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Prospects for usage-based
computational models
of grammatical development:
argument structure and
semantic roles
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The computational modeling of language development has enabled researchers to
make impressive strides toward achieving a comprehensive psychological account
of the processes and mechanisms whereby children acquire their mother tongues.
Nevertheless, the field’s primary focus on distributional information has lead to
little progress in elucidating the processes by which children learn to compute
meanings beyond the level of single words. This lack of psychologically motivated
computational work on semantics poses an important challenge for usage-based
computational accounts of acquisition in particular, which hold that grammatical
development is closely tied to meaning. In the present review, we trace some initial
steps toward answering this challenge through a survey of existing computational
models of grammatical development that incorporate semantic information to
learn to assign thematic roles and acquire argument structure. We argue that the
time is ripe for usage-based computational accounts of grammatical development
to move beyond purely distributional features of the input, and to incorporate
information about the objects and actions observable in the learning environment.
To conclude, we sketch possible avenues for extending previous approaches to
modeling the role of semantics in grammatical development. © 2014 John Wiley & Sons,
Ltd.
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INTRODUCTION

In recent decades, cognitive science has increasingly
relied upon computational modeling for existence

proofs, hypothesis testing, and as a source of predic-
tions on which to base empirical research. Nowhere
is this trend more apparent than in developmental
psycholinguistics, where, for over three decades (Ref
1), computational models have increasingly con-
tributed to the long-standing debate over the nature
of syntax acquisition. Computational modeling—as
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a methodology—promises to provide a rigorous,
explicit account of the psychological mechanisms
whereby children acquire grammatical knowledge,
as they move from a limited understanding of the
surrounding social context to a seemingly unbounded
capacity for communicating novel information. In
recent years, computational models have been used
extensively—though certainly not exclusively—to
develop usage-based approaches to grammatical
development. In particular, models have served to
provide existence proofs, demonstrating that specific
types of linguistic knowledge can, in principle, be
learned from the input.

Usage-based computational accounts of gram-
matical development have primarily focused on what
can be learned from distributional information. This
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approach has met with considerable success, illu-
minating the learning of syntactic categories,2 spe-
cific developmental patterns,3 and the acquisition
of construction-like units,4 in addition to illustrat-
ing the emerging complexity of children’s grammat-
ical knowledge more generally.5,6 Yet, distributional
approaches are unlikely to provide a complete account
of children’s language use. Crucially, distributional
models have contributed little to our understanding
of how the child computes meaning; to become a
fully productive language user, the child must learn
to compute meanings based on previously unen-
countered utterances, and to generate novel utter-
ances conveying meanings they themselves wish to
communicate.

The relative lack of semantic information in
computational accounts of grammatical development
stems in part from the difficult challenge of simulating
naturalistic semantic representations that children
may use. Moreover, the disciplinary segregation
within developmental psycholinguistics further exac-
erbates the problem: separate subfields have typically
focused on largely distinct areas, along traditional
boundaries, such as those dividing phonology from
word learning, word learning from syntax acquisition,
and syntax acquisition from semantic development.
As a result, much of the computational work on
grammatical development has focused on structural
considerations and this presents a serious challenge
for usage-based approaches to acquisition, which
hold that grammatical learning and development are
tied to form-meaning mappings.7,8 While incorpo-
rating semantics is therefore a pressing challenge for
usage-based accounts in particular, the importance of
meaning for grammatical development has also been
emphasized in generativist approaches (e.g., Refs 9
and 10). Existing theoretical positions form a broad
spectrum regarding the extent to which semantics
is relied upon but many converge on the idea that
grammatical development involves learning from
meaning in context to at least some degree.

A comprehensive usage-based computational
account is therefore faced with the considerable task
of approximating learning from naturalistic seman-
tic input while capturing the interplay between form
and meaning in grammatical development. This chal-
lenge is made all the more daunting when one consid-
ers the full range of what semantic learning involves,
from tense and aspect to anaphora to quantifiers and
interrogatives. To make matters worse, comprehen-
sion and production involve rich conceptual represen-
tations that extend beyond what can be represented
by current formalisms such as truth-conditional rep-
resentations or first-order logic (e.g., Ref 11).

While accounting for such aspects of semantics
presents a major challenge for computational models,
initial progress has been made in a key area tied to
early grammatical development: verb-argument struc-
ture and semantic role assignment. In what follows,
we review existing computational models that instan-
tiate usage-based principles to capture such linguistic
development. The success of these models, we argue,
is encouraging with respect not only to better under-
standing the psychological mechanisms involved in
acquiring syntax but also with respect to the prospect
of future work in modeling semantics-driven gram-
matical development more broadly.

To move toward a more complete usage-based
account of grammatical development, we propose that
computational models should aspire to meet a few
basic challenges concerning the role of semantic infor-
mation in model input, the linguistic tasks performed,
and the ways in which performance is evaluated:

(1) Models should aim to capture aspects of lan-
guage use. Computational models of grammati-
cal development should attempt to simulate the
processes whereby children learn to interpret
meanings during comprehension and to pro-
duce utterances that convey specific intended
meanings (this requires that models incorpo-
rate approximations of learning from mean-
ing in the contexts in which utterances are
encountered, rather than from purely distri-
butional information). This offers the advan-
tage that models can be evaluated on their
ability to capture relevant developmental psy-
cholinguistic data, which necessarily involves
tasks related to comprehension and/or produc-
tion. Without the ability to model developmen-
tal data, it is uncertain whether the linguistic
knowledge acquired by a model is actually nec-
essary or sufficient to give rise to children’s lin-
guistic behavior.

(2) Models should make simplifying assumptions
clear and explicit, motivating them with devel-
opmental data. Computational accounts of
language acquisition must make simplifying
assumptions not only about the psychological
mechanisms they seek to capture but also the
nature of the input. This is especially true of
semantic/perceptual input to models, given the
challenge of creating naturalistic semantic rep-
resentations. If possible, researchers should aim
to motivate their decisions by appealing to psy-
chological data (e.g., the decision to supply a
predefined set of categories of some sort to a
model could be supported with evidence that
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children acquire those categories prelinguisti-
cally). As a corollary to this, models should
only make simplifying assumptions where nec-
essary and, where possible, employ natural-
istic input (such as corpora of child-directed
speech). When a model makes unnecessary
or unmotivated simplifying assumptions, it
becomes more difficult to assess how much
of the model’s performance is due to what it
is capable of learning versus what is already
built in.

(3) Models should adhere to psychologically plau-
sible processing constraints. Models intended
as mechanistic accounts should aim to pro-
cess input in an incremental fashion, rather
than performing batch learning (e.g., by pro-
cessing an entire corpus in a single step). This
allows the model to approximate developmen-
tal trends when the trajectory of learning is
examined, increasing the range of developmen-
tal data available for evaluating the model
(e.g., longitudinal data or data from children
in different age groups). Models should also
aim to employ computations that are in prin-
ciple capable of processing input online, in
accordance with psycholinguistic evidence for
the incremental nature of sentence processing
in both children and adults.12,13 Incorporating
psychologically implausible processes means
the model may be less likely to scale up to deal
with more naturalistic data. Aside from the lim-
itations this places on the model’s ability to illu-
minate our understanding of the psychological
mechanisms involved in grammatical develop-
ment, it curtails its chances of contributing to
the future of the field more broadly by serving
as the basis for the construction of more com-
prehensive models.

In what follows, we provide an overview of
existing usage-based computational models of verb
argument structure learning that incorporate semantic
information. We cover models of semantic role assign-
ment, verb-argument structure construction learning,
and models that learn about semantic roles and argu-
ment structure in the service of simulating com-
prehension and production processes more directly.
Throughout, we evaluate models according to the
challenges outlined above. We conclude by offering
potential directions for extending existing computa-
tional approaches and for incorporating more natu-
ralistic approximations of semantic input using readily
available resources and techniques.

MODELS OF SEMANTIC
ROLE ASSIGNMENT
The notion of semantic roles (also referred to as
thematic roles), such as agent and patient, was ini-
tially proposed by linguists working toward alterna-
tives to early approaches to formal semantics,14,15

but now enjoys widespread acceptance in theoreti-
cal linguistics. In the domain of formal approaches
to syntax, semantic roles have been incorporated
to varying degrees in argument structure analyses
(e.g., Refs 16 and 17). Semantic roles are also
widely accepted in psycholinguistics, where empirical
work has built support for their psychological reality
through evidence for adults’ use of role information
during online sentence comprehension (e.g., Refs 12,
18, and 19).

Thus, it is unsurprising that among the earliest
computational models of language development to
incorporate semantic information were those which
learned to assign semantic roles to sentence con-
stituents, providing an initial step toward capturing
argument structure in comprehension processes. An
early, representative example is the connectionist
model of McClelland and Kawamoto,20 a nonre-
current network featuring a single layer of trainable
weights. The model receives input in the form of
static representations of sentences (consisting of a
single verb and up to three noun phrases), in which
words are represented in a distributed fashion by
lists of semantic microfeatures (e.g., SOFTNESS, VO-
LUME, BREAKABILITY). The model is then trained
to activate the semantic representations of the correct
words filling up to four fixed semantic roles: AGENT,
PATIENT, INSTRUMENT, and MODIFIER. The
authors therefore characterize the key problem faced
in learning argument structure as one of assigning a
fixed set of (possibly prelinguistic) semantic roles to
constituents where little to no ambiguity exists in the
environment. The model successfully learns the role
assignment task, generalizes to novel words, and is
capable of disambiguating meanings based on sen-
tence context. Nevertheless, the model’s limitations
are substantial: the static nature of the input represen-
tations severely limits the complexity of the sentence
types the model can learn from, while the use of four
fixed semantic roles and a lack of function words in
the input further restricts what can be learned by the
model.

This approach was later extended by St. John
and McClelland,21 who present a model that builds
interpretations as sentence constituents are processed
incrementally. The model employs separate input
and output components: the input architecture is a
simple recurrent network (SRN; Ref 22), while the
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output side of the model is trained to respond to
queries about sentences and their meanings. The SRN
learns from sequences of sentence constituents (verbs,
simple noun phrases, and prepositional phrases)
to incrementally revise its predictions about the
entire event described. The output component of
the model is trained through back-propagation to
respond with the appropriate semantic role when
probed with a sentence constituent, and vice versa.
As with McClelland and Kawamoto,20 the authors
characterize the problem facing the learner as one
of assigning a predefined set of roles to sentence
constituents. The model successfully learns to predict
meanings incrementally, for both active and passive
sentences, and generalizes to novel sentences and
structures. Nonetheless, the model shares a number of
limitations with that of McClelland and Kawamoto,
including the use of a small number of fixed semantic
roles. Despite the limitations of the model and its
predecessor, subsequent models have successfully
extended the basic framework to more comprehensive
accounts, demonstrating that the general approach
can scale up to more complex grammars (e.g., Ref 23;
discussed below). Both models serve as valuable initial
steps toward incorporating meaning into usage-based
models, successfully demonstrating that a statistical
approach based on thematic roles can in principle
bootstrap basic aspects of grammar and achieve
semantic and syntactic learning simultaneously.

Moving connectionist approaches closer to a
more complete account of argument structure, Allen24

describes a further model of semantic role assignment
which introduces proto-role units in addition to each
thematic role. An additional improvement is in the
sentences used as input to the model, which are drawn
from the CHILDES database25 rather than generated
by an artificial grammar (as is the case with most
connectionist models of language learning). During
exposure, verb and preposition input units are held
constant while arguments are presented sequentially.
Through these fixed frames, Allen implicitly charac-
terizes the problem facing the learner as akin to one
of learning argument structure constructions (e.g.,
Ref 7), although the task facing the model involves
assigning roles to constituents (as in the previous
approaches). The model exhibits syntactic boot-
strapping, capturing role interpretations and semantic
features for novel verbs. Despite this, the model is lim-
ited by the use of unambiguous feedback about correct
semantic roles, and a built-in special status afforded
to verbs in the linguistic input. While the model has a
small vocabulary and input corpus, it is likely that the
model would scale up to deal with more representa-
tive input (as suggested by subsequent connectionist

models discussed below). Allen and Seidenberg26

extend this model, using it to propose a theory of
grammaticality judgment. Furthermore, the fixed
frame approach has been successfully applied in sub-
sequent models with broader coverage (e.g., Ref 27;
discussed below).

A further connectionist model of role assign-
ment is presented by Morris et al.28 Words are pre-
sented sequentially to a SRN that learns to map con-
stituents to a small set of semantic roles, similar to
previous models. A number of different sentence types
are used as input to the model, featuring both experi-
ential and action verbs. While the authors view the
problem facing the learner in much the same way
as McClelland and Kawamoto,20 for instance, they
go further in demonstrating that such an approach
can both make contact with developmental data and
yield unique insights into grammatical development.
The model exhibits a pattern of generalization and
undergeneralization for specific sentence types that
approximates developmental psycholinguistic findings
(e.g., Ref 29). Crucially, the authors use an analy-
sis of the network’s hidden layer representations to
trace the emergence of an implicit ‘subject’ category,
which is acquired entirely through the model’s seman-
tic processing, in the absence of any syntactic archi-
tectural features. Despite these successes, the model’s
coverage is limited by its impoverished semantics:
semantic information is tied entirely to feedback about
semantic roles. In addition to the model’s particu-
lar limitations, it shares a number of limitations with
previous approaches: for instance, constituents are
mapped to a small set of predefined semantic roles.
Although the input corpus—and resulting vocabu-
lary size—is restricted due to computational consid-
erations, the model appears capable of scaling up to
deal with more naturalistic input (as suggested by sub-
sequent, similar SRN models discussed below, such
as Ref 23).

Recent statistical models of semantic role assign-
ment have moved beyond the computational limi-
tations of neural networks, successfully scaling up
to deal with naturalistic input in the form of cor-
pora of child-directed speech. The model of Con-
nor et al.,30 for instance, takes a subsection of the
CHILDES database25 as input. While the model
instantiates the ‘structure mapping’ account of syn-
tactic bootstrapping,31 and is therefore at odds with
usage-based theory on a conceptual level, its abil-
ity to scale up to more naturalistic input and learn
from ambiguous semantic role information is useful
in thinking about usage-based models. In the ‘struc-
ture mapping’ approach, children are innately biased
to align each of the nouns in a sentence with a verb
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argument. This allows the number of nouns appearing
in a sentence to guide comprehension in the absence
of knowledge of verb meanings. The model of Connor
et al. captures this general notion by learning to assign
a predefined set of semantic roles to arguments using
a classifier, scaffolded by intermediate structural rep-
resentations. An unsupervised hidden Markov model
(HMM) is employed to cluster unlabeled words into
part-of-speech categories using sequential distribu-
tional information, with a preclustering procedure
used to create an initial division of function and con-
tent words. A ‘seed list’ of nouns is used to identify
HMM states as potential argument states. The algo-
rithm then chooses the word most likely to be the
predicate for a sentence, based on the HMM state
most likely to appear with the number of argument
states identified in the sentence. With this amount of
structural knowledge in place, the model is able to
deal with ambiguous semantic feedback in the form of
an unordered superset of semantic roles for each sen-
tence (with the constraint that at least one of the roles
truly exists). Importantly, feedback from the semantic
role labeling task is used to refine the model’s inter-
mediate structural representations. The model suc-
cessfully learns useful abstract features for semantic
role assignment, and generalizes to sentences featuring
novel verbs.

In addition to learning from naturalistic linguis-
tic input, the Connor et al. model goes beyond pre-
vious models of role labeling in its ability to learn
from ambiguous semantic feedback. While it repre-
sents the state of the art in psycholinguistic compu-
tational approaches to role labeling, the model is not
without limitations. As with previous models, a fixed
set of pre-defined semantic roles is used, and role infor-
mation provides the only semantic input to the model;
there is no further approximation of learning from a
scene or event. Furthermore, the structure mapping
approach necessitates learning from static representa-
tions of entire utterances rather than processing utter-
ances in an incremental, online manner.

The above models of semantic role labeling pro-
vide an important step toward a more comprehen-
sive computational account of grammatical develop-
ment. The early connectionist approaches successfully
demonstrate that aspects of argument structure can
be learned through idealized semantic representations,
suggesting a number of avenues for expanding the
input to models to include meaning in context. Such
models can trace potential routes for the emergence
of abstract grammatical knowledge through purely
semantic processing (e.g., Ref 28).a

MODELS OF VERB-ARGUMENT
CONSTRUCTION LEARNING
A number of more recent computational models have
moved beyond the role labeling task, approaching
the problem of acquiring verb-argument structure
as one of learning grammatical constructions (e.g.,
Ref 7). Although not explicitly construction-oriented,
Niyogi32 provided an important precursor to models
of argument structure learning, through a Bayesian
approach to learning the semantic and syntactic
properties of verbs. Niyogi’s model learns from
utterance-scene pairs consisting of sentences and
accompanying semantic representations, made up by
small sets of hand-coded features. The model is robust
to noise, capable of learning from a small number
of verb exposures, and exhibits both syntactic and
semantic bootstrapping effects, successfully using syn-
tactic frames to learn verb meanings and verb mean-
ings to learn the syntactic frames in which a verb can
be used. Despite these successes, the model is trained
on a small language with a severely restricted vocab-
ulary and range of sentence types. The model addi-
tionally relies on a considerable amount of built-in
knowledge, including the structure of its hypothesis
space and the prior probabilities over hypotheses.

More directly invoking construction grammar
approaches, Dominey27 presents a model of con-
struction learning that is trained on a small artificial
language, but uses simple processing mechanisms to
learn from utterances paired with video data. Input
to the model is derived from videos of an experi-
menter enacting and narrating scenes involving three
distinct objects (e.g., a red cylinder). The narration
is processed by a speech-to-text system, while the
video is analyzed by an automated system tracking the
contact that occurs between the items in the scene.
Scene events are then encoded by such elements as
duration of contact and object displacement, with
the object exhibiting greater relative velocity encoded
as the agent. This leads to such event representa-
tions as Touch(AGENT, OBJECT) and Push(AGENT,
OBJECT, SOURCE). The model employs a modular
architecture, acquiring initial word meanings through
cross-situational learning. Utterances are then pro-
cessed such that open- and closed-class words are
automatically routed to separate processing streams.
The model then uses the arrangement of closed class
words in the input sentences to identify unique sen-
tence types, which are then used to build up an inven-
tory of constructions. Through these design choices,
Dominey represents the problem facing the learner as
one of learning partially abstract constructions based
on item-based frames, rooted in previously acquired
knowledge of the open-class/closed-class distinction.
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The model is evaluated according to its ability to con-
struct an internal scene representation corresponding
to an input sentence, which it was able to do for a
number of both active and passive constructions, in
addition to relative clause constructions, with gener-
alization to novel sentences. Despite this ability, the
model is quite limited in scale, with a vocabulary of
less than 25 words and an inventory of just 10 con-
structions. Because of its reliance on a predefined set
of closed-class items to identify sentence structures
that are assumed to be unique and nonoverlapping,
it is unclear whether the model would successfully
scale up to more naturalistic input in the form of cor-
pora of child-directed speech. However, the general
framework has been extended to cover Japanese33 and
French,34 with a somewhat expanded vocabulary and
inventory of learned constructions.

More recent accounts of verb-argument con-
struction learning have attempted to deal with more
naturalistic input. One such model is that of Chang,35

who applies the Embodied Construction Grammar
approach (ECG; see Ref 36 for a review) to the
problem of learning item-based constructions in
grammatical development. ECG is highly compatible
with core principles of construction grammar, but
places a strong emphasis on the importance of sen-
sorimotor data and embodiment for determining the
semantic content of constructions, invoking the notion
of image schemas (e.g., Ref 37). Input to the model
consists of utterances from a corpus of child-directed
speech, accompanied by information about intona-
tion, discourse properties (e.g., speaker, addressee,
activity type, focus of joint attention), and an ideal-
ized representation of the visual scene. The model is
initialized with a set of predefined schemas (corre-
sponding to actions, objects, and agents) and a set of
lexical constructions for individual words. The model
acquires new constructions by forming relational
maps to explain form-meaning mappings that the
current grammar cannot account for, or by merging
constructions into more general constructions.

While successfully acquiring useful verb-based
constructions, Chang’s approach has been applied
to a limited range of constructions and requires a
significant amount of hand encoding; it is not clear
that it would scale up to a broader coverage. Further-
more, the learning mechanisms (involving minimum
description length calculations, Bayesian statistics,
etc.) involved in Chang’s modeling approach may not
be compatible with an incremental, on-line account of
learning. Nevertheless, Chang’s approach is encour-
aging for the prospect of a semantics-driven approach
to grammatical development, and may be the cur-
rently best computational instantiation of the core

principles of various theoretical approaches emerging
from cognitive linguistics (e.g., Refs 7 and 11).

Perhaps the most comprehensive model of argu-
ment structure construction learning is that of Alishahi
and Stevenson,38 based on incremental Bayesian clus-
tering. Like the model of Connor et al.,30 this model
does not assume access to the correct semantic roles
for arguments. However, unlike the model of Con-
nor et al., the model of Alishahi and Stevenson does
not have access to a fixed set of predefined roles,
but instead learns a probability distribution over
the semantic properties of arguments, capturing the
development of verb-argument structure and seman-
tic roles themselves, simultaneously. To approximate
the semantics of nouns, lexical properties are extracted
from WordNet.39 This yields a list ranging from spe-
cific to more general properties (e.g., cake: {baked
goods, food, solid, substance, matter, entity}), with
considerable overlap among the more general proper-
ties across nouns. Input to the model consists in incre-
mentally presented argument structure frames, each
of which corresponds to an utterance and includes:
the semantic properties for each argument; a set of
hand-constructed semantic primitives for the verb
(e.g., eat: {act, consume}); a set of hand-constructed
event-based properties for each argument (e.g., {voli-
tional, affecting, animate… }); the number of argu-
ments; and the relative positions of the verb, argu-
ments, and function words in the corresponding utter-
ance. The authors add ambiguity to the input in the
form of missing features. The frames are incrementally
submitted to a Bayesian clustering process that groups
similar frames into argument structure ‘constructions’.
In line with usage-based approaches, the model cap-
tures verb-specific semantic profiles for argument posi-
tions early in training. With continued exposure to
the input corpus, these item-based roles gradually
develop into more abstract representations, capturing
the semantic properties of arguments across a range
of verbs. The model is additionally capable of success-
fully capturing the meanings of novel verbs in ambigu-
ous contexts.

Despite moving beyond previous approaches,
the model of Alishahi and Stevenson is not without
limitations. While the use of WordNet allows for
automated creation of semantic properties for nouns,
the use of hand-coded semantic primitives for verbs
and event-based argument properties offers a crude
approximation of learning from actual events, and
restricts the input to frequent verbs. The use of static
input representations means a lack of incremental
sentence processing, and a considerable amount of
built-in knowledge is provided, such as pre-existing
knowledge of noun and verb categories.
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Perfors et al.40 present a further model of argu-
ment structure construction learning, which bears
some similarities to that of Alishahi and Stevenson38

while serving to underscore the importance of consid-
ering the distributional and semantic dimensions of
the task simultaneously. The authors describe a hier-
archical Bayesian approach primarily concerned with
the distributional properties of verbs appearing in the
dative alternation (e.g., Ref 41). Input to the model is
extracted from CHILDES25 and divided into epochs,
allowing the model to approximate an incremental
trajectory while learning in batch. A purely distribu-
tional version of the model learns from both positive
and (indirect) negative evidence and successfully
forms appropriate alternating and nonalternating
verb classes, but overgeneralizes lower frequency
verbs beyond the constructions in which they appear.
In a subsequent version of the model, however, the
inclusion of a single semantic feature (with three possi-
ble values corresponding to three classes of verb) leads
to more child-like performance (e.g., Ref 41), with less
overgeneralization. The model serves to underscore
the potential power of distributional information as a
basis for learning about argument structure while also
demonstrating what can be gained by the introduc-
tion of even highly-idealized semantic information.
Despite the insights provided by the model, it has
a number of limitations: the model possesses prior
knowledge about the uniformity and distribution of
constructions in the input, and, as a result, it is unclear
as to how heavily model’s performance depends on
its prespecified knowledge and whether it could serve
as the basis for a more fully empiricist approach.
Furthermore, the model focuses on a very restricted
domain (the dative alternation); the authors note that
it remains uncertain whether their approach would
scale up to deal with a more complex dataset featuring
a greater number of verbs and constructions.

LEARNING ARGUMENT STRUCTURE
THROUGH COMPREHENSION
AND PRODUCTION

A number of models have successfully captured
aspects of argument structure by learning to com-
prehend and produce utterances in an incremental,
online fashion. Among the earliest and most com-
prehensive models in this vein is the Connectionist
Sentence Comprehension and Production (CSCP)
model of Rohde,23 a large-scale SRN which is trained
on a more complex subset of English than used
with previous models, including features such as
multiple verb tenses, relative clauses, and sentential
complements. The semantic component of the model

consists of meanings encoded in distributed featural
representations, and is trained using a query network
(as in Ref 21). Comprehension in the model consists in
learning to output an appropriate sentence meaning,
given an incrementally presented sequence of words;
as part of this process, the model learns to predict the
next word in a sequence. Production involves learning
to predict a series of words, given a static representa-
tion of sentence meaning (the most strongly predicted
word is selected as the start of the utterance, and
so forth). Thus, comprehension and production are
tightly interwoven in the model. The model achieves
strong performance on a number of tasks, successfully
processing a wide range of sentence types, including
sentences featuring multiple clauses. Importantly, the
model also captures a number of psycholinguistic
effects related to verb-argument structure, including
structural priming, argument structure preference,
and sensitivity to structural frequency.

The CSCP demonstrates that the general
approach adopted by previous connectionist accounts
of semantic role labeling can scale up to approxi-
mate online comprehension and production in an
integrated model, with more complex input. Fur-
thermore, the model acquires knowledge of argument
structure through its attempts to comprehend and pro-
duce utterances, consistent with usage-based theory.
Despite its comprehensive coverage, the model leaves
something to be desired in the training of its semantic
system: it remains unclear what psychological pro-
cesses or mechanisms the model’s fill-in-the-blank style
query network would correspond to. Nevertheless,
Rohde’s model is perhaps the most comprehensive
connectionist approach to language learning.

A similar—and somewhat more developmen-
tally focused—model of acquisition through com-
prehension and production is provided by Chang
et al.,42 who use the Dual-path Model of Chang43 to
capture aspects of grammatical development within
a connectionist framework. The Dual-path Model
uses two distinct sets of connection weights: the
first set captures the ‘sequencing’ of linguistic mate-
rial, and is connected to the second set of weights
which captures mappings between word forms, lex-
ical semantics, event properties, and semantic roles
(the ‘message’ component of the model). As with
the above-discussed models of semantic role label-
ing, the Dual-path model simplifies the problem fac-
ing the learner considerably by assuming the correct
mapping between semantic roles and lexical-semantic
representations (via fast-changing weights). However,
semantic roles in the model (five in total) do not
instantiate traditional thematic roles (such as AGENT
or PATIENT), but instead correspond to general
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properties of a visual scene. For instance, a single role
represents patients, themes, experiencers, and figures,
while another role corresponds to goals, locations,
ground, recipients, and so forth. The model is tasked
with learning to correctly produce the words of a
sentence when presented with a corresponding mean-
ing representation (a task which can, in principle, be
reversed to evaluate the model’s comprehension per-
formance). The Dual-path Model can successfully cap-
ture infant preferential-looking data44 as well as data
from elicited child productions.45 It has also been used
to successfully simulate structural priming effects.46

Like the model of Rohde,23 the Dual-path
Model is among the most comprehensive compu-
tational accounts of grammatical development to
incorporate an active role for semantics, simulat-
ing online comprehension and production processes
while making contact with a range of psycholinguis-
tic data. While the model operates over a variety
of hand-constructed sentence types (and has been
successfully extended to cover word order biases in
English and Japanese,47 in addition to the acquisition
of relative clauses48), the input to the model is never-
theless limited in scope, relative to models that learn
from full corpora of child-directed speech. However,
computational demands aside, it is likely that the
general approach could scale up to deal with a more
realistic set of input data. The model is further limited
by its automatic alignment of lexical-semantic repre-
sentations with the appropriate semantic roles, which
are predefined and fixed, and thus does not capture
the emergence of abstract roles or the ambiguity
inherent in semantic feedback.

A further online, incremental approach to gram-
matical development is that of Mayberry et al.,49 who
present a recurrent network model of comprehension
that incorporates a number of desirable features.
Rather than simply learning to map linguistic input
onto semantic roles, input to the model features repre-
sentations of actions and entities in a scene (featuring
two events), which remain active as the corresponding
utterance unfolds incrementally. The model learns to
output a meaning representation capturing the rela-
tionship between the particular action and entities
described by the input sentence; this is done incre-
mentally, in that the model’s interpretation changes
as each utterance unfolds. The model also captures
anticipatory processing through prediction of likely
utterance continuations. The model’s selection of the
appropriate scene is modulated by an utterance-driven
attention mechanism, in the form of a gating vector.
In addition to its general psycholinguistic features,
the model’s performance provides a qualitative fit
to eye-tracking data from previous studies using

the visual world paradigm (e.g., Ref 50). Like other
connectionist approaches, the grammar generating
the linguistic input to the model is quite simple, and
the model’s vocabulary size is severely limited. How-
ever, given the effectiveness of the model’s attention
mechanism in processing semantic representations
inspired by the visual world paradigm, it is likely
that the model would successfully scale up to more
representative input.

The models reviewed in this section successfully
acquire argument structure by taking usage-based the-
ory to its natural conclusion: by modeling language
learning as language use, rather than relying on tra-
ditional notions of grammar induction as a separate
process. A key challenge for the future will be to move
this general approach beyond the computational
restrictions inherent in connectionist techniques, by
implementing usage-driven learning in higher-level
statistical models capable of scaling up to deal with
input in the form of entire corpora of child-directed
speech (e.g., Refs 51 and 52) as well as more complex,
multilayered semantic representations.

EVALUATING AND EXTENDING
EXISTING MODELS

Despite their limitations, existing models’ ability to
acquire aspects of verb-argument structure by approx-
imating learning from meaning in context is encour-
aging for the prospect of more fully comprehensive
usage-based models of grammatical development. In
order to move toward models that better illuminate
the psychological processes and mechanisms driv-
ing acquisition, the simplifying assumptions made by
these and other models must continue to be exam-
ined and updated in the context of developmental
data. For instance, the vast majority of the models dis-
cussed here rely on semantic role information in some
capacity, based on a fixed set of predefined seman-
tic roles. Developmental psycholinguistic work sug-
gests that knowledge of abstract roles such as AGENT
and PATIENT emerges gradually in development and
is scaffolded by linguistic experience,53 in line with
the view that children acquire semantic roles grad-
ually from the input. Despite the widespread accep-
tance of semantic roles, there has been little agreement
on what semantic roles consist in or what part they
play in language use; researchers have argued for a
variety of approaches, with granularity ranging from
verb-specific roles (e.g., Ref 54) to broad proto-roles
(e.g., Ref 55).b A more fully comprehensive model
of language development will need to address the
nature and acquisition of semantic roles themselves
(as in Ref 38), which represents an important step
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toward understanding the ways in which linguistic and
conceptual knowledge interact with and reinforce one
another in learning argument structure.

Usage-based models will eventually need to
move beyond argument structure and other aspects
of so-called basic syntax to explore a broader range
of grammatical phenomena. Given the success of
idealized semantic information in helping to cap-
ture aspects of argument structure, it may prove
that usage-based models will be better equipped to
learn more difficult aspects of grammar after taking
semantics into account: rather than involving purely
structural considerations, meaning may also be cen-
tral to learning complex grammatical phenomena,
such as subject-auxiliary inversion (cf., Ref 56). Thus,
in order to expand the grammatical coverage of
models, researchers may need to expand the range
of nonlinguistic information available as input (e.g.,
the above-cited account of subject-auxiliary inver-
sion involves knowledge of tense), while also taking
steps to ensure that the inclusion of highly idealized
semantic input is not tantamount to building gram-
matical knowledge itself into the model. This will
likely involve moving beyond the currently available
tools. While existing resources such as FrameNet,57

VerbNet,58 and WordNet39 constitute potentially rich
sources of information for guiding the construction of
features that can be combined with other tools (e.g.,
semantic shallow parsers) to automate the construc-
tion of idealized scenes for input to models concerned
with argument structure, they are clearly insufficient
for moving closer to the broader goal of modeling
semantics more generally.

Researchers must also consider the amount of
ambiguity present in the nonlinguistic information
used as input to models. Simply randomizing the
presence or absence of idealized referents may not
yield representative input; for instance, Matusevych
et al.59 analyze the differences between contextual
information generated based on child-directed speech
itself versus hand-tagging of child–adult interaction
videos, concluding that utterance-based meaning
representations greatly oversimplify the task facing
the learner. Matusevych et al., however, offer an auto-
mated technique for generating paired linguistic and
idealized visual information that reflects the statistical
properties of hand-tagged video data.

Finally, it must be recalled that meaning also
involves social knowledge. To deal with more nat-
uralistic semantic input and plausible degrees of
ambiguity, models may need to incorporate learning
from social information, including social feedback
(e.g., Ref 60), reflecting the semi-supervised nature of
the learning task. Previous models of word learning
have successfully incorporated idealized social cues
(e.g., Ref 61), and Chang35 provides an initial step
toward extending such an approach to grammatical
development.

CONCLUSION

We have provided a brief overview of the prospects
and challenges of incorporating learning from seman-
tic information into usage-based models of gram-
matical development, focusing on initial successes in
modeling argument structure. Importantly, though,
most of these challenges, if not all, are not unique to
usage-based models but apply to varying degrees to
all models that seek to understand the role of mean-
ing in syntactic acquisition (e.g., as exemplified by the
Connor et al.30 model of thematic role assignment).
We see, as a key goal for future work, the exten-
sion of these models to deal with increasingly nat-
uralistic input and to cover the role of semantics in
acquiring a broader range of grammatical knowledge.
More generally, we expect that the lessons learned
from the approaches surveyed here—as initial steps
toward developing more comprehensive usage-based
computational accounts of acquisition—are likely to
have broad applications to both the modeling and the-
oretical understanding of grammatical development.

NOTES
a Moreover, using a slightly simplified version of the
Morris et al.28 SRN model, Reali and Christiansen62

demonstrated how network limitations on mapping
from words to thematic roles can drive cultural evo-
lution of a consistent word order from an initial state
with no constraints on the order of words.
b We thank an anonymous reviewer for reminding us
of this.

ACKNOWLEDGMENTS

We would like to thank Laura Wagner and two anonymous reviewers for helpful comments and suggestions.
This work was partially supported by BSF grant number 2011107 awarded to MHC.

Volume 5, Ju ly/August 2014 © 2014 John Wiley & Sons, Ltd. 497



Focus Article wires.wiley.com/cogsci

REFERENCES
1. Pinker S. Formal models of language learning. Cogni-

tion 1979, 7:217–283.

2. Redington M, Chater N, Finch S. Distributional infor-
mation: a powerful cue for acquiring syntactic cate-
gories. Cogn Sci 1998, 22:425–469.

3. Freudenthal D, Pine JM, Gobet F. Understanding the
developmental dynamics of subject omission: the role
of processing limitations in learning. J Child Lang
2007, 34:83–110.

4. Solan Z, Horn D, Ruppin E, Edelman S. Unsupervised
learning of natural languages. Proc Natl Acad Sci USA
2005, 102:11629–11634.

5. Bannard C, Lieven E, Tomasello M. Modeling chil-
dren’s early grammatical knowledge. Proc Natl Acad Sci
USA 2009, 106:17284–17289.

6. Bornsztajn G, Zuidema W, Bod R. Children’s grammars
grow more abstract with age: evidence from an auto-
matic procedure for identifying the productive units of
language. TopICS 2009, 1:175–188.

7. Goldberg AE. Constructions at Work. New York:
Oxford University Press; 2006.

8. Tomasello M. Constructing a Language. Cambridge:
Harvard University Press; 2003.

9. Culicover PW, Jackendoff R. Simpler Syntax. Oxford:
Oxford University Press; 2005.

10. Culicover PW, Nowak A. Dynamical Grammar, vol. 2.
Oxford: Oxford University Press; 2003.

11. Langacker RW. Cognitive Grammar: A Basic Introduc-
tion. Oxford: Oxford University Press; 2008.

12. Altmann G, Kamide Y. Incremental interpretation at
verbs: restricting the domain of subsequent reference.
Cognition 1999, 73:247–264.

13. Borovsky A, Elman JL, Fernald A. Knowing a lot for
one’s age: vocabulary skill and not age is associated
with anticipatory incremental sentence interpretation
in children and adults. J Exp Child Psychol 2012,
112:417–436.

14. Fillmore C. The case for case. In: Back E, Harms RJ,
eds. Universals in Linguistic Theory. London: Holt,
Rinehard, and Winston; 1968, 1–88.

15. Jackendoff R. Semantic Interpretation in Generative
Grammar. Cambridge, MA: MIT Press; 1972.

16. Bresnan J. Lexical-Functional Syntax. Oxford: Black-
well; 2001.

17. Chomsky N. Lectures on Government and Binding.
Berlin: Mouton de Gruyter; 1981.

18. Carlson G, Tanenhaus M. Thematic roles and language
comprehension. In: Wilkins W, ed. Syntax and Seman-
tics: Vol. 21. Thematic Relations. San Diego: Academic
Press; 1988, 263–291.

19. Trueswell JC, Tanenhaus MK, Garnsey SM. Semantic
influences on parsing: use of thematic role information

in syntactic ambiguity resolution. J Mem Lang 1994,
33:285–318.

20. McClelland JL, Kawamoto AH. Mechanisms of sen-
tence processing: assigning roles to constituents of sen-
tences. In: McClelland JL, Rumelhart DE, eds. Parallel
Distributed Processing, vol. 2. Cambridge, MA: MIT
Press; 1986, 318–362.

21. St. John MF, McClelland JL. Learning and apply-
ing contextual constraints in sentence comprehension.
Artif Intell 1990, 46:217–257.

22. Elman JL. Finding structure in time. Cogn Sci 1990,
14:179–211.

23. Rohde DL. A connectionist model of sentence compre-
hension and production. Unpublished Doctoral Disser-
tation, Carnegie Mellon University; 2002.

24. Allen J. Probabilistic constraints in acquisition. In:
Sorace A, Heycock C, Shillcock R, eds. Proceedings of
the GALA ‘97 Conference on Language Acquisition.
Edinburgh: University of Edinburgh Human Commu-
nications Research Center; 1997, 300–305.

25. MacWhinney B. The CHILDES Project: Tools For Ana-
lyzing Talk, vol. 1. Mahwah, NJ: Lawrence Erlbaum
Associates; 2000.

26. Allen J, Seidenberg MS. The emergence of grammatical-
ity in connectionist networks. In: MacWhinney B, ed.
The Emergence of Language. Mahwah, NJ: Lawrence
Erlbaum Associates; 1999, 115–151.

27. Domney PF. Learning grammatical constructions in a
miniature language from narrated video events. In: Pro-
ceedings of the 25nd Annual Conference of the Cogni-
tive Science Society. Mahwah, NJ: Lawrence Erlbaum
Associates; 2003, 354–359.

28. Morris WC, Cottrell GW, Elman J. A connectionist
simulation of the empirical acquisition of grammatical
relations. In: Wermter S, Sun R, eds. Hybrid Neural
Symbolic Integration. Berlin: Springer; 2000, 175–193.

29. Maratsos M, Fox DE, Becker J, Chalkley MA. Semantic
restrictions on children’s passives. Cognition 1985,
19:167–191.

30. Connor M, Fisher C, Roth D. Online latent structure
training for language acquisition. In: Walsh T, ed.
Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence. Menlo Park, CA:
AAAI Press; 2011, 1782–1787.

31. Fisher C. Structural limits on verb mapping: the role of
analogy in children’s interpretations of sentences. Cogn
Psychol 1996, 31:41–81.

32. Niyogi S. Bayesian learning at the syntax-semantics
interface. In: Proceedings of the 24th Annual Confer-
ence of the Cognitive Science Society. Mahwah, NJ:
Lawrence Erlbaum Associates; 2002, 697–702.

33. Dominey PF, Inui T. A developmental model of syn-
tax acquisition in the construction grammar frame-
work with cross-linguistic validation in English and

498 © 2014 John Wiley & Sons, Ltd. Volume 5, Ju ly/August 2014



WIREs Cognitive Science Prospects for usage-based computational models of grammatical development

Japanese. In: Proceedings of the First Workshop on
Psycho-computational Models of Language Acquisi-
tion. Stroudsburg, PA: Association for Computational
Linguistics; 2004, 33–40.

34. Dominey PF, Hoen M, Inui T. A neurolinguistic model
of grammatical construction processing. J Cogn Neu-
rosci 2006, 18:2088–2107.

35. Chang NCL. Putting meaning into grammar learn-
ing. In: Proceedings of the First Workshop on
Psycho-computational Models of Language Acqui-
sition. Stroudsburg, PA: Association for Computational
Linguistics; 2004, 17–24.

36. Bergen B, Chang NCL. Embodied construction gram-
mar. In: Hoffmann T, Trousdale G, eds. Oxford
Handbook of Construction Grammar. Oxford: Oxford
University Press; 2013, 168–190.

37. Lakoff G. Women, Fire, and Dangerous Things.
Chicago, IL: University of Chicago Press; 1987.

38. Alishahi A, Stevenson S. A computational model of
learning semantic roles from child-directed speech.
Lang Cogn Process 2010, 25:50–93.

39. Miller GA. Nouns in WordNet: a lexical inheritance
system. Int J Lexicog 1990, 3:245–264.

40. Perfors A, Tenenbaum JB, Wonnacott E. Variability,
negative evidence, and the acquisition of verb argument
constructions. J Child Lang 2010, 37:607–642.

41. Gropen J, Pinker S, Hollander M, Goldberg R, Wilson
R. The learnability and acquisition of the dative alter-
nation in English. Language 1989, 65:203–257.

42. Chang F, Dell GS, Bock K. Becoming syntactic. Psychol
Rev 2006, 113:234–272.

43. Chang F. Symbolically speaking: A connectionist model
of sentence production. Cogn Sci 2002, 26:609–651.

44. Hirsh-Pasek K, Golinkoff RM. The intermodal pref-
erential looking paradigm: a window onto emerg-
ing language comprehension. In: McDaniel D, McKee
C, Cairns HS, eds. Methods for Assessing Children’s
Syntax. Cambridge, MA: MIT Press; 1996, 105–124.

45. Tomasello M. Do young children have adult syntactic
competence? Cognition 2000, 74:209–253.

46. Bock JK. Meaning, sound, and syntax: lexical priming in
sentence production. J Exp Psychol 1986, 12:575–586.

47. Chang F. Learning to order words: a connectionist
model of heavy NP shift and accessibility effects in
Japanese and English. J Mem Lang 2009, 61:374–397.

48. Fitz H, Chang F, Christiansen MH. A connectionist
account of the acquisition and processing of relative
clauses. In: Kidd E, ed. The Acquisition of Relative
Clauses: Processing, Typology and Function (TILAR
Series). Amsterdam: John Benjamins; 2011, 39–60.

49. Mayberry MR, Crocker MW, Knoeferle P. Learning
to attend: a connectionist model of situated language
comprehension. Cogn Sci 2009, 33:449–496.

50. Knoeferle P, Crocker MW. The coordinated interplay of
scene, utterance, and world knowledge: evidence from
eye tracking. Cogn Sci 2006, 30:481–529.

51. McCauley SM, Christiansen MH. Learning simple
statistics for language comprehension and production:
the CAPPUCCINO model. In: Carlson L, Hölscher C,
Shipley T, eds. Proceedings of the 33rd Annual Con-
ference of the Cognitive Science Society. Austin, TX:
Cognitive Science Society; 2011, 1619–1624.

52. McCauley SM, Christiansen MH. Language Learning
as Language Use: A Computational Model of Children’s
Language Comprehension and Production. Manuscript
in preparation. Ithaca, NY: Cornell University; 2014.

53. Shayan, S. Emergence of roles in English canonical tran-
sitive construction. Unpublished doctoral dissertation,
Indiana University; 2008.

54. McRae K, Ferretti TR, Amyote L. Thematic roles
as verb-specific concepts. Lang Cogn Proc 1997,
12:137–176.

55. Dowty D. Thematic proto-roles and argument selection.
Language 1991, 67:547–619.

56. Bouchard D. Solving the UG problem. Bioling 2012,
6:1–31.

57. Baker CF, Fillmore CJ, Lowe JB. The Berkeley Framenet
project. In: Proceedings of the 36th Annual Meeting of
the Association for Computational Linguistics and 17th
International Conference on Computational Linguis-
tics. Stroudsburg, PA: Association for Computational
Linguistics; 1998, 86–90.

58. Schuler, KK. VerbNet: a broad-coverage, comprehen-
sive verb lexicon. Unpublished doctoral dissertation,
University of Pennsylvania; 2005.

59. Matusevych Y, Alishahi A, Vogt P, Automatic gen-
eration of naturalistic child–adult interaction data. In:
Knauff M, Pauen M, Sebanz N, Wachsmuth I, eds. Pro-
ceedings of the 35th Annual Meeting of the Cognitive
Science Society. Austin, TX: Cognitive Science Society;
2013, 2996–3001.

60. Goldstein MH, Schwade JA. Social feedback to infants’
babbling facilitates rapid phonological learning. Psy-
chol Sci 2008, 19:515–522.

61. Yu C, Ballard DH. A unified model of early word learn-
ing: Integrating statistical and social cues. Neurocom-
puting 2007, 70:2149–2165.

62. Reali F, Christiansen MH. Sequential learning and the
interaction between biological and linguistic adaptation
in language evolution. Interact Stud 2009, 10:5–30.

Volume 5, Ju ly/August 2014 © 2014 John Wiley & Sons, Ltd. 499


