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Highlights
Statistical learning (SL) has become
an important building block of virtually
all current theories of information
processing.

Substantial interindividual variance is
a pervasive feature of learning and indi-
vidual differences in SL have become a
focus of interest as predictors of many
cognitive functions.

Current individual differences ap-
A growing body of research investigates individual differences in the learning of
statistical structure, tying them to variability in cognitive (dis)abilities. This
approach views statistical learning (SL) as a general individual ability that underlies
performance across a range of cognitive domains. But is there a general SL capac-
ity that can sort individuals from ‘bad’ to ‘good’ statistical learners? Explicating
the suppositions underlying this approach, we suggest that current evidence
supporting it is meager. We outline an alternative perspective that considers
the variability of statistical environments within different cognitive domains.
Once we focus on learning that is tuned to the statistics of real-world sensory
inputs, an alternative view of SL computations emerges with a radically different
outlook for SL research.
proaches treat SL as a general ability,
similar to general capacities such as
intelligence or working memory. This
approach assumes that there is
something shared between the com-
putation of regularities across cogni-
tive domains.

The statistical structure characterizing
different real-world sensory environ-
ments (e.g., print, visual scenes) is still
poorly understood, but likely displays
many idiosyncrasies. Hence, what it
takes to be a good statistical learner
may be quite different in the context of
different cognitive domains.
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Individual differences in statistical learning
Recent years have seen a growing body of research tying variation in a range of cognitive capacities
to success or failure in assimilating the statistical structure of the input. This reflects an increased
appreciation that our environment, be it perceptual, cognitive, or social, is saturated with statistical
regularities (see Glossary) that are the target of learning and processing. The neurocognitive
mechanism for detecting and assimilating the range of regularities in the input has been labelled
‘statistical learning’ (SL) [1–4]. Although the impact of statistical regularities on cognitive processing
had been previously recognized, interest in SL surged after the seminal paper by Saffran and
colleagues on speech segmentation [1]. The concept of SL has subsequently permeated many
other cognitive domains (e.g., visual perception, music, social cognition, attention, etc.; see [5] for
review), because they all involve statistical structure.

With this new perspective on cognition came a novel prediction: that individual differences in
these various domains are fundamentally linked to SL capability. As a result, the last decade
has seen a growing body of work targeting SL as a general individual ability for perceiving and as-
similating regularities in the input. The main premise of this research is that individuals range from
‘good’ to ‘bad’ statistical learners and that ‘good’ statistical learners are expected to have better
skills across the wide range of cognitive functions that require the assimilation of statistical struc-
ture (e.g., reading [6–8], early language development [9,10], syntactic processing [11,12], object
and scene perception [13,14], music [15,16], etc.). Many recent studies, ours included [7,17,18],
have consequently assessed correlations between performance in laboratory SL tasks and
cognitive abilities in a variety of domains, in normal and special populations. A few studies, in
particular those investigating language and literacy acquisition, have tested more narrow and
nuanced predictions about the predictive power of individual differences in SL, for example, by
linking the sensitivity to orthography-to-phonology regularities to early reading skills [19], or by
establishing a relation between infants’ knowledge of their native language’s sound structure
and their vocabulary size [20]. However, most studies have selected a given SL task, assuming
that performance on the chosen task is sufficiently representative of one’s general SL capacity
Trends in Cognitive Sciences, January 2022, Vol. 26, No. 1 https://doi.org/10.1016/j.tics.2021.10.012 25
© 2021 Elsevier Ltd. All rights reserved.

https://orcid.org/0000-0001-6145-8662
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tics.2021.10.012&domain=pdf
https://doi.org/10.1016/j.tics.2021.10.012
CellPress logo


Trends in Cognitive Sciences

Glossary
Computational mechanism: defined
by the representations that are being
processed and by the transformation(s)
applied to the input to generate the
output (i.e., the assimilated regularities).
Domain: cognitive performance can be
conceptualized in terms of different
domains of functioning (e.g., language,
visual perception, attention, social
cognition).
Ecologically valid: the ability to gener-
alize from the data observed under
experimental settings to the state of
affairs and natural behaviors in the world.
Embedded pattern learning task: a
classic task used tomeasure SL ability. It
involves the presentation of a continuous
visual or auditory stream made up of
embedded patterns, followed by a test
that assesses the preference for the
embedded patterns (over foil patterns).
Individual differences: in the context
of SL, individual differences typically refer
to quantitative differences in learning
outcomes between learners, but could
in principle refer to any quantitative or
qualitative interindividual variance
(differences in the speed and trajectory
of learning, individual variation in the
adaptability to changing environments,
etc.).
Modality: the sensory mode of stimuli
(e.g., vision, audition, touch). Note the
dissociation between modality and
domain: for example, music and
language are both in the same (auditory)
modality but constitute separate
domains.
Statistical regularities: here we focus
on the wide range of constancies in the
input that provide information regarding
patterning (in time and/or space) in the
environment.
to be predictive of the targeted cognitive ability (or disability), be it reading, musicality, or social
skills, to name a few. Although results have not been unequivocal [18,21–23], and although effect
sizes are often small, most published work has reported significant positive correlations between
SL performance and performance in multiple cognitive functions (Table 1). Typically, null effects
within this research line have been discussed in terms of insufficient variability in performance
[24] and poor task reliability more generally [18,23]. Importantly, underlying this experimental
approach is the (typically implicit) supposition that an individual has a general, unitary ability
for discovering regularities, which assists the learning of any type of statistical structure. In
some studies this supposition is formulated explicitly, as can be seen in the following quotes.
Parks et al. [25] state:

We are interested in how the ability to learn patterns overall is related to language and social
competency skills […]. It is therefore expected that auditory and visual statistical learning
will contribute similarly […] given that both tasks assess the ability to learn statistical
patterns in general. (p. 3)

Kirkham, Slemmer, and Johnson [26] write:

These results are consistent with the existence of a domain general statistical learning
device that is available to even very young infants […]. (p. 40)

From a historical perspective, this approach to individual differences in SL resonates with
research into other general cognitive capacities, such as the study of human intelligence, with
its G-factor, or memory, with its general working memory factor (Box 1). It assumes that a general
SL capacity determines individual performance in regularity learning across domains, resulting in
something akin to a ‘general SL factor’. As the qualification ‘general’ has also been used in the
context of discussing domain-specificity versus -generality (see [31] for discussion), we should
clarify that a ‘general SL capacity’, as used here, implies that SL is a domain-general ability,
whereas domain-generality does not require the existence of a unitary SL capacity. Rather,
‘domain-generality’ in the context of SL research reflects the recognition that sensitivity to
regularities is found across all cognitive domains and extends beyond the original finding of
sensitivity to trisyllabic patterns in a continuous speech stream [1] (see [5] for discussion).
The idea of a general SL capacity is a more specific claim. It presupposes that individuals differ
in their general ability for learning regularities, whatever those regularities are, and that this
general capacity contributes to their learning in any domain. As such, sensitivity to statistical
regularities is taken to be a major cognitive construct, subserving basic and higher-order
cognitive functions, thus impacting human performance across the board. Importantly, this unitary
view assumes that there is something common to the computation of statistical regularities across
modalities and domains, leading to some shared variance in individuals’ performance in assimilating
regularities across cognition.

The possibility of a general SL factor, common to learning regularities across domains, has far-
reaching theoretical and practical implications. It suggests that a general computational device
assimilates the wide range of regularities in the environment and that individuals differ in its effi-
ciency. Even more importantly, since performance in multiple SL tasks was found to be indepen-
dent of intelligence, workingmemory, and executive functions [32,33], a general SL factor has the
promise to account for a substantial portion of unexplained variance in cognitive performance. If a
general SL factor could be comprehensively assessed through a validated and normed test
battery, similar to the G-factor, a general SL score could provide a reliable estimate of an individual’s
SL capacity relative to the population distribution. Then, this single general SL score could predict, at
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Table 1. Examples of studies tying individual differences in the learning of statistical structure to variance in cognitive abilities

Predicted cognitive
ability

Cognitive measure Statistical learning task,
learning measure(s)

Stimuli of
statistical
learning
task

Sample (age) Main findings Refs

Literacy Sentence reading
Word and nonword reading

Auditory triplet learning,
acceleration of target
detection times during
familiarization, and
two-alternative forced choice
(2-AFC) familiarity test

Pure
tones

Adults (18–34 years)
Children (8–16 years)

Full sample: positive correlation
between 2-AFC measure and
sentence reading, null findings
with acceleration measure
Children: positive correlations
between the acceleration
measure and word and nonword
reading, null findings with 2-AFC

[27]

Visual triplet learning,
acceleration of target
detection times during
familiarization, and
2-AFC familiarity test

Alien
figures

Full sample: positive correlation
between 2-AFC measure and
sentence reading, null findings
with acceleration measure
Children: null findings

Word and nonword reading
Morphological priming

Visual triplet learning,
2-AFC familiarity test

Abstract
shapes

Adults (18–34 years),
native English
speakers learning
Hebrew

Positive correlation with all
reading measures

[7]

Word reading Visual triplet learning,
2-AFC familiarity test

Alien
figures

Adults (18–34 years)
Children
(6.4-12.5 years)

Adults: positive correlation
Children: positive correlation

[28]

Word and nonword reading
Spelling test

Visual triplet learning,
self-paced measure during
familiarization, pattern
completion test, and 2-AFC
familiarity test

Alien
figures

Children
(8.3–11.2 years) with
and without a dyslexia
diagnosis

Null findings: no evidence of a
relationship between any of the
SL measures and reading or
spelling skills above and beyond
participant-level variables

[23]

Serial reaction time task Four
locations

Oral language
processing

Lexical-processing
efficiency
Vocabulary size

Auditory pair learning,
2-AFC familiarity test with
head-turn preference
measure

Syllables Infants (15–16 months) Positive correlations with
lexical- processing efficiency,
null findings for vocabulary size

[9]

Words

Vocabulary size and
growth

Auditory non‐adjacent
dependency learning,
2-AFC familiarity test with
head turn preference
measure

Syllables Infants
(15.5–17.5 months,
tested at multiple time
points until the age of
30 months)

Positive correlation with
vocabulary size (at multiple time
points), null findings for
vocabulary growth

[10]

Syntax comprehension
Vocabulary

Visual triplet learning,
2-AFC familiarity test

Alien
figures

Children (6.1–8.1
years)

SL independently predicts
comprehension of passives and
object relative clauses, null
findings for other grammatical
structures and vocabulary

[24]

Music skills Melody discrimination and
rhythm discrimination
(combined in a general
music score)

Auditory triplet learning,
2-AFC familiarity test

Pure
tones

Children
(mean = 10.3 years)
with and without
musical training

Positive correlation with general
music score

[29]

Visual triplet learning,
2-AFC familiarity test

Alien
figures

Positive correlation with general
music score

Social competency Social competency
questionnaire
Autistic traits
questionnaire
Receptive and expressive
language abilities

Visual triplet learning,
psychometrically optimized
familiarity test

Abstract
shapes

Young adults
(16–21 years)

Positive correlation with receptive
language and social competency
abilities, null finding for relation
with autism symptomatology

[25]

Auditory triplet learning,
2-AFC familiarity test

Syllables Null findings for receptive
language and social competency
abilities, positive correlation to
autism symptomatology

(continued on next page)

Trends in Cognitive Sciences

Trends in Cognitive Sciences, January 2022, Vol. 26, No. 1 27

CellPress logo


Table 1. (continued)

Predicted cognitive
ability

Cognitive measure Statistical learning task,
learning measure(s)

Stimuli of
statistical
learning
task

Sample (age) Main findings Refs

Feature-comparison
skills

Visual comparison
performance

Visual distributional statistical
learning, psychometrically
optimized familiarity test and
frequency estimates

Abstract
shapes

Young adults
(17–26 years), trained
forensic examiners,
and novices (informed,
uninformed, and
misinformed)

Informed novices: positive
correlation between familiarity
measure and visual comparison
performance, null findings for
frequency estimates measure
Null findings for all other groups

[30]
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least to some extent, an individual’s performance in a given cognitive function over and above
intelligence or memory. Because SL is an important building block of virtually all current
theories of cognitive processing, this could revolutionize research on individual differences in
cognitive science.

In this paper, we evaluate this intriguing prospect and outline some of the challenges it
might face. We start by discussing what a general SL factor would imply as a theoretical
construct, before considering evidence for the notion of a ‘good statistical learner’. Next,
we outline a broader ecological perspective on the variety of statistics that need to be
accommodated and consider existing challenges for the notion of good statistical learners.
We then outline an alternative view of SL computations and discuss its implications for
future research.

What would a general SL factor imply?
Theoretical constructs should be well-defined so that they can be empirically validated. We thus
start by outlining three implicit suppositions that underlie the concepts of good statistical learners
and a general SL factor.

First, and foremost, there is the supposition of nesting and sharing. A general SL factor implies that
all modality- and domain-specific SL abilities (e.g., detecting word-boundaries, learning spatial
Box 1. A short history of salient general factors in cognitive science

Higher-order latent variables have been proposed across a wide range of cognitive abilities. Here, we outline two examples
of impactful general factors.

Intelligence

More than a century ago, Charles Spearman demonstrated that different measures of intelligence tend to correlate with
each other to various degrees, known as the positive manifold. He proposed the two-factor theory of intelligence, stating
that intellectual abilities are comprised of two kinds of factors: (i) a general ability, labeled the G-factor; and (ii) a number of
specific abilities (S-factors), all having some load on the general factor [40].Whereas conceptualizations of intelligence have
since further evolved, the G-factor is still omnipresent and has been validated cross-culturally [99]. The current version of
the Wechsler Adult Intelligence Scale (WAIS-IV [100]) still provides a broad IQ-score to summarize general intellectual
ability, which results from aggregating performance across a range of specific tasks and is taken to predict a wide range
of cognitive functions.

Working memory

Together with intelligence, working memory has been one of the most frequently studied constructs in cognitive science.
Workingmemory has been suggested tomodulate a range of cognitive abilities (e.g., reading,mathematics [101]). Somework
using confirmatory factor analyses has supported the concept of a general, higher-order working memory capacity factor and
hence the view that a broad set of tasks that usedifferent workingmemory contents (e.g., verbal, visuospatial) and tap different
processing demands (e.g., maintenance, updating) all purportedly engage a higher-level capacity [102–104].
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contingencies, etc.) are nested within it, just as vocabulary, comprehension, and visual-
spatial abilities are nested within intelligence. Nesting could be hierarchical or not [34], but it
necessarily entails a relation of whole and parts between the general factor and its components.
Nesting leads inevitably to sharing. Given that statistical regularities vary in sensory modality,
material, type of contingencies, etc., recent studies have argued that SL is a componential
ability spanning an array of dimensions [35–39]. However, if all SL dimensions are nested within
a general SL factor, they should share some variance, which reflects the commonality of all SL
computations. Sharing could result from all facets having some positive load on the general
factor (as Spearman originally postulated for intelligence [40]) and/or from some facets partially
overlapping because they implicate shared computations. We note that sharing does not
preclude the possibility that some (additional) shared variance in performance is due to factors
external to SL per se (e.g., attention); we clarify, however, that the sharing assumption refers to
common variance originating specifically from shared SL computations rather than from an
external third factor.

The next two suppositions are related to the possibility of assessing individuals’ SL ability as ranging
from ‘good’ to ‘bad’. First, tying ‘low’, ‘mid-range’, or ‘high’ scores in a cognitive function to ‘low’,
‘mid-range’, and ‘high’ scores in an SL task (as done in the studies of Table 1) assumes that SL per-
formance displays monotonicity. Monotonicity implies that given valid and reliable measurements,
higher scores would reflect better SL performance, pointing to ‘good’ statistical learners, whereas
lower scores would reflect worse SL performance, pointing to ‘bad’ statistical learners. Monotonicity
by no means implies linearity; it simply requires an ordinal scale. It is worth noting that monotonicity
could still hold, even in the absence of a general factor, if performance in different SL systems
displays a monotonic continuum. However, the backbone of the concept of a good statistical
learner, as it currently appears in the literature, is that individuals can be differentiated along a unified
continuum, once their ability is reliably and validly measured. Second, from a psychometric
perspective, the alluring prospect of assessing individuals’ general SL ability using a single score
through a test battery requires aggregability. Performance across the range of SL dimensions
could, in principle, be aggregated (potentially with weighting, so that some facets contribute
more than others), to give rise to a single score reflecting the general factor, similar to the aggrega-
tion of subtest of intelligence to provide a general score of intellectual ability.

Now that the basic suppositions underlying the notion of good statistical learners are laid out, we
examine to what extent they withstand empirical and theoretical scrutiny.

Evidence in favor of a general SL ability
Several studies (listed in Table 1) have found significant positive correlations between perfor-
mance on an SL task and a range of cognitive skills. Importantly, some of these correlations
were observed when the same task predicted different functions in different modalities
(e.g., a similar visual embedded pattern learning task with alien-like figures correlates with
both reading abilities [28] and musical skills [29]). This suggests that a given SL task reflects
a general ability for learning regularities, so that it can simultaneously predict performance
across different cognitive domains. In the same vein, a given cognitive function (e.g., reading skill)
was predicted by two different SL tasks, one involving abstract shapes [7] and one involving auditory
tones [27]. The finding that two different SL tasks in different sensory modalities both have predictive
value for individual differences in a given domain, suggests that they at least partially represent the
same general ability.

Another piece of evidence for shared computations across modalities comes from work that
revealed shared variance between visual and auditory SL tasks. For example, a study using
Trends in Cognitive Sciences, January 2022, Vol. 26, No. 1 29
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nonlinguistic auditory materials, which do not implicate learners’ prior language knowledge,
obtained a significant correlation between SL performance in the visual and the auditory modality
[41]. Further, from a neurobiological perspective, imaging studies consistently report activation of
the same subset of brain regions in SL tasks across modalities and stimuli (see [42] for review).
These domain-general regions seem to point to common neurocircuitry involved in processing
statistical regularities regardless of specific input characteristics. Taken together, all these find-
ings coincide with the claim that the variety of SL tasks taps a common factor, presumably related
to a general ability to register statistical regularities across domains.

We argue, however, that these findings should be interpreted with caution. The correlations between
visual and auditory SL tasks might be driven by the significant similarity in the statistical patterns they
use (e.g., pairs or triplets within a continuous sensory stream). Thus, finding similarities in learning em-
bedded pairs or triplets of syllables, musical tones, natural sounds, shapes, alien figures, or objects
may speak to the uniformity of the artificial tasks that are typically used to tap SL, not to capturing
the statistics of real-world sensory environments. Furthermore, most of these studies use a two-
alternative forced-choice paradigm to test knowledge of regularities and thus all require meta-
cognitive decision processing [43], which may contribute to the observed correlations. In the same
vein, the domain-general neurocircuitry that is activated in these tasks [mainly the medial temporal
lobe (MTL) memory system] [44,45] may reflect the inevitable hippocampal involvement in learning
a limited set of embedded patterns in the artificial stream and does not necessarily speak to the
long, continuous process of assimilating the statistical distributions characteristic of the real-world en-
vironment. As to the reported correlations between SL and cognitive outcomes, they are generally
weak (significantly weaker than those reported in the domain of general intelligence and memory)
and, furthermore, there are multiple reports of null results (Table 1). Even when observed, the weak
correlations could have been driven by a range of mediating factors and overlap in task demands.
For example, typical SL tasks engage sustained attention and require fast intuitive judgments
[33,46–48], hence interindividual differences in these capacities could similarly impact performance
in the SL tasks and the measured cognitive outcome, leading to the observed small correlations
(see [49] for discussion).

An ecological perspective
Our starting point is that SL mechanisms are meant to assimilate the statistics of the real-world envi-
ronments, be it print, spoken language, objects, or visual scenes. As such, an adequate SL account
of a given domain should consider the rich and idiosyncratic scope of the statistical regularities that
characterize it. When this approach is adopted, it becomes apparent that the statistical patterns
that need to be assimilated for different cognitive functions differ and can vary quite dramatically.
In light of these differences in input structure across domains, a key question is whether there are
overarching SL computations that are involved, regardless of the nature of the input, and if so,
what are they?

Computational models of SL have mainly focused on co-occurrence learning and the segmenta-
tion of continuous, patterned input streams. For example, models such as PARSER [50] and
TRACX [51,52] have proposed chunk extraction as an alternative learning mechanism. A recent
biologically inspired neural network model offered an architecture where a hippocampal mono-
synaptic pathway drives the learning of regularities [45]. This model can simulate the learning of
simple patterns in an artificial SL task and also more complex statistics (e.g., small ‘community
structures’ [53]). However, since these computational accounts focus on the specific issue of
how boundaries are extracted from continuous input, they are limited in their explanatory
scope when it comes to explaining the learning of the large set of real-world regularities. It remains
an open question whether a single computational mechanism can deal with them all.
30 Trends in Cognitive Sciences, January 2022, Vol. 26, No. 1
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To exemplify this issue, we consider two well-studied cognitive functions as test cases: reading
and visual object perception. We show that on a conceptual level, the to-be-learned regularities
vary substantially even within two domains that both involve the visual modality, suggesting
that uncovering a common computational principle might not be an easy task. Finding common
computational principles across all domains and modalities is likely to be even more challenging.

Reading
Readers are sensitive to a range of statistical regularities, including frequency of letters and words
[54,55], the co-occurrence of letters [56,57], correlations between letters and speech sounds
[58], between letter combinations and stress patterns [59], and between letters and semantic
meaning through morphological structure [60,61]. Readers are also affected by the likely position
of letters within words (e.g., ‘er’ being a likely word ending), the morphological information letters
convey given their location (e.g., ‘er’ anywhere but in final position is probably not a morpheme
[62]), the predictability of words in sentences [63,64], the contextual similarity among alpha-
numeric characters in text [65], the sequential order of potential word lengths in sentences [66],
syntactic and semantic plausibility [67,68], and this is not an exhaustive list. All of these different
types of regularities are ‘statistical’ in nature and thus fall under the general label of SL. However,
the computations that they implicate are potentially quite different from one another. To exemplify,
the computational solutions for learning the correlations of letters with sounds and meaning
do not have clear overlap with the computational solution for predicting, say, the length of an
upcoming word given the previous word lengths. Importantly, as detailed in the next section,
these statistical computations are even more distant from those that subserve efficient visual
object recognition and scene perception.

Visual object and scene perception
Our visual world is complex in nature, but rarely presents randomness. Humans are sensitive to
both the physical and contextual regularities that characterize our visual environment. One
striking example is that vertical and horizontal orientations occur much more frequently than
oblique orientations in both man-made and natural environments [69]. Indeed, participants
have been found to perceive vertical and horizontal orientations better then oblique orientations,
suggesting a tuning of the perceptual system to real-world statistics. Similarly, light usually comes
from above [70] and this results in a strong perceptual prior to interpret the source of light as such
[71]. Further, different scene and object categories (e.g., forests, beaches, streets, natural objects
versus man-made objects, portraits, etc.) were found to have characteristic spectral signatures
that can be determined by averaging hundreds of images of the same category [72]. These
summary statistics seem to aid perception of objects that are congruent with the category [73],
suggesting that our perceptual system tracks spectral statistics. Recent work further suggests
that if visual objects regularly co-occur in time, their representations within the MTL become
more similar to each other [44], so that the system is tuned to track temporal co-occurrence
statistics. In the same vein, the perceptual system also tracks co-occurrence in space, so that
objects that appear together in a given spatial composition engage attention as if they are a single
object [74,75]. Another source of statistical regularities concerns the typical location of objects in
specific types of scenes. Object identification has been shown to be facilitated by presentation in
congruent context scenes (e.g., a teapot in a kitchen rather than at a beach), and within a typical
scene structure (e.g., a computer mouse positioned on the table next to the computer rather than
on a computer screen [76,77]; see [78] for review).

Similar to reading, this very brief summary outlines the wide range of statistical regularities that are
computed by the visual system in the domain of object and scene perception. Merging the two
overviews together, it is clear that printed texts and scenes are characterized by a range of
Trends in Cognitive Sciences, January 2022, Vol. 26, No. 1 31
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probabilistic regularities creating structure and that readers and scene perceivers assimilate
these. Shared variance in SL performance across these two cognitive functions would only
emerge if they rely on mechanisms that share input representations or computations. Finding a
computational common denominator for such distinct domains is perhaps possible, but does
not seem an easy task.

Challenges for good statistical learners
We now consider whether computations of statistics of real-world sensory environments display
the three implicit suppositions underlying the concepts of good statistical learners and a general
SL factor. When it comes to our test cases of reading and visual object perception, the existence
of nesting and variance sharing remains an open question. Do efficient readers also perceive
objects and scenes faster or better? Do participants who more rapidly identify objects in a
congruent context and within a typical scene structure [77] also show, say, higher predictability
effects of words in a sentence [64]? The assumption of good general statistical learners implies
that some individuals are proficient at picking up the statistical structure of the environment
across all cognitive domains, while others are relatively poor across all domains. However, to
our knowledge, there is no empirical evidence that speaks to this issue. In Box 2 we outline
specific types of evidence that are predicted by a general SL device.

The concept of good statistical learners faces additional challenges when considering monoto-
nicity. Some environments are characterized by stable statistics while others are characterized
by constant change. For example, the statistics of the visual world are more or less constant,
whereas the characteristics of printed material change across different genres of text [79,80]. In
fact, even at a given time and a given developmental phase, the statistical environment of one
text may be quite different than that of another (e.g., different novels written in different periods,
etc.). Recent evidence suggests that readers adapt to the statistical properties of a particular
novel (e.g., the sequential combinations of word lengths in sentences and characteristic syntactic
structures) and this results in more efficient ocular movements, as reflected by reduced viewing
time [66]. Hence, for optimal reading performance, SL computations should be optimally flexible;
not too flexible, so as to preserve the accumulated reading experience, but not too rigid, to allow
efficient adaptation to novel statistics. Such a ‘sweet spot’ in the sensitivity and the attention to
regularities in the input [81] challenges the monotonicity assumption. It further suggests that
what it takes to be a good statistical learner may be quite different across domains. In some
domains, a good statistical learner displays high sensitivity to statistical properties as well as
high rigidity, relying strongly on long-term statistics. In other domains, a good statistical learner
is characterized by more flexibility, relying more heavily on recent experiences (see also [82] for
an implementation in a Bayesian framework). One could propose a definition specifying that
Box 2. Hypothetical empirical evidence in support of a general SL ability

• Systematic positive correlations between sensitivity to regularities across domains: for example, individuals who are
more sensitive to spelling patterns in print are also more sensitive to chord and note co-occurrence in music, to
conditional probabilities of objects in visual scenes, and to correlations between facial features and emotions. These
correlations are found between tasks that tap sensitivity to these statistical structures but not with other tasks,
demonstrating that they are not driven by factors external to SL.

• A similar developmental trajectory of sensitivity to statistical regularities across different domains, mirroring the
developmental stages of the general learning device.

• Evidence from special populations (individuals with brain damage or neurodevelopmental disorders) of hindered
learning of regularities across domains, which can be traced back to an impairment of the general SL device and
cannot be explained by general cognitive factors such as memory, attention, etc.

• A unified (neuro)computational model architecture, implemented in different domains and operating on different inputs,
can successfully learn different real-world regularities, from vision to language to social cognition.

32 Trends in Cognitive Sciences, January 2022, Vol. 26, No. 1

CellPress logo


Trends in Cognitive Sciences
individuals are good statistical learners when they optimally weight both long-term statistics
and recent experiences, depending on the task at hand and the stability of the relevant input,
but the definition of a good statistical learner then becomes domain-dependent. In all laboratory
SL tasks as currently used, the more novel patterns that are assimilated, the better learning is
considered to be. However, moving to real-world sensory environments with some domains
implicating monotonicity and some not, the aggregability assumption, too, faces significant
challenges. The goal of aggregating SL abilities across domains in the hope of converging on a
general score may thus be intractable.

An alternative approach: SL from an ecological perspective
To understand how individual differences in SL might contribute to variation in cognition, we need
a different perspective. Figure 1 illustrates the general SL ability account, contrasting it with an al-
ternative theoretical approach that posits multiple specific SL computations in different cognitive
domains. At the cognitive level, the difference between the two accounts is most prominent in the
presence of a single SL construct involved in assimilating a range of regularities in different
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environments versus independent SL computations that are bound to a given domain. At the
mechanistic level, a general ability implies one common computational mechanism that
assimilates the range of regularities across different types of environments, independently of
the statistics involved. Figure 1 exemplifies this through one recent candidate model where the
extraction of regularities across domains relies on computations in the hippocampus [45].
Whereas in this example, both the computations and the neurobiological substrate are unified,
this is not a necessity. In principle, a shared set of SL computations could be carried out by
different neural substrates (i.e., either because computations are distributed across multiple
separate substrates or because multiple separate substrates each perform the same set of com-
putations on different representations [42]), yet when resulting in shared variance this would, per
our view, still be a general SL ability. For the alternative account, however, sensitivity to specific
regularities is an emergent property of different mechanisms that process input in particular
domains (e.g., reading [83], syntactic processing [84], object perception [85]) given their differing
computational constraints.

Contrasting the two accounts: empirical implications
Generic laboratory tasks (e.g., focusing on the ability to extract pair/triplet patterns based on
transitional probabilities between individual stimuli) have helped establish SL as a powerful form
of implicit learning. They have shown that the learning of statistical structure is possible across
a variety of sensory modalities and domains (e.g., [11,37,86–88] and see [5] for a review),
throughout the human lifespan [36,89–91], and across species [92–94] and does not require
instruction, reinforcement, or feedback [95]. However, changing the focus to SL mechanisms
that are tuned to the complex range of statistical regularities characterizing real-world sensory
environments (rather than the simple statistics of typical SL tasks) leads to a radically different
course of future SL research, where such generic tasks no longer suffice. Box 3 outlines the blue-
print for such future research programs.

It is evident that to determine whether there is such a thing like a good statistical learner, a deeper
understanding of the statistical environments that characterize a range of cognitive domains is
required as a first step. This research should be complemented by empirical evidence regarding
which of the revealed statistical regularities are the target of learning ([73], see also [96–98]) and
modulate behavior. In addition, future advances in computational models are needed to explicitly
connect the statistical regularities learners actually assimilate in different domains to the cognitive
and neural mechanisms that are responsible for learning them. Once theories and models of the
statistical computations across cognitive domains are formulated, the viability of a general SL
Box 3. Proposed blueprint for future research

Developing and testing an ecologically valid theory of regularity learning could proceed along the following sequence of
three steps:

1. Map the domains of cognition that are characterized by significant structure (e.g., speech, print, syntax, music, objects,
scenes, etc.) to identify the range of statistical regularities that characterize a given domain and could be the target of
learning. Corpus analyses are an important tool in revealing the statistical regularities that exist in a domain
[72,105,106]. In identifying domain-bound regularities, an important consideration is the experience of the learner
and how it is shaped over time and across development. ‘Big data’ capturing everyday environments from the learner’s
point of view are therefore of great value (see [107] for discussion).

2. Use computational modeling to elucidate the possible computations that can account for the learning of different
regularities within a given cognitive domain. This modeling should involve datasets that capture the environment within
which real-world learning takes place, to show whether and how the relevant statistical information can be utilized.

3. Provide empirical evidence regarding which of the revealed real-world statistical regularities are indeed perceived and
learned by individuals (at different stages of development), as well as the role they play in assisting processing in a given
domain.
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Outstanding questions
What are the relevant statistical
computations in different real-world
perceptual and cognitive environments
as encountered by learners? How
does the statistical structure charac-
terizing different domains change over
time (short-term across minutes,
hours or days and long-term across
development)?

What are the endogenous biological
factors that contribute to individual
differences in sensitivity to different
structural regularities? How do potential
differences in genotypes interact with
environmental variability to produce
variation in an individual’s neural
mechanisms involved in the learning
of different types of regularities?

Do patients with damage to the medial
temporal lobe memory system, thought
of as the main neural substrate of SL,
show no or strongly reduced learning
of regularities in all cognitive domains?

Does SL imply that statistics are stored
as such? If so, how might this be
implemented? If not, might statistical
regularities instead be stored not as
statistics but as cumulative weight
changes in neural networks?
ability can be assessed through the study of individual differences, neurological patients, and special
populations with hypothesized deficits in SL. Research on impaired populations is particularly infor-
mative for this debate. The general SL capacity perspective predicts that impaired SL would result in
difficulties acquiring sensitivity to statistical structure across the board. The alternative account of
multiple specific SL abilities is, in contrast, consistent with domain-selective impairments [39].

Concluding remarks
If a general SL factor exists and amethodology for its comprehensive assessment can be developed,
the practical and theoretical implications would be far-reaching. However, as we have argued earlier,
the existence of SL as a general individual ability faces significant challenges. We have suggested an
alternative perspective, according to which, sensitivity to statistical regularities in different domains is
more likely grounded in different computational mechanisms. In this perspective, what all SL compu-
tations have in common is a very abstract notion of dealing with some sort of ‘regularity’. Current
evidence on individual differences in SL performance has severe limitations in determining which
model should be favored. Most experimental SL paradigms mimic one another in terms of the
statistical patterns they use, rather than mimicking the statistical regularities that are the object of
learning in different domains. To contrast theoretical approaches to SL, future work should focus
on characterizing the different statistical environments in a multitude of cognitive domains (see
Outstanding questions). Without evidence from tasks that tap regularities characteristic of real-
world environments in different domains, research that ties individual differences in a cognitive function
to a general SL capacity stands on shaky theoretical grounds.
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