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Opinion
Glossary

Amodal representations: typically taken to be ‘abstract’ in the sense that they

are not bound by specific sensory features (e.g., visual or auditory). Apart from

the problem of defining a theoretical construct in terms of what it is not, the

neurobiological evidence for such representations is scarce.

Artificial grammar learning (AGL): in a typical AGL experiment, participants are

exposed to sequences generated by a miniature grammar. Participants are

only informed about the rule-based nature of the sequences after the exposure

phase, when they are asked to classify a new set of sequences, some of which

follow the grammar while others do not. AGL is also considered to be a kind of

implicit learning task.

Generalization: refers to extension of learned statistical structure to unseen

stimuli, typically from within the same modality or stimulus domain.

Internal representation: in neurobiological terms, an internal representation of

a stimulus is the pattern of neural activity evoked by a stimulus in a brain

region (or network of brain regions).

McGurk effect: illustrates the potentially complex interactions between two

conflicting streams of information from the auditory and visual modalities

[68]. For instance, if a video of an individual pronouncing /ga/ is combined with

the sound /ba/, a listener will tend to hear /da/ because the sound /da/ is most

consistent with the visually perceived positions of the lips and with the

auditorily perceived sound.

Modality: the sensorimotor mode in which the stimulus was presented (e.g.,

vision, audition, or touch). One modality may contain several submodalities (e.g.,
Statistical learning (SL) is typically considered to be a
domain-general mechanism by which cognitive systems
discover the underlying distributional properties of
the input. However, recent studies examining whether
there are commonalities in the learning of distributional
information across different domains or modalities
consistently reveal modality and stimulus specificity.
Therefore, important questions are how and why a
hypothesized domain-general learning mechanism sys-
tematically produces such effects. Here, we offer a the-
oretical framework according to which SL is not a unitary
mechanism, but a set of domain-general computational
principles that operate in different modalities and, there-
fore, are subject to the specific constraints characteristic
of their respective brain regions. This framework offers
testable predictions and we discuss its computational
and neurobiological plausibility.

The promise of statistical learning
Humans and other animals are constantly bombarded by
streams of sensory information. SL (the extraction of
distributional properties from sensory input across time
and space) provides a mechanism by which cognitive sys-
tems discover the underlying structure of such stimulation.
Therefore, SL has a key role in the detection of regularities
and quasi-regularities in the environment, results in dis-
crimination, categorization, and segmentation of continu-
ous information, allows prediction of upcoming events, and
thereby shapes the basic representations underlying a
range of sensory, motor, and cognitive abilities.

In cognitive science, theories of SL have emerged as
potential domain-general alternatives to the influential
domain-specific Chomskyan account of language acquisi-
tion ([1], see also [2] for related claims). Rather than
assuming an innate, modular, and neurobiologically
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hardwired human capacity for processing linguistic infor-
mation, SL, as a theoretical construct, was offered as a
general mechanism for learning and processing any type of
sensory input that unfolds across time and space. To date,
evidence for SL has been found across an array of cognitive
functions, such as segmenting continuous auditory input
[3], visual search [4], contextual cuing [5], visuomotor
learning [6], conditioning (e.g., [7]), and in general, any
predictive behavior (e.g., [8,9]).

Here, we propose a broad theoretical account of SL,
starting with a discussion of how a domain-general ability
may be subject to modality- (see Glossary) and stimulus-
specific constraints. We define ‘learning’ as the process
responsible for updating internal representations given
visual motion or color), each of which is subserved by distinct neuroanatomy.

Multimodal representations: : representations that form when information

from two or more modalities is integrated in a representational space and

associated brain region (or network of regions). Importantly, therefore, these

representations are not ‘amodal’.

Transfer: : a broader type of extension of learned knowledge than general-

ization that refers to the application of learned regularities to novel domains

and/or modalities.
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specific input and encoding potential relations between
them, thereby improving the processing of that input.
Similarly, ‘processing’ is construed as determining how
an input to a neural system interacts with the current
knowledge stored in that system to generate internal
representations. Thus, knowledge in the system is contin-
uously updated via learning. Specifically, we take SL to
reflect updates based on the discovery of systematic regu-
larities embedded in the input, and provide a mechanistic
account of how distributional properties are picked up
across domains, eventually shaping behavior. We further
outline how this account is constrained by neuroanatomy
and systems neuroscience, offering independent insights
into the specific constraints on SL. Finally, we highlight
individual differences in abilities for SL as a major, largely
untapped source of evidence for which our account makes
clear predictions.

Domain generality versus domain specificity
Originally, domain generality was invoked to argue
against language modularity; therefore, its definition
implicitly implied ‘something that is not language spe-
cific’. Consequently, within this context, ‘domain’ implies
a range of stimuli that share physical and structural
properties (e.g., spoken words, musical tones, or tactile
input), whereas ‘generality’ is taken to be ‘something
that does not operate along principles restricted to lan-
guage learning’. However, this approach says what do-
main generality is not, rather than saying what it is (e.g.,
[10]). More recent accounts of SL ascribe domain gener-
ality to a unitary learning system (e.g., [11]) that exe-
cutes similar computations across stimuli (e.g., [12]) and
that can be observed across domains (e.g., [13]) and
across species (e.g., [14,15]).

As a theoretical construct, SL promised to bring togeth-
er a range of cognitive functions within a single mecha-
nism. Therefore, extensive research over the past decade
focused on mapping the commonalities involved in the
learning of distributional information across different
domains. From an operational perspective, these studies
investigated whether overall performance in SL tasks is
Box 1. Generalization and transfer in SL

A key aspect of learning is to be able to apply knowledge gained from

past experiences to novel input. In some studies of SL, for example,

participants are first presented with a set of items generated by a

predefined set of rules and then, in a subsequent test phase, asked to

distinguish unseen items generated by these rules (i.e., ‘grammatical

items’) from another set of novel items that violate these rules (i.e.,

‘ungrammatical items’). If they are able to correctly classify the

unseen items as ‘grammatical’ or ‘ungrammatical’ at above-chance

levels, generalization from seen items to the novel exemplars is

assumed.

Many scientists initially interpreted successful generalization as

evidence that the participants had acquired the rules used to generate

the stimuli and applied them to the novel stimuli. However, several

studies have shown that participants’ performance at test can be

readily explained by sensitivity to so-called ‘fragment’ information,

comprising distributional properties of subparts of individual items

[16]. Consider a hypothetical novel test item, ABCDE, which consists

of various bigram (AB, BC, CD, and DE) and trigram (ABC, BCD, and

CDE) fragments. The likelihood of a participant endorsing this test

item as grammatical will depend on how frequently these bigram and
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similar across different types of stimuli [16], whether there
is transfer of learning across domains (Box 1), whether
there is interference between simultaneously learning of
multiple artificial grammars (e.g., [17]) or from multiple
input streams within and across domains [18], or whether
individual capacities in detecting distributional probabili-
ties in a variety of SL tasks are correlated ([19]).

The pattern of results across these different studies is
intriguingly consistent: contrary to the most intuitive pre-
dictions of domain generality, the evidence persistently
shows patterns of modality specificity and sometimes even
stimulus specificity. For example, studies of artificial
grammar learning (AGL) systematically demonstrate lim-
ited transfer of learning across modalities, if at all (e.g.,
[20,21]). Similarly, the simultaneous learning of two arti-
ficial grammars can proceed without interference once they
are implemented in separate modalities [17]. Modality
specificity is also revealed by qualitative differences in
patterns of SL in the auditory, visual, and tactile modali-
ties [16], sometimes with opposite effects of presentation
parameters across modalities [22]. To complicate matters
further, SL within modality reveals striking stimulus
specificity, so that no transfer (and, conversely, no inter-
ference) occurs within modality provided the stimuli have
separable perceptual features (e.g., [17,23]). Finally, al-
though performance in SL tasks displays substantial test-
retest reliability within modality, there is no evidence of
any correlation within individuals in their capacities to
detect conditional probabilities across modalities and
across stimuli (Siegelman and Frost, unpublished data
2015). This contrasts with what might be expected if SL
was subserved by a unitary learning system: that individ-
ual variation in its basic function would manifest in at least
some degree of correlation across different SL tasks. If not,
its unitary aspect remains theoretically empty because it
does not have an empirical reality in terms of specific
testable predictions. Taken together, these studies suggest
that there are independent modality constraints in learn-
ing distributional information [16], pointing to modality
specificity, and further to stimulus specificity akin to per-
ceptual learning [24].
trigram fragments have occurred in the training items. If a test item

contains a fragment that has not been seen during training, then

participants will tend to reject that item as ungrammatical (see [69]).

Thus, generalization in SL is often, if not always, driven by local

stimulus properties and overall judgments of similarity, rather than by

the extraction of abstract rules.

Another possible way in which past learning could be extrapolated

to new input is through the transfer of regularities learned in one

domain to another (e.g., from visual input to auditory input).

Although early studies appeared to support cross-modal transfer

(e.g., [58,70]), more recent studies have shown that there is little, or

no, evidence for transfer effects, once learning during tests based on

repetition or simple fragment information is taken into account (e.g.,

[20,21,71]).

Generalization and transfer significantly differ in their contribution

to theories of learning. Whereas generalization has been demon-

strated in SL studies (which is important for the application of SL to

language), there is little evidence of cross-modal transfer, likely

because of the substantial differences in neurobiological character-

istics of the visual, auditory, and somatosensory cortices.
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Whereas this set of findings is not easy to reconcile with
the notion of a unitary, domain-general system for SL, it
does not necessarily invalidate the promise of SL to provide
an overarching framework underlying learning across
domains. Instead, what is needed is an account of SL that
can explicate the manifestations of domain generality in
distributional learning with the evidence of its modality
and stimulus specificity, restricted generalization, little
transfer, and low correlations of performance between
tasks within individuals. More broadly, any general theory
of learning that aims to describe a range of phenomena
through a specific set of computational principles has to
offer a theoretical account of how and why transfer, dis-
crimination, and generalization take place, or not.

Towards a mechanistic model of SL
Our approach construes SL as involving a set of domain-
general neurobiological mechanisms for learning, repre-
sentation, and processing that detect and encode a range of
distributional properties within different modalities or
types of input (see [13], for a related approach). Crucially,
however, in our account, these principles are not instanti-
ated by a unitary learning system but, rather, by separate
neural networks in different cortical areas (e.g., visual,
auditory, and somatosensory cortex). Thus, the process of
encoding an internal representation follows constraints
that are determined by the specific properties of the input
processed in the respective cortices. As a result, the out-
comes of computations in these networks are necessarily
modality specific, despite multiple cortical and subcortical
regions invoking similar sets of computational principles
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similar computations and contributions from partially shared neurocomputational netw
and some shared brain regions (e.g., Hebbian learning or
reinforcement learning; for discussion, see [25,26]).

For example, the auditory cortex displays lower sensi-
tivity to spatial information but enhanced sensitivity to
temporal information, whereas the visual cortex displays
enhanced sensitivity to spatial information, but lower
sensitivity to temporal information (e.g., [27,28]). Iconic
memory is short lived (scale of ms), whereas echoic memory
lasts significantly longer (scale of seconds; e.g., [29]). Given
that auditory information unfolds in time, the auditory
cortex must be sensitive to the temporal accumulation of
information to make sense of the input. By contrast, visual
information is instantaneous and, although temporal inte-
gration is necessary in some cases, such as in deciphering
motion, the visual cortex is relatively less sensitive to
temporal accumulation of information over extended per-
iods of time. These inherent differences are reflected in the
way the sensory input eventually is encoded into internal
representations for further computation. Moreover, within
modality, encoding of events displays graded stimulus
specificity given their complexity, similarity, saliency,
and other factors related to the quality and nature of
the input (see [30,31] for evidence in visual SL). For
example, participants are able to learn two separate arti-
ficial grammars simultaneously in the visual domain when
the stimuli are from separate perceptual dimensions, such
as color and shape, but not when they are from within the
same perceptual dimension [16]. Figure 1 represents a
schematic account of our approach and shows how the
same learning and representation principles result in
modality and stimulus specificity because they are
principles
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instantiated in different brain regions, each with their
characteristic constraints.

Note that modality-specific constraints do not preclude
the neurobiological ability to process multimodal events.
Indeed, this has recently been shown within SL using the
McGurk effect in a cross-modal segmentation study
[32]. More generally, perception of the world routinely
involves multisensory integration (e.g., [33]), occurring
at both low levels (i.e., the thalamus [34] and the dorsal
cochlear nucleus [35]) and higher levels of cortical proces-
sing (e.g., anterior temporal poles [36]). Critically, howev-
er, each of these multimodal areas would be subject to its
own distinct set of constraints, which would not necessarily
be the same as those from the unimodal regions that feed
into it or to the constraints in other multimodal areas. For
example, coherence in the timing at which an auditory and
a visual stimulus unfold is important for specific types of
integration [18] in audiovisual brain areas [37], but not as
important for detecting regularities in the case of integrat-
ing two different visual representations in the visual
system. Note that this view is distinct from alternative
accounts suggesting that a unitary learning mechanism
operates on ‘abstract’ amodal representations (e.g., [38]).
Instead, we suggest that multimodal regions are shaped by
their own distinct sets of constraints.

This brings us to an operational definition of ‘domain
generality’. Within our framework, domain generality pri-
marily emerges because neural networks across modalities
instantiate similar computational principles. Moreover,
domain generality may also arise either through the pos-
sible engagement of partially shared neural networks that
modulate the encoding of the to-be-learned statistical
structure [39], or if stimulus input representations encoded
in a given modality (e.g., visual or auditory) are fed into a
multi-modal region for further computation and learning.
As we shall see next, the current neurobiological evidence
is consistent with both of these latter possibilities.

The neurobiological bases of SL
Recent neuroimaging studies have shown that statistical
regularities of visual shapes result in activation in higher-
level visual networks (e.g., lateral occipital cortex and
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inferior temporal gyrus [40,41]), whereas statistical regu-
larities in auditory stimuli result in activation in analogous
auditory networks (e.g., left temporal and inferior parietal
cortices; frontotemporal networks including portions of the
inferior frontal gyrus, motor areas involved in speech
production [42]; and the pars opercularis and pars trian-
gularis regions of the left inferior frontal gyrus [43]). Given
that these studies contrasted activation for structured
versus random blocks of stimuli, the stronger activation
for structured stimuli in the above regions of interest is
consistent with the notion that some SL occurs already in
brain regions that are largely dedicated to processing
unimodal stimuli, thus allowing for modality-specific con-
straints to shape the outcome of computations.

In addition to identifying modality-specific learning
mechanisms, studies that use neuroimaging or analyze
event-related potentials point to some brain regions that
are active regardless of the modality in which the stimulus
is presented. Often, this work has associated SL effects
with the hippocampus and, more generally, with the me-
dial temporal lobe (MTL) memory system (e.g., [44]). This
is consistent with considerable systems neuroscience work
that has established the hippocampus as a locus for encod-
ing and binding temporal and spatial contingencies pre-
sented in multiple different modalities [40,44–48], as well
as for consolidation of representations.

Hippocampal involvement in SL could comprise indi-
rect modulation of the representations in sensory areas
or direct computations on hippocampal representations
that are driven by sensorimotor representations (see [48]
for a discussion). However, even in the case of direct
hippocampal computations, the computed representa-
tions are not necessarily amodal, because traces of their
original specificity remain (e.g., [49]). Subregions of the
hippocampus have been shown to send and receive dif-
ferent types of information from different brain regions,
while developing specialization for representing those
different types of information [50]. In addition, repre-
sentations within the hippocampus itself are typically
sparse, and are wired to be maximally dissimilar even
when stimuli evoke similar activation in a given senso-
rimotor region [51–54]. Thus, even with a direct
R
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lamus. Generated with the BrainNet Viewer [72].
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hippocampal involvement in SL, such computations
would likely result in a high degree of stimulus specifici-
ty, as observed across many SL studies.

Additional imaging work has identified regions of the
basal ganglia [55] and thalamus [42,56] as important
collaborating brain regions that work with the MTL
memory system to complete relevant subtasks involved
in SL. For instance, the thalamus may provide synchro-
nizing oscillatory activity in the alpha–gamma and the-
ta–gamma ranges that enables the rapid and accurate
encoding of sequences of events [56]. Thus, as summa-
rized in Figure 2, the current neurobiological evidence
suggests that detection of statistical regularities emerges
from local computations carried out within a given
Box 2. Advancing SL theory via computational modeling

Computational modeling serves an important dual role in providing a

quantitative account of observed empirical effects and in generating

novel predictions to guide empirical research (e.g., [67,73,74]). Within

our framework, such modeling should reflect the relevant neural

hardware of sensory cortices, elucidating what, as well as how,

distributional properties are tracked by neural networks [40,56,75]. It

should also make direct contact with neural measures as opposed to

focusing strictly on behavioral end-states (see [74,76,77] for discus-

sion).

The development of explicit models allows for the parametric

variation of different aspects of the SL system, including the

contributions of different learning mechanisms and different brain

regions, as well as of the quality and nature of the representations in

different parts of the system (Figure I). This enables one to probe the

ability of the model to account not only for group-averaged effects,

but also for individual differences (Box 3) [78], and to establish how

and why variation in different aspects of the system modulate overall

performance.

Recent advances in ‘deep’ neural networks have also resulted in

interesting insights into the effects of allowing intermediate repre-

sentations to emerge as a function of learning [79,80], as opposed to
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a more complete model, as is the coding of more detailed sensory information input
modality, and through a multidomain neurocognitive
system that either modulates or operates on inputs from
modality-specific representations. Whether unimodal
computations are necessary or sufficient for SL, remains
an open question. Whereas some studies report no learn-
ing following hippocampal damage [44], others report
significant SL despite such damage (e.g., [57]). However,
in this context, a lack of SL cannot be unequivocally
attributed to neurobiological impairment. Many normal
participants do not show SL even with an intact MTL
system (see, for example, performance of a subset of the
control participants observed by [44], who do not fare
better than the specific reported patient). This leads us
to our next section on individual differences.
being explicitly stipulated. This relates directly to the issues of

modality and stimulus specificity that currently challenge SL theories.

For instance, representations closer to the sensory cortices are

learned earlier and are more strongly shaped by the specific

characteristics of individual stimuli. This contrasts with higher-order

(but possibly modality specific) areas that operate on these early

sensory representations, and which can detect commonalities in

higher-order statistics despite little similarity in the surface properties

or lower-order statistical relations among the stimuli (for related work

using a Bayesian approach, see [81]). This predicts that SL tasks that

involve stimuli whose relations are only detectable in higher-order

statistics should be more likely to show at least some generalization

relative to early sensory regions, which are predicted to exhibit

stronger stimulus specificity (for a related proposal, see [82]). For

instance, the purpose of some brain regions is primarily to distinguish

between highly similar complex inputs (e.g., visual expertise areas,

such as the putative fusiform face area [83]), or to transmit similar

outputs to multiple brain regions regardless of the source of its input

(e.g., the semantic memory system [84]). Such a model is also able to

account for stimulus specificity in some higher-order domains and

predict the possibility of generalization in others.
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Individual and group differences in SL
The proposed framework leads us to argue that individual
differences provide key evidence for understanding the
mechanism of SL. In past work, it has often been assumed
that individual variance in implicit learning tasks is sig-
nificantly smaller than that of explicit learning (e.g., [58]).
Consequently, the source of variability in performance in
SL has been largely overlooked, and has led researchers to
focus on average success rate (but see [19,59–61]).

However, in the context of SL, measures of central
tendency can be particularly misleading, because often
approximately one third of the sample or more is not
performing the task above chance level (e.g., [12,60,61]).
Moreover, tracking individual learning trajectories
throughout the phases of a given SL task has recently
suggested that there is a commensurate high level of
variability in the learning curves of different individuals
(e.g., [43,61]). In several areas of cognitive science, it is now
well established that understanding the source of individ-
ual differences holds the promise of revealing critical
insight regarding the cognitive operations underlying per-
formance, leading to more refined theories of behaviour.
Furthermore, a theory that addresses individual differ-
ences should aim to explain how learning mechanisms
operate online to gradually extract statistical structure,
Box 3. Mapping individual trajectories in SL

The present theoretical approach outlines a methodology for investigat-

ing individual performance in SL tasks by orthogonally manipulating the

experimental parameters affecting encoding efficacy on the one hand,

and parameters related to efficiency in registering distributional

properties, on the other. In general, manipulations that center on input

encoding parameters (temporal presentation rate, number of items in a

spatial configuration, stimuli complexity, etc.), will probe individual

abilities in encoding stimuli in a given modality. By contrast, manipula-

tions that center on transitional probabilities (i.e., the likelihood of Y

following X, given the occurrence of X), types of statistical contingency

(e.g., adjacent or nonadjacent), and so on, will probe the relative

efficiency of a person’s computational ability for registering distribu-

tional properties (see [6] for manipulation of transitional probabilities in

a serial reaction time task). Such parametric experimental designs

would reveal, for any given individual, specific patterns of interaction of

two main factors driving SL, outlining how their joint contribution

determines participants performance on a specific task. Figure I presents

hypothetical plots of the performance of two individuals following such

parametric manipulations. The figure illustrates differential trajectories

of individual sensitivities to either type of manipulation. This experi-

mental approach has the additional promise of revealing systematic

commonalities or differences in sensitivity to various types of distribu-

tional properties across domains or modalities.

A possible extension of this line of research would incorporate the

impact of prior knowledge on SL. The process of encoding

representations of any continuous input is dependent on the

characteristics of the representational space for a given individual.

Thus, encoding an input of continuous syllabic elements (e.g., [12]) is

different than encoding a sequence of nonlinguistic novel sounds

(e.g., [85]), affecting SL efficacy. This could generate significant

individual differences in SL in domains such as language, where

individuals differ significantly in their linguistic representations (e.g.,

vocabulary size or number of languages spoken).

Most current research on individual differences in SL focuses on

predicting general cognitive or linguistic abilities from performance in

SL tasks [19,59–61,86,87] or showing similar neural correlates within

subjects for SL and language [88,89]. Thus, investigating the various

facets of performance in SL, as outlined above, is a necessary further

step to describe and explain the specific sources of potential correlations
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as opposed to focusing strictly on the outcome of a learning
phase in a subsequent test (e.g., [62]).

As a first approximation, our theoretical model splits
the variance across individuals into two main sources.
First, as indicated by Figure 1, there is the variance related
to efficiency in encoding representations within modality
in the visual, auditory, and somatosensory cortex. This
variance could derive from individual differences in the
efficacy of encoding fast sequential inputs or complex
spatial stimuli and, thus, could be traced to the neuronal
mechanisms that determine the effective resolution of
one’s sensory system. The second source of variance relates
to the relative computational efficiency of processing mul-
tiple temporally and spatially encoded representations and
detecting their distributional properties. This variance
could be traced to cellular- and systems-level differences
in factors that include (but are not limited to) white matter
density, which have been shown to affect AGL performance
[63], and variation in the speed of changes in synaptic
efficacy [64]. In modeling terms, these factors would relate
to parameters such as connectivity, learning rates, and the
quality and type of information to be encoded and trans-
mitted by a given brain region (Box 2).

The advantage of this approach is that it offers precise
and testable predictions that can be empirically evaluated.
between SL test measures and the cognitive functions that they aim to

predict. Identifying these sources would, in turn, allow researchers to

refine predictions and generate well-defined a priori hypotheses.
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Figure I. Predicted empirical results illustrating how stimulus encoding and

transitional probability shape individual differences. (A) and (B) present

hypothetical data from two participants and illustrate how the ability to

detect regularities and to encode inputs may be separated experimentally. (A)

demonstrates the manipulation of rate of presentation and shows that,

whereas Participant 1 (in blue) performs well even in relatively fast rates,

Participant 2 (in red) shows no learning when stimuli are presented at or above

a rate of one per 600 ms. (B) displays the manipulation of transitional

probabilities. Here, the rate of presentation is the same across all five tasks,

but transitional probabilities vary from 0.6 to 1. The results show that

Participant 2 (in red), who performs above chance in the test even when the

transitional probabilities between elements are low, is more efficient in

detecting probabilities compared with Participant 1 (in blue).
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Thus, individuals can display relatively increased sensi-
tivity in encoding auditory information, but a relative
disadvantage in encoding sequential visual information.
Conversely, two individuals that have similar efficiency in
terms of representational encoding in a given modality
could differ in their relative efficiency in computing the
distributional properties of visual or auditory events. In
either case, low correlation in performance within individ-
uals in two SL tasks would be the outcome, as has been
reported in recent studies (e.g., [19]). However, as exem-
plified in Box 3, accurate individual trajectories of SL can
in principle be obtained by using parametric designs that
independently target the two sources of variance.

Individual differences are particularly intriguing given
recent claims regarding developmental invariance in some
types of SL (e.g., [65]). If SL capacities per se do not change,
and brain maturation and experience are primarily driving
improvements in processes ‘peripheral’ to SL, such as
attention, then the bulk of variability in individual devel-
opmental trajectories in SL abilities should be explained by
these peripheral factors only. We believe that the current
empirical support for this claim is limited (see [66] for a
discussion). However, further progress requires a better
fundamental understanding of individual differences in
SL, as elaborated in Box 3.

Concluding remarks
Here, we offer a novel theoretical perspective on SL that
considers computational and neurobiological constraints.
Previous work on SL offered a possible cognitive mecha-
nistic account of how distributional properties are comput-
ed, with explicit demonstrations being provided only
within the domain of language [65,67]. Our perspective
has the advantage of providing a unifying neurobiological
account of SL across domains, modalities, neural, and
cognitive investigations, and cross-species studies, thus
connecting with and explaining an extensive set of data.
The core claim of our framework is that SL reflects con-
tributions from domain-general learning principles that
are constrained to operate in specific modalities, with
potential contributions from partially shared brain regions
common to learning in different modalities. Both of these
notions are well grounded in neuroscience. Moreover, they
provide our account with the flexibility needed to explain
Box 4. Outstanding questions

� To what degree are high-level cognitive SL effects and low-level

sensorimotor SL effects modulated by the partially shared SL

systems (e.g., hippocampus, basal ganglia, or inferior frontal

gyrus) versus modality-specific systems?

� Can a better understanding of low-level cellular and systems

neurobiology guide theoretical advance by predicting the specific

types of information that a brain region will be most suited to

encode and, consequently, the types of statistical learning that

may take place?

� To what degree does variability in the quality and nature of an

individual’s modality-specific representations of individual stimu-

li, and variability in sensitivity to the dependencies between

stimuli, explain individual differences in SL experiments?

� To what degree are the modality-specific and partially shared

neural processing systems that underlie SL modulated by

experience versus neuronal maturation throughout development?
the apparently contradictory SL phenomena observed both
within and between individuals, such as stimulus and
modality specificity, while still being constrained by the
capacities of the brain regions that subserve the processing
of different types of stimuli. In addition to descriptive
adequacy, our approach also provides targeted guidance
for future investigations of SL via explicit neurobiological
modeling and studies of the mechanics underlying indi-
vidual differences. Therefore, we offer our framework as a
novel platform for understanding and advancing the study
of SL and related phenomena (Box 4).
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