughly approximated by treating the utterance as an unordered 
bag-of-words (cf. Chang, Lieven, & Tomasello, 2008). The model’s task, then, is to 
reproduce the child’s utterance by outputting the items from the bag in a sequence 
that matches that of the original utterance. Importantly, the model can only rely 
on the chunks and statistics it has previously learned during comprehension to 
achieve this.

Following evidence for children’s use of multiword units in production, the 
model utilizes its chunk inventory when constructing utterances. To allow this, 
the bag-of-words is populated by comparing parts of the child’s utterance to the 
model’s chunk inventory; word combinations from the utterance that are rep-
resented as multiword chunks in the model’s chunk inventory are placed in the 
bag-of-words. The model then begins producing a new utterance by selecting the 
chunk in the bag which has the highest BTP, given the start-of-utterance marker 
(which marks the beginning of each utterance in the corpus). The selected chunk 
is then removed from the bag and placed at the beginning of the utterance. At 
each subsequent time step, the chunk with the highest BTP given the most re-
cently placed chunk is removed from the bag and produced as the next part of 
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the utterance. This process continues until the bag is empty. Thus, the model’s 
production attempts are based on incremental, chunk-to-chunk processing, as 
opposed to whole-sentence optimization.

Each utterance produced by the model is scored against the child’s original 
utterance. Regardless of grammaticality, the model’s utterance receives a score of 
1 for a given utterance if (and only if) it matches the child utterance in its entirety; 
in all other cases, a score of 0 is received. The model’s production abilities can 
then be evaluated on any child corpus in any language, according to the overall 
percentage of correctly produced utterances.

Previous Results Using the CBL Model

While the focus of the present paper is on simulations that directly capture psy-
cholinguistic data, we note here that previous work using CBL has underscored 
the robustness and scalability of the model more generally. Thus, McCauley et al. 
(in press) described the results of over 40 simulations of individual children from 
the CHILDES database (MacWhinney, 2000). On the comprehension task, the 
model was shown to learn useful multiword units, approximating the perfor-
mance of a shallow parser (e.g., Punyakanoth & Roth, 2001) with high accuracy 
and completeness. In production, the model was able to produce the majority 
of the child utterances encountered in each corpus. Furthermore, McCauley & 
Christiansen (in preparation; see also McCauley & Christiansen, 2011) demon-
strated that the model is capable of producing the majority of child utterances 
across a typologically diverse array of 28 additional languages (also from the 
CHILDES database). Importantly, the CBL model outperformed more traditional 
bigram and trigram models (cf. Manning & Schütze, 1999) cross-lingustically in 
both comprehension and production.

In what follows, we evaluate the model according to its ability to account for 
key psycholinguistic findings on children’s distributional learning of multiword 
units, as well as their use in early comprehension and production.

Modeling Developmental Psycholinguistic Data

Whereas previous simulations have examined the ability of CBL to discover 
building blocks for language learning, in the current paper we investigate the psy-
chological validity of these building blocks. We report simulations of empirical 
data covering two key developmental psycholinguistic findings regarding chil-
dren’s distributional and item-based learning. The first simulation shows CBL’s 
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ability to capture child sensitivity to multiword sequence frequency (Bannard & 
Matthews, 2008) while the second concerns the learning of formulaic sequences 
and their role in morphological development (Arnon & Clark, 2011).

Simulation 1: Modeling Children’s Sensitivity to Phrase Frequency

Bannard & Matthews (2008) provide some of the first direct evidence that children 
store frequent multiword sequences and that such sequences may be processed 
differently than similar, less frequent sequences. Their study contrasted chil-
dren’s repetition of four-word compositional phrases of varying frequency (based 
on analysis of a corpus of child-directed speech; Maslen, Theakston, Lieven, &  
Tomasello, 2004). For instance, go to the shop formed a high-frequency phrase 
which was contrasted with a low-frequency phrase, go to the top. Two and 3-year-
olds were more likely to repeat an item correctly when its fourth word combined 
with the preceding trigram to form a frequent chunk, and 3-year-olds were sig-
nificantly faster to repeat the first three words. As the stimuli were matched for 
the frequency of the final word and final bigram, only the frequencies of the final 
trigram and entire four-word phrase differed across conditions, suggesting that 
children do, in some sense, store multiword sequences as units.

If CBL provides a reasonable account of children’s multiword chunk forma-
tion, it should show similar phrase frequency effects to those found in the Bannard 
and Matthews study, despite the fact that it is not directly sensitive to raw whole-
string frequency information (the frequency of a sequence is only maintained if it 
has first been discovered as a chunk). To test this prediction, we exposed CBL to a 
corpus of child-directed speech and computed the “chunkedness” of the test items’ 
representations in the model’s chunkatory.

Method
The model architecture was identical to that used in prior simulations (e.g.,  
McCauley & Christiansen, 2011). We began by exposing the model to the dense 
corpus of child-directed speech that was previously used in our natural language 
simulations (Maslen et al., 2004). This corpus was chosen not only because of its 
density, but also because it was recorded in Manchester, UK, where the Bannard 
and Matthews study was carried out. To capture the difference between the 2- 
and 3-year-old subject groups in the original study, we tested the model twice: 
once after exposure to the corpus up to the point at which the target child’s age 
matched the mean age of the first subject group (2;7), and once after exposure 
up to the point at which the target child’s age matched that of the second group 
(3;4). Following exposure, the chunkedness of each test item’s representation in 
the model’s chunkatory was determined.
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Scoring
Our previous analyses of the chunkatories built by CBL during exposure to 
various corpora in previous natural language simulations showed that most of 
the model’s multiword chunks involved 2- or 3-word sequences. As the stimuli 
in Bannard and Matthews all consisted of 4-word phrases, we focused on the 
chunk-to-chunk statistics that would be used by the model to construct each 
phrase during production, thereby offering a simulation of children’s production 
attempts. A phrase’s score was calculated as the product of the BTPs linking each 
chunk in the sequence, yielding the degree of chunkedness for that sequence. If a 
sequence happened to be stored as a 4-word chunk in the chunkatory, the model 
received a chunkedness score of 1, indicating a BTP of 1 (as no chunk-to-chunk 
probability calculation was necessary). In the case of an item represented as two 
separate chunks, the degree of chunkedness for the test item was calculated as the 
chunk-to-chunk BTP between the two chunks.

Results and Discussion
Two-year-olds in the original study were 10% more likely to repeat a high-fre-
quency phrase correctly than a phrase from the low-frequency condition, while 
3-year-olds were 4% more likely (both differences were significant). There was 
also a duration effect found for the 3-year-olds, who were significantly faster to 
repeat the first three words on high-frequency trials. CBL exhibited phrase fre-
quency effects that were graded appropriately across the three frequency bins used 
in the original study.4 In the 2-year-old simulation, the mean degree of chunked-
ness (BTP) scores were: 0.4 (high-frequency), 0.2 (intermediate-frequency), and 
0.008 (low-frequency). In the 3-year-old simulation, the mean BTP scores were: 
0.38 (high-frequency), 0.21 (intermediate-frequency), and 0.08 (low-frequency). 
Thus, CBL was able to capture the general developmental trajectory exhibited 
across subject groups: the difference in performance between high- and low-fre-
quency conditions was lower in our 3-year-old simulation, just as in Bannard and 
Matthew’s child subject group. This is depicted in Figure 1.

Thus, the model not only captured the graded phrase frequency effect exhibit-
ed by the child subjects, but also fit the overall pattern of a less dramatic difference 
in performance between high- and low-frequency conditions for the 3-year-old 
subject group. As the stimuli in the original study were matched for unigram and 
bigram substring frequencies, a simple bigram model could not produce a phrase 

4. Note that while items in the Intermediate condition were listed by Bannard and Matthews, 
they reported no results or analyses for children’s repetition of them, beyond inclusion in a re-
gression analysis. We report CBL’s performance for these items to emphasize the graded nature 
of the phrase frequency effect exhibited by the model.
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frequency effect like the one exhibited by the model; the result necessarily stems 
from CBL’s ability to discover multiword chunks. This is despite the fact that many 
of the test items, even in the high-frequency group, were stored as two separate 
chunks in the model’s chunkatory. The chunk-to-chunk BTPs linking two-word 
chunks like a drink and of milk (chunks forming a high-frequency phrase) were 
higher than the BTPs linking chunks like a drink and of tea (chunks forming a 
low-frequency phrase), despite the fact that of milk and of tea had nearly identical 
token counts in the chunkatory. This is not a trivial consequence of overall phrase 
frequency in the corpus; because the model relies on backward rather than for-
ward transitional probabilities, the raw frequency count of the entire sequence 
was not the only important factor (and was never utilized by the model). Of great-
er importance was the number of different chunks that could immediately pre-
cede the non-initial chunks in the sequence. For instance, because the bigrams of 
milk and of tea are matched for frequency, and the sequence a drink immediately 
precedes of milk with greater frequency than of tea, there are necessarily a great-
er number (in terms of token rather than type frequency) of different two-word  
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Figure 1. The difference in correct repetition rates between high- and low-frequency 
phrase conditions for both age groups in Bannard & Matthews (2008) (at left), and 
the difference in the mean degree of chunkedness (BTP) of the stimuli in high- and 
low-frequency conditions for the two- and three-year-old CBL results from Simulation 1 
(at right).
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sequences that precede of tea which are not a drink, resulting in a lower chunk-to-
chunk BTP linking stored chunks like a drink and of tea than a drink and of milk.5 
Importantly, this difference in the statistical properties of the sequences suggests 
that the overall cohesiveness of the sequence (as captured by BTPs in the current 
instance) may be as important as overall phrase frequency when it comes to the 
representation of multiword sequences. Future behavioral work with children 
(and adults) should target this issue.

As noted above, the model captured the general finding that the high- and 
low-frequency stimuli were processed more similarly by the older children. That 
this counter-intuitive pattern was exhibited by the model supports the view that 
CBL does indeed offer a psychologically plausible and informative account of 
children’s discovery and use of multiword chunks. Moreover, this result also reso-
nates with the developmental trajectory of the model’s chunk inventory, in which 
the importance of multiword sequences grows, rather than diminishes, over time. 
Figure 2 depicts the number and size of the chunk types learned by the model 
during training up to 2;7 and 3;4 on the dense corpus. Importantly, while the 
number of types grows consistently across chunks of various sizes, chunks of size 
four and greater are discovered at an increased rate during the period between 
2;7 and 3;4. Thus, while Bannard and Matthews’ (2008) finding of a less dramatic 
difference between conditions for the older children might appear to suggest a 
decreased reliance on multiword sequences, the model’s ability to capture this 
pattern is actually driven by an increased reliance on chunks. Because the model 
already has strong coverage of the items in the high-frequency condition at 2;7, 
the discovery of new chunks between 2;7 and 3;4 primarily increases the mod-
el’s coverage of the test sequences in the low-frequency condition. This leads us 
to reaffirm our prediction that the importance of multiword units may actually 
grow, rather than diminish, throughout development. In this context, the chunk-
ing mechanism made explicit in the model could help explain the apparent per-
vasiveness of multiword units in adult language processing (as reviewed in the 
introduction).

Our results also have implications for approaches to multiword chunk storage 
more generally: the fact that the model was able to capture phrase-frequency effects 
by learning to form chunks over pre-segmented input underscores the idea that 

5. Because the stimuli were not matched for trigram substring frequency (the final trigram 
in high-frequency phrases being of higher frequency that that of low-frequency phrases), the 
same pattern would hold even if a and drink, in the previous example, were not represented as 
a single chunk by the model; the BTP between drink and of milk would still be higher than that 
between drink and of tea, for the same reasons discussed above.
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not all of children’s stored chunks need stem from initial “under-segmentation” of 
the speech stream (see also Arnon & Christiansen, in preparation, for discussion).

Simulation 2: Modeling the Role of Multiword Units in Children’s 
Morphological Development

Arnon and Clark (2011) examined the impact of multiword sequences on children’s 
morphological development, specifically with respect to patterns of over-regu-
larization when producing irregular noun plurals. American English speaking 
children (mean age: 4;6) were tested in an elicitation paradigm in which images 
depicting items corresponding to irregular plurals (e.g., a group of mice) were dis-
played, followed by either a spoken lexically specific frame (e.g., three blind __) or 
non-specific frame (e.g., so many __), which the child was then asked to complete 
(e.g., by saying mice, or mouses in the case of an over-regularization error). A third 
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condition involved a general question (What are all these?). Children produced 
irregular plurals more accurately, and with fewer over-regularization errors, when 
prompted with lexically specific frames, though the so many frame did provide 
some advantage over the general question. The facilitatory role of lexically specific 
frames demonstrated by this study implies not only that children store multiword 
units, consistent with the findings of Bannard and Matthews (2008), but also that 
such units may play an active role in morphological development.

As this study demonstrates child sensitivity to frame+plural chunks of much 
lower frequency than the sequences used by Bannard and Matthews (2008), with 
several of the noun plurals being relatively infrequent in child-directed speech 
to begin with (such as mice, which occurs only 8 times in the largest single cor-
pus of American English in CHILDES), the ability to fit the child data from this 
study stands as a strong challenge for a computational account of multiword unit 
discovery. A current limitation of CBL is that it cannot over-regularize inde-
pendently of the utterances it attempts to produce (i.e., during production, the 
model is simply faced with the task of retrieving and sequencing chunks from a 
random collection of words corresponding to the words in the child’s utterances, 
only some of which include over-regularized plurals). We were nevertheless able 
to model Arnon and Clark’s results by looking at the pattern of chunk-to-chunk 
BTPs linking together the stimuli used in the study, using the exact same method 
as employed in Simulation 1.

Method
To model the Arnon and Clark results, we first constructed an aggregated cor-
pus from the entire US English portion of CHILDES (we focused on American 
English because the original study was conducted in the US). The aggregated US 
corpus was used instead of a single corpus because of the infrequency of irregular 
noun plurals. The aggregated corpus was constructed by interweaving the indi-
vidual recording files chronologically by the age of the target child at the start of 
each individual recording session, with the aim of approximating a naturalistic 
developmental trajectory. Files featuring multiple target children of different ages 
were excluded (to preserve a realistic developmental trajectory). The resulting 
aggregated corpus was stripped of tags and punctuation, leaving only the original 
sequence of words in each utterance (cf. McCauley & Christiansen, 2011). Proper 
names (including the names of individual target children) were preserved. 

We then exposed CBL to the aggregated corpus, stopping at a point that met 
the corpus target child age corresponding to the mean subject age in the original 
study (4;6). To simulate the test, we treated each frame+plural combination as a 
sequence (e.g., brush your teeth in the case of a lexically-specific frame sequence, 
and so many teeth in the case of the corresponding general plural frame sequence) 
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and examined its representation in the model’s chunkatory. As the target sequenc-
es consisted of 3 words, we focused on the chunk-to-chunk statistics which would 
be used by the model to construct each sequence during production, thereby of-
fering a simulation of children’s production attempts which relied on a probabi-
listic rather than all-or-nothing measure. An item’s score was calculated as the 
product of the BTPs linking each chunk in the sequence (in the case of an item 
represented as two separate chunks, the score for the test item was calculated as 
the chunk-to-chunk BTP between the two chunks). If a sequence happened to 
be stored as a 3-word chunk in the chunkatory, the model received a score of 1, 
indicating a BTP of 1 (as no chunk-to-chunk probability calculation was neces-
sary). In order to simulate the general question trials, which featured no frame, 
we simply normalized the target irregular plural’s count in the chunkatory by the 
total number of chunk tokens represented by the model (this would correspond 
to the model’s likelihood of selecting the target irregular in the absence of distri-
butional/frame or semantic information).

Results and Discussion
The children in the Arnon and Clark study attained accuracy rates of 72% for the 
lexically-specific frame condition, 53% for the so many frame condition, and 32% 
for the general question condition (all differences significant, with accuracy de-
fined as the proportion of trials in which irregular plurals were named correctly). 
The mean CBL BTP scores for the items in each condition are shown in Figure 3. 
Because so many did not immediately precede several of the plurals as a chunk, 
the path from so to many to the irregular plural was necessarily relied upon in 
certain instances (thus, the mean BTP for the so many condition was quite low). 
For this reason, log BTP scores are given in Figure 3; in order to depict the results 
in an intuitive format, we divided –1 by the mean log BTP for each condition.6

As can be seen in Figure 3, the model was able to capture the facilitatory ef-
fect of lexically-specific frames on irregular production through its chunking of 
frame+plural sequences, despite the relatively low occurrence of such sequences 
in the corpus. Similarly to our simulation of the Bannard and Matthews (2008) 
study, this implies that the overall cohesiveness of a sequence is no less important 
than frequency when it comes to chunk discovery. In other words, whether some-
thing is chunked together with the material preceding it depends as much on how 

6. As the materials across conditions in Arnon & Clark (2012) were not controlled for sub-
string frequency, we carried out a series of bigram analyses to ensure that a comparable ef-
fect could not be gained with simple word-to-word transitional probabilities. As the stimuli in 
Bannard & Matthews (2008) were controlled for substring frequencies, we did not perform a 
bigram analysis of the materials used in Simulation 1.
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likely the preceding material is, given the item being considered (as predicted 
by CBL’s reliance on BTPs), as on how strongly it is predicted by the preceding 
material (as would be predicted by a reliance on FTPs). It is important to note 
that transitional probabilities offer a measure of how likely a sequence is given 
the frequency of its component parts. Thus, CBL does not rely on raw frequency 
of co-occurrence. This can be related to the learning-theoretic notion of back-
ground rate: the more frequently an event occurs, the less informative it is about 
the events it sometimes co-occurs with (for a thorough discussion of background 
rates in language acquisition, see Ramscar, Dye, & McCauley, 2013).

Despite this promising result, the model nevertheless exaggerated the differ-
ence between the lexically-specific and general frame conditions. As noted above, 
this stems from the lack of a path from the so many chunk to specific irregulars 
throughout the corpus (mostly due to a lack of the relevant trigram’s appearance 
in the aggregated corpus to begin with), forcing the model to rely, instead, on a 
path across three single-word chunks in such instances. Enhanced child perfor-
mance in the so many frame condition may have more to do with semantic than 
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conditions in Simulation 2.
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purely distributional information at the word level. For instance, retrieval of the 
correct irregular form may be easier in a context that clearly requires a plural 
(cf. Ramscar et al., 2013; Ramscar & Yarlett, 2007). Nevertheless, distributional 
information of the sort learned by the model clearly played a role in children’s 
performance. For instance, in the original study, there was no facilitatory effect of 
the so many frame for only one of the plurals (geese); in a similar fashion, so many 
geese was the only sequence for which no path through the chunkatory was found 
in the simulation (both findings clearly reflect the relatively low frequency of geese 
in child-directed speech and, therefore, the corpora available in CHILDES).

Further modeling work incorporating information about the nonlinguistic 
cues available to children (in the case of the above study, the images depicting 
irregular plurals) and semantic information (such as the notion of plurality), in 
concert with the types of linguistic distributional information used by CBL, will 
be necessary in order to fully capture children’s performance on this study (for a 
discussion of the prospects and challenges of incorporating semantic information 
into models of language development, see McCauley & Christiansen, 2014).

Conclusion

Our previous simulations have shown that the CBL model can account for a con-
siderable part of children’s early linguistic behavior by using multiword units as 
building blocks for learning to comprehend and produce sentences (McCauley 
and Christiansen, 2011; McCauley et al., in press). In the present paper, we have 
demonstrated the psychological validity of these building blocks, showing that 
CBL can also capture key psycholinguistic findings on children’s discovery of 
multiword units in the speech stream as well as their use in language processing 
(Arnon & Clark, 2011; Bannard & Matthews, 2008). Importantly, CBL functions 
by computing simple statistics — to which infants and adults have been shown 
to be sensitive — in a purely incremental, on-line fashion. That so much of chil-
dren’s distributional learning can be accounted for by such a simple architecture is 
encouraging for the prospect of developing more comprehensive computational 
accounts of formulaic language learning and use, as well as of language develop-
ment and sentence processing more generally.

The developmental findings we model here are mirrored in a number of recent 
studies on adult comprehension (e.g., Arnon & Snider, 2010), production (e.g., 
Janssen & Barber, 2012), and artificial language learning (e.g., Arnon & Ramscar, 
2012). This points to an intriguing hypothesis: the pervasive role of formulaic lan-
guage in adult processing may reflect the prior importance of multiword sequenc-
es for language acquisition — especially when considering the difficulties adult  
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second language learners experience with formulaic language (e.g., Wray, 2002). 
That is, multiword units may be so crucial for acquisition that they become key 
building blocks of the emerging language system (see also Arnon & Christiansen, 
in preparation). This idea contrasts with traditional approaches to language, which 
incorporate sharp distinctions between lexicon and grammar (e.g., Chomsky, 
1957), but fits quite naturally with theoretical frameworks emerging from cogni-
tive linguistics, such as cognitive grammar (e.g., Langacker, 1987) and construc-
tion grammar (e.g., Croft, 2001), which eschew the distinction between lexicon 
and grammar. The parallels between psycholinguistic findings on children and 
adults’ multiword linguistic units suggests that we can reach a fuller understanding 
of formulaic language by adopting a developmental perspective. In the present pa-
per, we have sought to provide the initial steps towards a developmental approach 
to studying adults’ formulaic language use, one which has its basis in explicit com-
putational mechanisms that are psychologically plausible and can account for de-
velopmental psycholinguistic data.
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