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Language and other higher-cognitive functions require structured sequential 
behavior including non-adjacent relations. A fundamental question in cognitive 
science is what computational machinery can support both the learning and 
representation of such non-adjacencies, and what properties of the input facilitate 
such processes. Learning experiments using miniature languages with adult and 
infants have demonstrated the impact of high variability (Gómez, 2003) as well 
as nil variability (Onnis, Christiansen, Chater, & Gómez (2003; submitted) of 
intermediate elements on the learning of nonadjacent dependencies. Intriguingly, 
current associative measures cannot explain this U shape curve. In this chapter, 
extensive computer simulations using five different connectionist architectures 
reveal that Simple Recurrent Networks (SRN) best capture the behavioral data, by 
superimposing local and distant information over their internal ‘mental’ states. 
These results provide the first mechanistic account of implicit associative learning 
of non-adjacent dependencies modulated by distributional properties of the 
input. We conclude that implicit statistical learning might be more powerful than 
previously anticipated.

Most routine actions that we perform daily such as preparing to go to work, mak-
ing a cup of coffee, calling up a friend, or speaking are performed without apparent 
effort and yet all involve very complex sequential behavior. Perhaps the most appar-
ent example of sequential behavior – one that we tirelessly perform since we were 
 children – involves speaking and listening to our fellow humans. Given the relative 
ease with which children acquire these skills, the complexity of learning sequen-
tial behavior may go unseen: At first sight, producing a sentence merely consists 
of establishing a chain of links between each speech motor action and the next, a 
simple addition of one word to the next. However, this characterization falls short 
of one important property of structured sequences. In language, for instance, many 
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 syntactic relations such as verb agreement hold between words that may be several 
words apart, such as for instance in the sentence The dog that chased the cats is play-
ful, where the number of the auxiliary is depends on the number of the non-adjacent 
subject dog, not on the nearer noun cats.

The presence of these nonadjacent dependencies in sequential patterns poses a 
serious conundrum for learning-based theories of language acquisition and sequence 
processing in general. On the one hand, it appears that children must learn the rela-
tionships between words in a specific language by capitalizing on the local properties 
of the input. In fact, there is increasing empirical evidence that early in infanthood 
learners become sensitive to such local sequential patterns in the environment: For 
example, infants can exploit high and low transitional probabilities between adjacent 
syllables to individuate nonsense words in a stream of unsegmented speech (Saffran, 
Aslin, & Newport, 1996; Saffran, 2001; Estes, Evans, Alibali & Saffran, 2007). Under 
this characterization, it is possible to learn important relations in language using 
local information. On the other hand, given the presence of nonadjacent dependen-
cies in language acquisition (Chomsky, 1959) as well as in sequential action (Lashley, 
1951) associative mechanisms that rely exclusively on adjacent information would 
appear powerless. For instance, processing an English sentence in a purely local way 
would result in errors such as *The dog that chased the cats are playful, because the 
nearest noun to the auxiliary verb are is the plural noun cats. An outstanding ques-
tion for cognitive science is thus whether it is possible to learn and process serial 
nonadjacent structure in language and other domains via associative mechanisms 
alone.

In this paper, we tackle the issue of the implicit learning of linguistic non- 
adjacencies using a class of associative models, namely connectionist networks. Our 
starting point is a set of behavioral results on the learning of nonadjacent dependen-
cies initiated by Rebecca Gómez. These results are interesting because they are both 
intuitively counterintuitive, and because they defy any explicit computational model 
to our knowledge. Gómez (2002) found that learning non-local Ai_Bi relations in 
sequences of spoken pseudo-words with structure A X B is a function of the vari-
ability of X intervening items: infants and adults exposed to more word types filling 
the X category detected the non-adjacent relation between specific Ai and specific Bi 
words better than learners exposed to a small set of possible X words. In follow-up 
studies with adult learners, Onnis, Christiansen, Chater, and Gómez (2003; submit-
ted) and Onnis, Monaghan, Christiansen, and Chater (2004) replicated the original 
Gómez results, and further found that non-adjacencies are better learned when no 
variability of intervening words from the X category occurred. This particular U shape 
learning curve also holds when completely new intervening words are presented at 
test (e.g. Ai Y Bi), suggesting that learners distinguish nonadjacent relations indepen-
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dently of intervening material, and can generalize their knowledge to novel sentences. 
In addition, the U shape was replicated using abstract visual shapes, suggesting that 
similar learning and processing mechanisms may be at play for non-linguistic mate-
rial presented in a different sensory domain. Crucially, it has been demonstrated that 
implicit learning of nonadjacent dependencies is significantly correlated with both 
offline comprehension (Misyak & Christiansen, 2012) and online processing (Misyak, 
Christiansen &  Tomblin, 2010a, b) of sentences in natural language containing long-
distance dependencies.

The above results motivate a reconsideration of the putative mechanisms of non-
adjacency learning in two specific directions: first, they suggest that non-adjacency 
learning may not be an all-or-none phenomenon and can be modulated by specific 
distributional properties of the input to which learners are exposed. This in turn 
would suggest a role for implicit associative mechanisms, variably described in the 
literature under terms as statistical learning, sequential learning, distributional learn-
ing, and implicit learning (Perruchet & Pacton, 2006; Frank, Goldwater, Griffiths, & 
 Tenenbaum, 2010). Second, the behavioral U shape results would appear to challenge 
virtually all current associative models proposed in the literature. In this paper we 
thus ask whether there is at least one class of implicit associative mechanisms that 
can capture the behavioral U shape. This will allow us to understand in more mecha-
nistic terms how the presence of embedded variability facilitates the learning of non-
adjacencies, thus filling the current gap in our ability to understand this important 
phenomenon. Finally, to the extent that our computer simulations can capture the 
phenomenon without requiring explicit forms of learning, they also provide a proof 
of concept that implicit learning of non-adjacencies is possible, contributing fur-
ther to the discussion of what properties of language need necessarily to be learned 
explicitly.

The plan of the paper is as follow: we first briefly discuss examples of nonadjacent 
structures in language and review the original experimental study by Gómez and col-
leagues, explaining why they challenge associative learning mechanisms. Subsequently 
we report on a series of simulations using Simple Recurrent Networks (SRNs) because 
they seem to capture important aspects of serial behavior in language and other 
domains (Botvinick & Plaut, 2004, 2006; Christiansen & Chater, 1999;  Cleeremans, 
Servan-Schreiber, & McClelland; 1989; Elman, 1991, among others). Further on, we 
test the robustness of our SRN simulations in an extensive comparison of connection-
ist architectures and show that only the SRNs capture the human variability results 
closely. We discuss how this class of connectionist models are able to entertain both 
local and distant information in graded, superimposed representations on their hid-
den units, thus providing a plausible implicit associative mechanism for detecting 
non-adjacencies in sequential learning.
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The problem of detecting nonadjacent dependencies in sequential patterns

At a general level, non-adjacent dependencies in sequences are pairs of mutually 
dependent elements separated by a varying number of embedded elements. We can 
consider three prototypical cases of non-local constraints (from Servan-Schreiber, 
Cleeremans, & McClelland, 1991) and we can ask how an ideal learner could correctly 
predict the last element (here letter) of a sequence, given knowledge of the preceding 
elements. Consider the three following sequences:

 (1) L KPS V versus L KPS M

 (2) L KPS V versus P GBP E

 (3) L KPS V versus P KPS E

As for (1), it is impossible to predict V versus M correctly because the preceding mate-
rial “L KPS” is exactly identical. Example (2), on the other hand is trivial, because the 
last letter is simply contingent on the penultimate letter (‘V’ is contingent on ‘S’ and 
E’ is contingent on ‘P’). Example (3), the type investigated in Gómez (2002), is more 
complex: the material ‘KPS’ preceding ‘V’ and ‘S’ does not provide any relevant infor-
mation for disambiguating the last letter, which is contingent on the initial letter. The 
problem of maintaining information about the initial item until it becomes relevant 
is particularly difficult for any local prediction-driven system, when the very same 
predictions have to be made on each time step in either string for each embedded ele-
ment, as in (3).

Gómez (2002) noted that many relevant examples of non-local dependencies of 
type (3) are found in natural languages: they typically involve items belonging to a 
relatively small set (functor words and morphemes like am, the, -ing, -s, are) inter-
spersed with items belonging to a much larger set (nouns, verbs, adjectives). This 
asymmetry translates into sequential patterns of highly invariant non-adjacent items 
separated by highly variable material. For instance, the present progressive tense in 
English contains a discontinuous pattern of the type “tensed auxiliary verb + verb 
stem + -ing suffix”, e.g. am cooking, am working, am going, etc.). This structure is 
also apparent in number agreement, where information about a subject noun is to 
be maintained active over a number of irrelevant embedded items before it actually 
becomes useful when processing the associated main verb. For instance, processing 
the sentence:

 (4) The dog that chased the cats is playful

requires information about the singular subject noun “dog” to be maintained over 
the relative clause “that chased the cats”, to correctly predict that the verb “is” is sin-
gular, despite the fact that the subordinate object noun immediately adjacent to it, 
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“cats”, is plural. Such cases are problematic for associative learning mechanisms that 
 process local transition probabilities (i.e. from one element to the next) alone, pre-
cisely because they can give rise to spurious correlations that would result in errone-
ously categorizing the following sentence as grammatical:

 (5) *The dog that chased the cats are playful

In other words, the embedded material appears to be wholly irrelevant to mastering 
the non-adjacencies: not only is there an infinite number of possible relative clauses 
that might separate The dog from is, but also structurally different non-adjacent depen-
dencies might share the very same embedded material, as in (4) above versus

 (6) The dogs that chased the cats are playful

Gómez exposed infants and adults to sentences of a miniature language intended to 
capture such structural properties, namely with sentences of the form AiXjBi, instan-
tiated in spoken nonsense words. The language contained three families of non- 
adjacencies, denoted A1_B1, (pel_rud), A2_B2 (vot_jic), and A3_B3 (dak_tood). The 
set-size from which the embedded word Xj, could be drawn was manipulated in four 
between-subjects conditions (set-size = 2, 6, 12, or 24; see Figure 1, columns 2–5). 
At test, participants had to discriminate between expressions containing correct non-
adjacent dependencies, (e.g. A2X1B2, vot vadim jic) from incorrect ones (e.g. *A2X1B1, 
vot vadim rud).

This test thus required fine discriminations to be made, because even though 
incorrect sentences were novel three-word sequences (or trigrams), both single-word 
and two-word (bigrams) sequences (namely, A2X1, X1B2, X1B1) had appeared in the 
training phase. In addition, because the same embeddings appeared in all three pairs 
of non-adjacencies with equal frequency, all bigrams had the same frequency within a 
given sets-size condition. In particular, the transitional probability of any B word given 
the middle word X was the same, for instance, P(jic|vadim) = P(rud|vadim)= .33, and 
so it was not possible to predict the correct grammatical string based on knowledge of 
adjacent transitional probabilities alone. Gómez hypothesized that if adjacent transi-
tional probabilities were made weaker, the non-adjacent invariant frame Ai_Bi might 
stand out as invariant. This should happen when the set-size of the embeddings is 
larger, hence predicting better learning of the non-adjacent dependencies under con-
ditions of high embedding variability. Her results supported this hypothesis: partici-
pants performed significantly better when the set-size of the embedding was largest, 
i.e. 24 items.

An initial verbal interpretation of these findings by Gómez (2002) was that 
learners detect the nonadjacent dependencies when they become invariant enough 
with respect to the varying embedded X words. This interpretation thus suggests 
that – while learners are indeed attuned to distributional properties of the local 
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environment – they also learn about which source of information is most likely to 
be useful  – in this case adjacent or non-adjacent dependencies. Gómez proposed 
that learners may capitalize on the most statistically reliable source of information 
in an attempt to reduce uncertainty about the input (Gómez, 2002). In the context 
of sequences of items generated by artificial grammars, the cognitive system’s rela-
tive sensitivity to the information contained in bigrams, trigrams or in long-distance 
dependencies may therefore hinge upon the statistical properties of the specific envi-
ronment that is being sampled.

In follow-up studies, Onnis et al. (2003; submitted) were able to replicate Gómez’ 
experiment with adults, and added a new condition in which there is only one middle 
element (A1X1B1, A2X1B2, A3X1B3; see Figure 1, column 1). Under such condition, 
variability in the middle position is thus simply eliminated, thus making the X element 
invariable and the A_B non-adjacent items variable. Onnis et al. found that this flip 
in what changes versus what stays constant again resulted in successful learning of the 
non-adjacent contingencies. Interestingly, learning in Onnis et al.’s set-size 1 condition 
does not seem to be attributable to a different mechanism involving rote learning of 
whole sentences. In a control experiment, learners were required to learn not three 
but six nonadjacent dependencies and one X, thus equating the number of unique 
sentences to be learned to those in set-size 2, in which learning was poor. The logic 
behind the control was that if learners relied on memorization of whole sentences 
on both conditions, they should fail to learn the six nonadjacent dependencies in the 
control set-size 1. Instead, Onnis et al. found that learners had little problem learn-
ing the six non-adjacencies, despite the fact that the language control set-size 1 was 
more complex (13 different words and 6 unique dependencies to be learned) than the 
language of set-size 2 (7 words and three dependencies). This control thus ruled out a 
process of learning based on mere memorization and suggested that the invariability 
of X was responsible for the successful learning. A further experiment showed that 
learners endorsed the correct non-adjacencies even when presented with completely 
new words at test. For instance, they were able to distinguish A1Y1B1 from A1Y1B2, 
suggesting that the process of learning non-adjacencies leads to correct generalization 
to novel sentences.

In yet another experiment, they replicated the U shape and generalization find-
ings with visually presented pseudo-shapes. Taken together, Gómez’s and Onnis et al.’s 
results indicate that learning is best either when there are many possible intervening 
elements or when there is just one such element, with considerably degraded perfor-
mance for conditions of intermediate variability (Figure 2). For the sake of simplicity, 
from here on we collectively refer to all the above results as the ‘U shape results’. Before 
moving to our new set of connectionist simulations, the next section evaluates whether 
current associative measures of implicit learning can predict the U shape results.
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Figure 1. The miniature grammars used by Gómez (2002; columns 2–5) and Onnis et al. 
(2003; submitted; columns 1–5). Sentences with three non-adjacent dependencies are 
 constructed with an increasing number of syntagmatically intervening X items. Gómez used 
set-sizes 2, 6, 12, and 24. Onnis et al. added a new set-size 1 condition
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Figure 2. Data from Onnis et al. (2003, submitted) incorporating the original Gomez 
 experiment. Learning of non-adjacent dependencies results in a U shape curve as a function 
of the variability of intervening items, in five conditions of increasing variability
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Candidate measures of associative learning

There exist several putative associative mechanisms of artificial grammar and 
sequence learning (e.g. Dulany et al. 1984; Perruchet & Pacteau, 1990; Servan- 
Schreiber & Anderson, 1990), or on learning of whole items (Vokey & Brooks, 1992). 
Essentially these models propose that subjects acquire knowledge of fragments, 
chunks or whole items from the training strings, and that they base their subse-
quent judgments of correctness (grammaticality) of a new set of sequences on an 
assessment of the extent to which the test strings are similar to the training strings 
(e.g. how many chunks a test item shares with the training strings). To find out how 
well these associative models would fare in accounting for Gómez and for Onnis 
et al.’s data, we considered a variety of existing measures of chunk strength and of the 
similarity between training and test exemplars. Based on existing literature, we con-
sidered the following measures: Global Associative Chunk Strength (GCS), Anchor 
Strength (AS), Novelty Strength (NS), Novel Fragment Position (NFP), and Global 
Similarity (GS), in relation to the data in Experiment 1 and 2 of Onnis et al. These 
measures are described in detail in Appendix A. Table 1 summarizes descriptive 
fragment statistics are summarized, while the values of each associative measure are 
reported in Table 2.

Table 1. Descriptive fragment statistics for the bigrams and trigrams contained in the 
artificial grammar used in Gómez (2002), Experiment 1, and in Onnis et al. (submitted). 
Note that Experiment 1 of Onnis et al. is a replication of Gómez’ (2003) Experiment 1

Variability condition 1 1-cntrl 2 6 12 24

Total number of training strings 432 432 432 432 432 432
Ai_Bi pair types 3 6 3 3 3 3
Ai_Bi pair tokens 144 72 144 144 144 144
Xj types 1 1 2 6 12 24
Xj tokens 432 432 216 72 36 18
AiXjBi types 3 6 6 18 36 72
AiXjBi tokens 144 72 72 24 12 6
type/token ratio (AXB) 0.02 0.08 0.08 0.75 3.00 12.00
AiXj tokens 144 72 72 24 12 6
XjBi tokens 144 72 72 24 12 6
P(Xj|Ai) 1.00 1.00 0.50 0.17 0.08 0.04
P(Bi|Xj) 0.33 0.16 0.33 0.33 0.33 0.33
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The condition of null variability (set-size 1) is the only condition that can a priori 
be accommodated by measures of associative strength. For this reason, the set-size 
1-control was run in Experiment 2. Table 2 shows that associative measures are the 
same for the set-size 1-control and set-size 2. However, since performance was signifi-
cantly better in the set-size 1-control, the above associative measures cannot predict 
this difference.

Overall, since Novelty, Novel Fragment Position, and Global Similarity values are 
constant across conditions, they predict that learners would fare equally in all condi-
tions and, to the extent that ungrammatical items were never seen as whole strings dur-
ing training, that grammatical strings would be easier to recognize across conditions. 
Taken together, the predictors based on strength and similarity would predict equal 
performance across conditions or better performance when the set-size of embed-
dings is small because the co-occurrence strength of adjacent elements is stronger. 
Hence, none of these implicit learning measures predict the observed U shape results. 
In the next section, we investigate whether connectionist networks can do better, and 
whether any particular network architecture is best.

Simulation 1: Simple recurrent networks

We have seen that no existing chunk-based model derived from the implicit learning 
literature appears to capture the U-shaped pattern of performance exhibited by human 
subjects when trained under conditions of differing variability. Would connectionist 
models fare better in accounting for these data? One plausible  candidate is the  Simple 

Table 2. Predictors of chunk strength and similarity used in the AGL literature (Global 
Chunk Strength, Anchor Chunk Strength, Novelty, Novel Fragment Position, Global 
Similarity). Scores refer to bigrams and trigrams contained in the artificial grammar 
used in Gómez (2002), Experiment 1, and Onnis et al. (submitted)

Variability condition 1 1-cntrl 2 6 12 24

GCS/ACS for Grammatical strings
GCS/ACS for Ungrammatical strings

144
 96

72
48

72
48

24
16

12
 8

6
4

Novelty for Grammatical strings
Novelty for Ungrammatical strings

  0
  1

 0
 1

 0
 1

 0
 1

 0
 1

0
1

NFP for Grammatical strings
NFP for Ungrammatical strings

  0
  0

 0
 0

 0
 0

 0
 0

 0
 0

0
0

GS for Grammatical strings
GS for Ungrammatical strings

  0
  1

 0
 1

 0
 1

 0
 1

 0
 1

0
1
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Recurrent Network model (Elman, 1990) because it has been applied successfully 
to model human sequential behavior in a wide variety of tasks including everyday 
routine performance (Botvinick & Plaut, 2004), dynamic decision making (Gibson, 
Fichman, & Plaut, 1997), cognitive development (Munakata, McClelland, & Siegler, 
1997), implicit learning (Kinder & Shanks, 2001; Servan-Schreiber,  Cleeremans, & 
 McClelland, 1991), and the high-variability condition of the Gómez (2002) nonadja-
cency learning paradigm (Misyak et al. 2010b). SRNs have also been applied to lan-
guage processing such as spoken word comprehension and production  (Christiansen, 
Allen, & Seidenberg, 1998; Cottrell & Plunkett, 1995; Dell, Juliano, & Govindjee, 
1993; Gaskell, Hare, & Marslen-Wilson, 1995; Plaut & Kello, 1999), sentence pro-
cessing (Allen & Seidenberg, 1999; Christiansen & Chater, 1999; Christiansen & 
 MacDonald, 2009; Rohde & Plaut, 1999), sentence generation (Takac, Benuskova, 
& Knott, 2012), lexical semantics (Moss, Hare, Day, & Tyler, 1994), reading (Pacton, 
Perruchet, Fayol, & Cleeremans, 2001), hierarchical structure (Hinoshita, Arie, Tani, 
Okuno, & Ogata, 2011), nested and cross-serial dependencies (Kirov & Frank, 2012), 
grammar and recursion (Miikkulainen & Mayberry III, 1999; Tabor, 2011), phrase 
and syntactic parsing (Socher, Manning, & Ng, 2010), and syntactic systematicity 
(Brakel Frank, 2009; Farkaš & Croker, 2008; Frank, in press). In addition, recurrent 
neural networks are effectively solve a variety of linguistic engineering problems like  
automatic voice recognition (Si, Xu, Zhang, Pan, & Yan, 2012), word recognition 
(Frinken, Fischer, Manmatha, & Bunke, 2012), text generation (Sutskever,  Martens, & 
Hinton, 2011), and recognition of sign language (Maraqa, Al-Zboun, Dhyabat, & 
Zitar, 2012). Thus these networks are potentially apt at modeling the difficult task of 
learning of non-adjacencies in the AXB artificial language discussed above. In par-
ticular, SRNs  (Figure 3a) are appealing because they come equipped with a pool of 
units that are used to represent the temporal context by holding a copy of the hid-
den units’  activation level at the previous time slice. In addition, they can maintain 
simultaneous overlapping, graded representations for different types of knowledge. 
The gradedness of representations may in fact be the key to learning non-adjacencies. 
The specific challenge for SRNs in this paper is to show that they can represent graded 
knowledge of bigrams, trigrams and non-adjacencies and that the strength of each 
such representation is modulated by the variability of embeddings in a similar way 
to humans.

To find out whether associative learning mechanisms can explain the variability 
effect, we trained SRNs to predict each element of the sequences that were  structurally 
identical to Gómez’s material. The choice of the SRN architecture, as opposed to a 
simple feed-forward network, is motivated by the need to simulate the training and 
test procedure used by Gómez and Onnis et al. who exposed their participants to audi-
tory stimuli, one word at a time. The SRN captures this  temporal aspect.
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Figure 3. Network architectures tested in Simulations 1 and 2

Method

Network architecture and parameters
SRNs with 5, 10, and 15 hidden units and localist representations1 on the input and 
output units were trained using backpropagation on the strings designed by Gómez. 
For each of the three hidden unit variations of the SRN, we systematically manipulated 
5 values of learning rate (0.1, 0.3, 0.5, 0.7, 0.9) and five values of momentum (0.1, 0.3, 
0.5, 0.7, 0.9). Each network was initialized with different random weights to  simulate a 

1. Each word was an input vector with all units set to zero and a specific unit set to 1.
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different participant. Learning rate, momentum, and weight initialization were treated 
as corresponding to individual differences in learning in the human experiments, 
where indeed some considerable variation in performance was noted within variabil-
ity conditions. Strings were presented one element at a time to the networks by activat-
ing the corresponding input unit. Thirty-one input/output units represented the three 
initial (Ai) elements, the three final (Bi) elements, one of the 24 possible embedded (Xj) 
elements, and an End-of-String marker. Gómez and Onnis et al. used longer pauses 
between the last word of a string and the first word of the following strings, to make 
each three-word string perceptually independent. Similarly, the End-of-String marker 
informed the networks that a new separate string will follow, and context units were 
reset to 0.0 after each complete string presentation. On each trial, the network had to 
predict the next element of the string, and the error between its prediction and the 
actual successor to the current element was used to modify the weights.

Materials
Both training and test stimuli consisted of the set of strings used in Onnis et al.’s Exper-
iment 1, which incorporated Gómez’s Experiment 1 and added the zero-variability 
condition.2 During training, all networks were exposed to the same total number of 
strings (1080 strings, versus 432 in Gómez’s experiment),3 so that each would experi-
ence exactly the same number of non-adjacencies. This required varying the number 
of times the training set for a particular variability condition was presented to the 
network. Thus, while in the set-size 24 condition the networks were exposed to 15 
repetitions of the 72 possible string types, in the set-size 2 condition they were exposed 
to 180 repetitions of the 6 possible string types.

Procedure
Twenty networks × 5 conditions of variability × 3 hidden-unit × 5 learning-rate × 5 
momentum parameter manipulations were trained, resulting in 7500 individual net-
works being trained, each with initial random weights in the –0.5, +0.5 range. After 
training, the networks were exposed to 12 strings, 6 of which were part of the trained 
language in all set-size conditions, and 6 of which were part of a novel language in 
which the pairings between initial and final elements had been reversed so that each 

2. Gómez used two languages where the end-items were cross-balanced to control for 
 potential confounds. Because our word vectors are orthogonal to each other, we created and 
tested only 1 language.

3. This value was determined empirically so as to produce good learning in the  MacIntosh 
version of the PDP simulator with the parameters we selected. Typically neural networks 
require a longer training – tens of thousand epochs – to start reduce their error. Thus a 
training of 1080 epochs, although longer than the human experiment, is a reasonably close 
approximation to 432.
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head was now associated with a different final element. Test stimuli consisted of 3 
grammatical strings and 3 ungrammatical strings repeated twice, as in Onnis et al.4 
The large parameter manipulations were motivated by the need to test the robustness 
of the findings.

Network analysis

Networks were tested on a prediction task. Performance was measured as the relative 
strength of the networks’ prediction of the tail element B of each AXB sentence when 
presented with its middle element X. The activation of the corresponding output unit 
was recorded and transformed into Luce ratios (Luce, 1963) by dividing it by the sum 
of the activations of all output units:

∑
target

output
Luce

output

Luce ratios were calculated for both grammatical and ungrammatical test strings. Good 
performance occurred when Luce ratios for grammatical strings (e.g. AiXBi) were high, 
i.e. showing an ability to activate the correct target output unit, while Luce ratios for 
ungrammatical strings (e.g. AiXBj) were close to zero. This is captured by a high value 
of Luce activation differences between grammatical and ungrammatical activation val-
ues. If the networks did not learn the correct non-adjacent pairs, either all three target 
output units for the B item would be equally activated when an X was presented – 
resulting in a value close to zero for Luce ratio differences, or typically only one wrong 
non-adjacent dependency would be learned, as a result of the networks finding a local 
minimum – in which case Luce ratio differences would still be close to zero.

Results and discussion

Luce ratio values were averaged over the 20 replications in each condition, and across 
learning rate and momentum conditions for each of the 3 hidden unit variations 
of SRNs. To directly compare the networks results with human data we computed 
z-scores of Luce ratio differences between grammatical and ungrammatical responses 
for each network and z-scores of differences between correct incorrect raw score dif-
ferences for each participant in Onnis et al. As can be seen in Figure 4 the best candi-
date networks that reproduced the U shape closer to the human data had 10 hidden 

4. Given that in set-size 1 humans and networks are trained on a single embedding they 
could only be tested on strings containing one embedding. Hence networks were tested on 
6 strings repeated twice.
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units (Figure 4). These results provide two findings: firstly, there is at least one class of 
associative learning machines implemented in SRNs that are able to learn nonadjacent 
dependencies. Secondly, there is at least one class of associative learning machines 
implemented in SRNs that learn nonadjacencies in a similar way to humans, i.e. with 
performance being a U-shaped function of the variability of intervening items.
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Figure 4. Comparison between SRNs with 5, 10, and 15 hidden units (hu) and human data 
(HD). The SRNs with 10 hidden units provide the best match with participants’ performance
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Can other connectionist architectures capture the data?

The motivation for using SRNs in Simulation 1 is based on the wide type of sequen-
tial behaviors they can capture as evidenced in the literature (see references above). 
However, other well-known architectures such as the Jordan Network and the Auto-
Associative Recurrent Network share many features with the SRN, in particular they 
also incorporate mechanisms to represent time via recurrent connections. In the sim-
ulations below we trained and tested four different types of connectionist networks 
on the variability task: Auto-Associative Networks (AAN), Jordan Networks, Buffer 
Networks and Auto Associators (AA). Notably, all network architectures were trained 
with the same training regime and parameter manipulations as the SRNs, and their 
performance was measured in terms of normalized Luce ratio differences, thus allow-
ing direct comparison with both the SRNs in Simulation 1, and the human data. Below 
we present four Methods sections separately, each corresponding to the four net archi-
tectures. A single Results section will then directly compare the four architectures’ 
performance.

Simulation 2a: Auto-associative recurrent networks

The Auto-Associative Recurrent Network (henceforth, AARN) has been proposed by 
Maskara and Noetzel (1992; see also Dienes, 1992). The AARN is illustrated in Figure 
3b. As its name suggests, this network is essentially an SRN that is also required to 
act as an encoder on both the current element and the context information. On each 
time step, the network is thus required to produce the current element and the context 
information in addition to predicting the next element of the sequence. This require-
ment forces the network to maintain information about the previously presented 
sequence elements that would tend to be “forgotten” by a standard SRN performing 
only the prediction task. Maskara and Noetzel showed that the AARN is capable of 
mastering languages that the SRN cannot master.

Method

Twenty AARNs with different random weights × 3 hidden unit × 5 variability con-
dition × 5 learning rates × 5 momentum manipulations for a total of 7500 separate 
simulations were trained and tested with exactly the same training and test regime 
and strings as the SRN. Performance of the AARN was assessed in exactly the same 
way as it was done for the SRN. In the test phase, when presented with the middle 
element of each sequence, we compared the activation of the target unit in the output 
units corresponding to the tail Bi element for the grammatical and  ungrammatical 
sequences.
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Simulation 2b: Jordan networks

Jordan Networks (Jordan, 1986, Figure 3c) assume that the recurrent connections that 
make them sensitive to temporal relationships possible in the SRN occur not between 
hidden and context units, but between output units and state units. Thus, on each 
time step, the network’s previous output is blended with the new input in a proportion 
defined by a single parameter, µ. The parameter is used to perform time-averaging on 
successive inputs. This simple mechanism makes it possible for the network to become 
sensitive to temporal relationships because distinct sequences of successive inputs 
will tend to result in distinct, time-averaged input patterns (within the constraints 
set by the simple, linear time-averaging). However, it should be clear that the tempo-
ral resolution of such networks is limited, to the extent that the network, unlike the 
SRN, never actually has to learn how to represent different sequences of events, but 
instead simply relies on the temporally “pre-formatted” information made possible 
by the time-averaging. In Jordan’s original characterization of this architecture, the 
network’s input units also contained a pool of so-called “plan” units, which could be 
used to represent entire subsequences of to-be-produced outputs in a compact form. 
Such “plan” units have no purpose in the simulations we describe, and were therefore 
not incorporated in the architecture of the network.

Method

Twenty Jordan nets × 3 hidden unit × 5 variability conditions × 5 learning rates × 5 
momentum manipulations resulted in 7500 different simulations being trained and 
tested with exactly the same training and test regime and strings as the SRN. The µ 
parameter was set to 0.5. Performance was again assessed in the same way as for the 
SRN. In the test phase, upon presentation of a middle element X, the level of activation 
of the target unit of the pool of output units corresponding to the tail Bi element was 
compared for the grammatical and ungrammatical sequences.

Simulation 2c: Buffer networks

Buffer Networks (Figure 3d) are three-layer feed-forward networks in which pools 
of input units are used to represent inputs that occur at different time steps. On each 
time step during the presentation of a sequence of elements, the contents of each pool 
are copied (and possibly decayed) to the one that corresponds to the previous step 
in time, and a new element is presented on the pool that corresponds to time t, the 
current time step. The contents of the pool corresponding to the most remote time 
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step are discarded. Because of its architecture, the buffer network’s capacity to learn 
about temporal relationships is necessarily limited by the size of its temporal window. 
In our implementation of the buffer architecture, the task of the network is to predict 
the third element of a sequence based on the first and second elements. The size of the 
temporal window is therefore naturally limited to two elements of temporal context. 
Thirty units were used to represent both initial and middle elements (six initial/final 
elements and 24 possible middle elements). The task of the network was to predict the 
identity of the final element of each sequence. Six output units, corresponding to the 
six Ai and Bi items, were used to represent the final element.

Method

Twenty Buffer nets × 3 hidden unit × 5 variability conditions × 5 learning rates × 5 
momentum × 2 decay parameter manipulations resulted in 15000 different simulations 
being trained and tested with exactly the same training and test regime and strings as 
the SRN. Decay parameters were 0.0 and 0.5. Performance was again assessed in the 
same way as it was done for the SRN and the other nets.

Simulation 2d: Auto-associator networks

The task of the Auto-Associator network (Figure 3e) simply consists in reproducing 
at the output level the pattern presented at the input level. In our implementation, 
the entire three elements strings were presented at the same time to the network by 
activating three out of thirty input units corresponding to the initial, middle and final 
elements of each sequence. Performance was assessed in the test phase by comparing, 
between grammatical and ungrammatical strings, the level of activation of the target 
output unit corresponding to the final element.

Method

Twenty AA nets × 3 hidden unit manipulations × 5 variability conditions × 5 learning 
rates × 5 momentums resulted in 7500 different simulations. Training and test proce-
dures were exactly the same as for the previous network simulations.

Results

All results (Figure 5) are plotted as z-score transformed values of Luce ratio differences 
between network predictions for grammatical and ungrammatical test strings. Note 
that these are average z-score values across all different parameter manipulations for 
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each network architecture. AARNs perform very poorly on set-size 1, while learning 
fairly well but equally across all other conditions. This pattern of results is difficult to 
interpret in the light of the human data (indicated as HD in Figure 5).

Jordan nets show a pattern similar to the AARN network, with very poor per-
formance at set-size 1 and best performance at set-size 2, which almost reverses the 
pattern of behavioral data.

Buffer nets draw a steady curve above 0 for zero and small set-size conditions, 
indicating some moderate but equal learning across such conditions. Performance 
descends abruptly for set-size 24. This pattern of results also fails to replicate the 
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Figure 5. Comparison between the 5 connectionist architectures and human data (HD)
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human U shape. Rather it seems to suggest that performance is based on the strength 
of local bigram and trigram information.

Finally, AA networks draw a relatively flat curve across conditions, which again 
does not replicated the U shape. Rather it shows that, on average, the AA is not influ-
enced by the variability of the middle element.

Figure 5 visualizes an average performance of the different architectures when 
z-score values are averaged across all different parameter and hidden unit manipula-
tions. However, averaging might conflate parameter configurations that work really 
well with others that work very poorly. Similarly, the SRN parameter configuration 
that we have chosen might stand alone among the class of SRNs able to capture the 
U shape. The robustness of a specific architecture can be visualized by assessing how 
densely several configuration simulations of the same architecture inhabit the region 
of space corresponding to good performance. A 2-dimensional graph (Figure 6) was 
plotted where, for each network parameter configuration, the x axis plotted z-score 
differences between performance at set-size 24 and the mean performance of set-
sizes 2, 6, and 12, whereas the y axis plotted z-score differences between perfor-
mance at set-size 1 and the mean performance of set-sizes 2, 6, and 12. The graph 
splits into 4 different quadrants, divided at 0 both on the x and the y axis. This graph 
captures the U-shaped nature of the behavioral data: if performance is good on both 
set-sizes 1 and 24, while being poor at the same time on set-sizes 2, 6, and 12, both x 
and y z-scores will be higher than 0, falling in the upper right quadrant of the graph. 
This is indeed where the human data are located. We produced five such graphs for 
the 5 connectionist architectures. From the graphs one can see that the SRN is the 
architecture closest to the human data, regardless of parameter variations, although 
performance is better with largest variability than with no variability. Conversely, 
most AARN simulations cluster in the lower left quadrant, indicating that perfor-
mance at both endpoints of variability tends to be lower than with small variability. 
The Jordan nets follow a similar, sparser trajectory, whereas Buffer nets are able to 
learn in set-size 1 conditions but fail at set-size 24. Lastly, AA nets display virtually 
no variation due to parameter manipulation and cluster tightly at the exact intersec-
tion of the four quadrants, indicating that they tend to learn equally well in all 5 
set-size conditions.

To summarize, having compared five different connectionist architectures 
against the human data, we can conclude that the SRN is the connectionist model 
that best captures such data. This result is especially interesting considering that 
Jordan nets and AARN nets belong to the same class of recurrent nets and that the 
AARN was proposed as a better alternative architecture to the SRN. But what spe-
cific aspect of the SRN allows it to fit the data best? Next we probe the hidden units, 
which carry the internal representations of the network, for possible clues to this 
question.
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Figure 6. The regions of the space inhabited by the 5 connectionist architectures. Only SRNs 
group in the upper-right quadrant, where human data from Onnis et al. (2003; submitted) are 
located
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Mechanisms of implicit learning in the SRN

Simulation 1 gathered evidence that SRNs trained to predict each element of sequences 
identical to those used in Gómez (2002) and Onnis et al. (2003, submitted) can master 
non-adjacencies in a manner that depends on the variability of the intervening mate-
rial, thus replicating the empirically observed U-shaped relationship between vari-
ability and classification performance. The specific interest paid to the U shape results 
in this study lies in the fact that no mechanism proposed in the implicit learning lit-
erature can readily simulate the human data. To the extent that SRNs are also associa-
tive machines, the successful results are also surprising. In this section we attempt to 
understand how SRNs succeed in learning non-adjacencies.

The key to understanding the SRN behavior is its ability to represent in its hidden 
units graded and overlapping representations for both the current stimulus-response 
mapping and any previous context information. Hidden units adjust at each step 
of processing and can be thought of as a compressed and context- dependent “re- 
representation” of the current step in the task. Given for instance a network with 
10 hidden units, the internal representation of this network can be seen as a point 
in a 10-dimensional space. As the training progresses, the network’s representation 
changes, and a trajectory is traced through the 10-dimension space. Multi Dimen-
sional Scaling (MDS) is a technique that reduces an n-dimensional space into a 
2-dimensional space of relevant dimensions, and thus allows the visualization of 
this learning trajectory in a network as a function of training (Figures 7, 8, and 9). 
In order to predict three different Bi endings correctly the network has to develop 
trajectories that are separate enough at the time that an Xj is presented (see also 
 Botvinick & Plaut, 2004).

For the sake of the argument, let us consider a simpler scenario in which an artifi-
cial language is composed of only two items, i.e. it is an XjBi language. When the input 
is an X, the hidden units must be shaped so as to predict one of three B elements. This 
task still requires some considerable learning because the net has to activate an output 
node out of all the possible items in the language, including the Xs. What specific B 
will they predict? The hidden units are modified by both (a) a trace for each of the 
Xs from the input units at time t, and (b) the EOS (End of Sentence) marker from 
the context units (this was information at time t-1). In this case, given that this past 
information is exactly identical for whatever prediction of B, the hidden unit repre-
sentations will be similar regardless of any specific Bi continuation. In this case, there-
fore, there is absolutely no information in the past items that can help the hidden 
units to develop separate trajectories for B1, B2, and B3, and the best error reduction is 
obtained by activating the nodes corresponding to the three Bs with an activation of 
0.33  (corresponding to an even probability of predicting one of three elements).
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Let us now imagine the scenario of our simulations in which the language is an 
AiXBi language. Here the past information that shapes the hidden units is (a) a trace 
from one of several Xs from the input units at time t; (b) a trace from one of three 
As at time t-1 from the context units, which is specific for each B prediction; and (c) 
a trace from the previous EOS (End of Sentence) marker which has been incorpo-
rated in the previous time steps at t-2, which is the same for all B predictions. The 
past context for predicting a specific Bi is now partially different, because we have a 
specific correspondence between an Ai and a Bi in the language. In this scenario the 
hidden units may now develop different trajectories, and thus be able to predict suc-
cessfully different B continuations. What is the best condition for such dissimilarity? 
With low variability of Xs the traces from each shared X overshadow the traces from 
the A elements so that the networks form very similar representations for predicting B 
elements. Figure 7 presents the two principal components of a Multiple Dimensional 
Scaling (MDS) analysis over the SRN hidden units in the setsize 2 condition, at the 
time of predicting the B element over 15 different points in training.5 Hidden unit tra-
jectories move across training, but they do not separate at the end of training. Contrast 
this result with Figure 8, the same MDS analysis over the hidden units of a network 
in Set-size 24. Hidden units move together in space at the beginning of training up 
to a point when they separate in 3 different sub-regions of the space, corresponding 
to 3 separate representations for A1, A2, and A3. It is evident that the 24 embeddings 
now each contribute a weaker trace and this allows the trace from each individual Ai 
element to be maintained more strongly in the context units, shaping the activation 
pattern of hidden units.

Regarding the large difference in performance between set-size 1 and 2, how do 
SRNs learn to predict the correct B non-adjacency in the former but not in the latter 
case? The MDS graph of hidden unit trajectories (Figure 9) once again reveals that 
different trajectories are traversed ending in three distinct regions of the space, a 
situation similar to set-size 24. It seems that the networks develop a compressed rep-
resentation for a general X either with no variability or with a large enough number 
of Xs, thus leaving computational space for the three distinct A traces to be encoded 
in the  hidden units.

Although this explanation is reasonable for set-size 24, one possibility is however 
that the networks merely memorize the three different strings in set-size 1, suggesting 
that not one but two different mechanisms are responsible for the U shape – one based 
on variability in set-size 24 and one based on rote learning in set-size 1. In Onnis et al. 

5. Ungrammatical sequences are removed from the graph, because each produces exactly 
the same vector over the network’s hidden units. Hence the graph displays 6 trajectories: one 
each for AX1, AX2, BX1, BX2, CX1, and CX2.
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this possibility was resolved by showing that learners can endorse correct nonadjacent 
dependencies in set-size 1 even when presented with a novel X at test (their Experi-
ment 3). They also showed (Experiment 2) that performance was good even when 6 
different A_B pairs had to be learned with one X. Since in this latter control condition 
the number of string types to be learned was exactly the same as in set-size 2 (and 
indeed resulted in a more complex language with 13 words as opposed to 7 words in 
set-size 2), the difference in performance could not be accounted for by a memory 
advantage in set-size 1. Since the MDS analyses cannot disambiguate whether the net-
works learn by rote in set-size 1 – a result that would differ from human learning – we 
ran further simulations equivalent to Onnis et al.’s Experiment 2 and 3. SRNs were 
trained on exactly the same training regime as Simulation 1, while Ai_Bi and *Ai_Bj 
frames were presented at test with a completely new X that had never appeared during 
training. Intriguingly, the networks still recognized the correct non-adjacencies bet-
ter with null or high variability than in the set-size 2 condition. Figure 10 shows that 
when presented with novel Xs at test SRNs performance is considerably better in set-
size 1 and 24 than in set-size 2. Figure 11 shows that this advantage persists when the 
networks have to learn 6 nonadjacent dependencies, i.e. when the number of trigrams 
to be learned is equated in set-size 1 and set-size 2. Crucially, in both set-size 1 and 
24, the networks develop a single representation for the X, which leaves compression 
space for the trace of distant A elements to be encoded in the hidden units.

We believe that these results, coupled with the separation of hidden unit tra-
jectories, form compelling evidence that the learning of non-adjacencies happens 
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 independently of specific X embeddings, thus corroborating the idea that what is 
learned is not a trigram sequence of adjacent elements, but a true discontinuity rela-
tion. In fact, the reason why the discontinuities are not learned equally well in low 
variability conditions is exactly that the networks find an optimal solution in learning 
adjacent bigram information in those conditions. Our simulations reveal that a similar 
variability-driven mechanism is responsible for better learning of non-adjacencies in 
either zero or high variability, closely matching the human data.
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nonadjacent frames with two Xs, suggesting that there is something special about having only 
one intervening X
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Type variability or token frequency?

A last confound that has to be disentangled in the current simulations is the possible 
role of token frequency of X elements. Because the total number of learning trials is 
kept constant across conditions, in larger set-size conditions each X element is pre-
sented to the network fewer times. It may thus be the case that the trace from the A 
elements can be better encoded in the hidden units in set-size 24 because the token 
frequency of each X element decreases. Under this scenario, improved non-adjacent 
learning in higher-variability conditions would not necessarily be due to the higher 
variability of X types, but rather to the lower frequency of X tokens, thus perhaps trivi-
alizing our results.

Therefore, we ran a further set of simulations similar to Gómez (2002), in which 
the number of total token presentations of each X was kept constant across condi-
tions. Gómez found that learning still improved in set-size 24, thus ruling out the 
impact of X token frequency. Figure 12 shows that when the number of X tokens is 
identical across variability conditions to the one used in set-size 24 condition of Simu-
lation 1 (i.e. 15 repetitions) then the SNRs learn in the high variability conditions, 
suggesting that type variability, not token frequency is indeed the key factor improv-
ing performance in set-size 24. Figure 12 also shows that with training brought up 
to more asymptotical levels (token frequency of Xs of 150, 360, and 720 repetitions 
held constant across set-size conditions) the U shape is restored. These training tra-
jectories are in line with connectionist networks’ typical behavior and do not depart 
from human behavior. Typically a connectionist network needs a certain amount of 
training in order to get “off the ground”. It starts with low random weights, and needs 
to configure itself to solve the task at hand. This takes several training items, many 
more than humans typically need. Arguably when humans enter the psychologist’s 
lab to participate in a study they do not start with “random connections”, rather they 
bring with them considerable knowledge, accumulated over years of experience with 
sequences of events in the world. Therefore, we expected networks to require a longer 
training to configure themselves for a particular task. In separate studies, connection-
ist networks were pre-trained on basic low-level regularities of the training stimuli 
prior to the actual learning task (Botvinick & Plaut, 2006; Christiansen, Conway, and 
Curtin, 2000; Destrebecqz & Cleeremans, 2003; Harm & Seidenberg, 1999). As more 
data is collected on the learning of non-adjacencies, it will be necessary to provide 
more detailed models. However, our choice of localist representations and no pre-
training was motivated by the desire to capture something general about the U shape, 
as Onnis et al. (submitted; Experiment 4) also obtained a similar learning with visually 
presented pseudo-shapes. Therefore, Figure 12 suggests that when the SRNs receive 
sufficient training to learn the material in every condition (at least 150 repetitions 
of each X element) the U-shaped curve is fully restored. These control simulations 
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 suggest that the emerging U-shaped curve in learning non-adjacencies is truly medi-
ated by the type frequency of intervening embedded elements.
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Figure 12. SRNs simulations controlling for number of tokens of the embeddings across 
 variability conditions. With a sufficient number of tokens (150) the networks display a  
U shape learning curve that is dependent on the variability of embeddings

Conclusions

Sensitivity to transitional probabilities of various orders including non-adjacent prob-
abilities in implicit sequential learning has been observed experimentally in adults 
and children, suggesting that learners exploit these statistical properties of the input 
to detect structure. Indeed, studies of individual differences in the ability to detect 
nonadjacencies in implicit sequential learning tasks have been found to correlate with 
adults’ language skills (Misyak & Christiansen, 2012; Misyak et al. 2010a, b). Detecting 
non-adjacent structure poses a genuine computational and representational problem 
for simple associative models based purely on knowledge of adjacent items. Following 
Gómez (2002), a more elaborate proposal is that human learners may exploit differ-
ent sources of information, here adjacencies and non-adjacencies, to learn structured 
sequences. Her original results suggested that non-adjacencies are learned better when 
adjacent information becomes less informative.

The current work began where the experimental data of Gómez (2002) and Onnis 
et al. (2003; submitted) concluded. It is a first attempt to provide a mechanistic account 
of implicit associative learning for a set of human results that the current literature 
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cannot explain. We have compared 5 different connectionist architectures with several 
different parameter configurations resulting in 22,500 individual simulations, allowing 
a comprehensive search over the space of possible network performances. Such exten-
sive modelling allowed us to select with a good degree of confidence Simple Recurrent 
Networks as the best candidates for learning under conditions of variability. We have 
shown that SRNs succeed in accounting for the experimental U shape patterns. This 
is not an easy feat, because SRNs have initial architectural biases toward local depen-
dencies (Chater & Conkey, 1992; Christiansen & Chater, 1999) and because better 
predictions in SRNs tend to converge towards the optimal conditional probabilities 
of observing a particular successor to the sequence presented up to that point. This 
means that minima are located at points in weight space where the activations equal 
the optimal conditional probability. In fact, activations of output units corresponding 
to the three final items to be predicted in set-size 2, 6, and 12 settle around.33, which 
is the optimal conditional probability for (B|X) across conditions. However, n-gram 
transitional probabilities fail to account for non-adjacent constraints, yielding sub-
optimal solutions. The networks’ ability to predict non-adjacencies is modulated by 
variability of the intervening element, under conditions of either nil or high variabil-
ity, achieved by developing separate graded representations in the hidden units. An 
analysis of hidden unit trajectories over training and control simulations with new 
embedded elements presented at test suggests that the networks’ success at the end-
points of the U curve might be supported by a similar type of learning, thus ruling out 
a simplistic rote learning explanation for Set-size 1.

We presented a connectionist model that can capture in a single representation 
both local and non-local properties of the input in a superimposed fashion. This per-
mits it to discover structured sequential input in an implicit, associative way. Together, 
the experimental and simulation data on the U-curve challenge previous AGL accounts 
based on one default source of learning. The major implication of this work is that, rather 
than ruling out associative mechanisms across the board, some statistical learning based 
on distributional information can account for apparently puzzling aspects of human 
learning of non-adjacent dependencies. Furthermore, to the extent that these models fit 
the human data without explicit knowledge, they provide a proof of concept that explicit 
conscious knowledge may not be necessary to acquire long-distance relations.

Acknowledgments

This work was supported by European Commission Grant HPRN-CT-1999-00065, an 
institutional grant from the Université Libre de Bruxelles, a Human Frontiers Science 
Program Grant (RGP0177/2001-B), and Nanyang Technological University’s Start-
Up-Fund #M4081274. Axel Cleeremans is a Senior Research Associate of the National 
Fund for Scientific Research (Belgium).



2nd proofs

PAGE P r o o f s

© John bEnJAmins PublishinG comPAny

 Associative learning of nonadjacent dependencies 241

References

Allen, J., & Seidenberg, M.S. (1999). The emergence of grammaticality in connectionist 
 networks. In B. MacWhinney (Ed.), The emergence of language (pp. 115–151). Mahwah, 
NJ: Lawrence Erlbaum Associates.

Botvinick, M., & Plaut, D.C. (2006). Short-term memory for serial order: A recurrent neural 
network model. Psychological Review, 113, 201–233. DOI: 10.1037/0033-295X.113.2.201

Botvinick, M., & Plaut, D.C. (2004). Doing without schema hierarchies: A recurrent connec-
tionist approach to normal and impaired routine sequential action. Psychological Review, 
111, 395–429. DOI: 10.1037/0033-295X.111.2.395

Brakel, P., & Frank, S.L. (2009). Strong systematicity in sentence processing by simple recurrent 
networks. In N.A. Taatgen, H. van Rijn, J. Nerbonne & L. Schomaker (Eds.), Proceedings 
of the 31st Annual Conference of the Cognitive Science Society (pp. 1599–1604). Austin, TX: 
Cognitive Science Society.

Chater, N., & Conkey, P. (1992). Finding linguistic structure with recurrent neural  networks. In 
Proceedings of the 14th Annual Conference of the Cognitive Science Society (pp. 402–407). 
Hillsdale, New Jersey: Psychology Press.

Chomsky, N. (1959). A review of BF Skinner’s Verbal Behavior. Language, 35(1), 26–58.
Christiansen, M.H., Allen, J., & Seidenberg, M.S. (1998). Learning to segment speech using 

multiple cues: A connectionist model. Language and Cognitive Processes, 13, 221–268. 
DOI: 10.1080/016909698386528

Christiansen, M.H., & Chater, N. (1999). Toward a connectionist model of recursion in human 
linguistic performance. Cognitive Science, 23, 157–205.

 DOI: 10.1207/s15516709cog2302_2
Christiansen, M.H., Conway, C.M., & Curtin, S. (2000). A connectionist single-mechanism 

account of rule-like behavior in infancy. In L. R. Gleitman & A.K. Joshi (Eds.), The 
Proceedings of the 22nd Annual Conference of the Cognitive Science Society (pp. 83–88). 
 Philadelphia, PA: University of Pennsylvania.

Christiansen, M.H., & MacDonald, M.C. (2009). A usage-based approach to recursion in 
 sentence processing. Language Learning, 59(Suppl. 1), 126–161.

 DOI: 10.1111/j.1467-9922.2009.00538.x
Cleeremans, A., Servan-Schreiber, D., & McClelland, J.L. (1989). Finite state automata and 

 simple recurrent networks. Neural Computation, 1, 372–381.
 DOI: 10.1162/neco.1989.1.3.372
Destrebecqz, A., & Cleeremans, A. (2003). Temporal factors in sequence learning. In Luis 

 Jiménez (Ed.), Attention and implicit learning. Amsterdam: John Benjamins.
 DOI: 10.1075/aicr.48.11des
Cottrell, G.W., & Plunkett, K. (1995). Acquiring the mapping from meanings to sounds. Connec-

tion Science, 6, 379–412. DOI: 10.1080/09540099408915731
Dell, G.S., Juliano, C., & Govindjee, A. (1993). Structure and content in language production: A 

theory of frame constraints in phonological speech errors. Cognitive Science, 17, 149–195. 
DOI: 10.1207/s15516709cog1702_1

Dienes, Z. (1992). Connectionist and memory-array models of artificial grammar learning. 
Cognitive Science, 23, 53–82. DOI: 10.1207/s15516709cog2301_3

Dulany, D.E., Carlson, R.A., & Dewey, G.I. (1984). A case of syntactical learning and judge-
ment: How conscious and how abstract? Journal of Experimental Psychology: General, 113, 
541–555. DOI: 10.1037/0096-3445.113.4.541



2nd proofs

PAGE P r o o f s

© John bEnJAmins PublishinG comPAny

242 Luca Onnis, Arnaud Destrebecqz, Morten H. Christiansen, Nick Chater, & Axel Cleeremans 

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179–211.
Elman, J.L. (1991). Distributed representations, simple recurrent networks, and grammatical 

structure. Machine Learning, 7, 195–224.
Estes, K., Evans, J., Alibali, M., & Saffran, J. (2007). Can infants map meaning to newly seg-

mented words? Psychological Science, 18(3), 254. DOI: 10.1111/j.1467-9280.2007.01885.x
Farkaš, I., & Crocker, M.W. (2008). Syntactic systematicity in sentence processing with a recur-

rent self-organizing network. Neurocomputing, 71(7), 1172–1179.
 DOI: 10.1016/j.neucom.2007.11.025
Frank, M.C., Goldwater, S., Griffiths, T.L., & Tenenbaum, J.B. (2010). Modeling human perfor-

mance in statistical word segmentation. Cognition, 117(2), 107–125.
 DOI: 10.1016/j.cognition.2010.07.005
Frank, S.L. (in press). Getting real about systematicity. In P. Calvo & J. Symons (Eds.), Syste-

maticity and cognitive architecture: Conceptual and empirical issues 25 years after Fodor & 
Pylyshyn’s challenge to connectionism. Cambridge, MA: The MIT Press.

Frinken, V., Fischer, A., Manmatha, R., & Bunke, H. (2012). A novel word spotting method 
based on recurrent neural networks. IEEE Transactions on, Pattern Analysis and Machine 
Intelligence, 34(2), 211–224. DOI: 10.1109/TPAMI.2011.113

Gaskell, M.G., Hare, M., & Marslen-Wilson, W.D. (1995). A connectionist model of phonologi-
cal representation in speech perception. Cognitive Science, 19, 407–439.

 DOI: 10.1207/s15516709cog1904_1
Gibson, F.P., Fichman, M., & Plaut, D.C. (1997). Learning in dynamic decision tasks: Com-

putational model and empirical evidence. Organizational Behavior and Human Decision 
Processes, 71, 1–35. DOI: 10.1006/obhd.1997.2712

Gómez, R. (2002). Variability and detection of invariant structure. Psychological Science, 13, 
431–436. DOI: 10.1111/1467-9280.00476

Harm, M.W., & Seidenberg, M.S. (1999). Phonology, reading acquisition, and dyslexia: Insights 
from connectionist models. Psychological Review, 106, 491–528.

 DOI: 10.1037/0033-295X.106.3.491
Hinoshita, W., Arie, H., Tani, J., Okuno, H.G., & Ogata, T. (2011). Emergence of hierarchical 

structure mirroring linguistic composition in a recurrent neural network. Neural Networks, 
24(4), 311–320. DOI: 10.1016/j.neunet.2010.12.006

Johnstone, T. & Shanks, D.R. (2001). Abstractionist and processing accounts of implicit learn-
ing. Cognitive Psychology, 42, 61–112. DOI: 10.1006/cogp.2000.0743

Jordan, M.I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. 
In Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Hillsdale, 
NJ: Lawrence Erlbaum Associates.

Kinder, A. & Shanks, D.R. (2001). Amnesia and the declarative/procedural distinction: A recur-
rent network model of classification, recognition, and repetition priming. Journal of Cogni-
tive Neuroscience, 13, 648–669. DOI: 10.1162/089892901750363217

Kirov, C., & Frank, R. (2012). Processing of nested and cross-serial dependencies: An automaton 
perspective on SRN behaviour. Connection Science, 24(1), 1–24.

 DOI: 10.1080/09540091.2011.641939
Lashley, K.S. (1951). The problem of serial order in behavior. In L.A. Jeffress (Ed.), Cerebral 

mechanisms in behavior (pp. 112–146). New York, NY: Wiley.
Luce, R.D. (1963). Detection and recognition. In R.D. Luce, R.R. bush, & E. Galanter (Eds.), 

Handbook of mathematical psychology. New York, NY: Wiley.



2nd proofs

PAGE P r o o f s

© John bEnJAmins PublishinG comPAny

 Associative learning of nonadjacent dependencies 243

Maraqa, M., Al-Zboun, F., Dhyabat, M., & Zitar, R.A. (2012). Recognition of Arabic Sign Lan-
guage (ArSL) using recurrent neural networks. Journal of Intelligent Learning Systems and 
Applications, 4(1), 41–52. DOI: 10.4236/jilsa.2012.41004

Maskara, A., & Noetzel, A. (1992). Forced simple recurrent neural network and grammatical 
inference. In Proceedings of the Fourteenth Annual Conference of the Cognitive Science Soci-
ety (pp. 420–425). Hillsdale, NJ: Lawrence Erlbaum Associates.

Miikkulainen, R., & Mayberry III, M. R. (1999). Disambiguation and grammar as emergent 
soft constraints. In B. MacWhinney (Ed.), Emergence of language, 153–176. Mahwah, NJ: 
Lawrence Erlbaum Associates.

Misyak, J.B., & Christiansen, M.H. (2012). Statistical learning and language: An individual dif-
ferences study. Language Learning, 62, 302–331. DOI: 10.1111/j.1467-9922.2010.00626.x

Misyak, J.B., Christiansen, M.H. & Tomblin, J.B. (2010a). On-line individual differences in sta-
tistical learning predict language processing. Frontiers in Psychology, Sept.14.

 DOI: 10.3389/fpsyg.2010.00031.
Misyak, J.B., Christiansen, M.H. & Tomblin, J.B. (2010b). Sequential expectations: The role of 

prediction- based learning in language. Topics in Cognitive Science, 2, 138–153.
 DOI: 10.1111/j.1756-8765.2009.01072.x
Moss, H.E., Hare, M.L., Day, P., & Tyler, L.K. (1994). A distributed memory model of the asso-

ciative boost in semantic priming. Connection Science, 6, 413–427.
 DOI: 10.1080/09540099408915732
Munakata, Y., McClelland, J.L., & Siegler, R.S. (1997). Rethinking infant knowledge: Toward an 

adaptive process account of successes and failures in object permanence tasks. Psychologi-
cal Review, 104, 686–713. DOI: 10.1037/0033-295X.104.4.686

Onnis, L., Christiansen, M.H., Chater, N., & Gómez, R. (submitted). Statistical learning of non-
adjacent relations. Submitted manuscript.

Onnis, L., Christiansen, M.H., Chater, N., & Gómez, R. (2003). Reduction of uncertainty in 
human sequential learning: Preliminary evidence from Artificial Grammar Learning. In 
R. Alterman & D. Kirsh (Eds.), Proceedings of the 25th Annual Conference of the Cognitive 
Science Society. Boston, MA: Cognitive Science Society.

Onnis, L., Monaghan, P., Christiansen, M. H., & Chater, N. (2004). Variability is the spice 
of learning, and a crucial ingredient for detecting and generalizing in nonadjacent 
 dependencies. In Proceedings of the 26th annual conference of the Cognitive Science Society 
(pp. 1047–1052). Mahwah, NJ: Lawrence Erlbaum.

Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: 
The case of orthographic regularities. Journal of Experimental Psychology: General, 130, 
401–426. DOI: 10.1037/0096-3445.130.3.401

Perruchet, P., & Pacteau, C. (1990). Synthetic grammar learning: Implicit rule abstraction 
or explicit fragmentary knowledge? Journal of Experimental Psychology: General, 119, 
 264–275. DOI: 10.1037/0096-3445.119.3.264

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, 
two approaches. Trends In Cognitive Sciences, 10(5), 233–238.

 DOI: 10.1016/j.tics.2006.03.006
Plaut, D.C., & Kello, C.T. (1999). The emergence of phonology from the interplay of speech 

comprehension and production: A distributed connectionist approach. In B.  MacWhinney 
(Ed.), The emergence of language (pp. 381–415). Mahwah, NJ: Lawrence Erlbaum 
Associates.



2nd proofs

PAGE P r o o f s

© John bEnJAmins PublishinG comPAny

244 Luca Onnis, Arnaud Destrebecqz, Morten H. Christiansen, Nick Chater, & Axel Cleeremans 

Redington, M., & Chater, N. (2002). Knowledge representation and transfer in artificial gram-
mar learning (AGL). In R.M. French & A. Cleeremans (Eds.), Implicit learning and con-
sciousness: An empirical, philosophical, and computational consensus in the making. Hove: 
Psychology Press.

Rohde, D.L.T., & Plaut, D.C. (1999). Language acquisition in the absence of explicit negative 
evidence: How important is starting small? Cognition, 72, 67–109.

 DOI: 10.1016/S0010-0277(99)00031-1
Saffran, J.R., Aslin, R.N., & Newport, E.L. (1996). Statistical learning by 8-month-old infants. 

Science, 274, 1926–1928. DOI: 10.1126/science.274.5294.1926
Saffran, J. (2001). Words in a sea of sounds: The output of infant statistical learning. Cognition, 

81, 149–169. DOI: 10.1016/S0010-0277(01)00132-9
Servan-Schreiber, D., Cleeremans, A. & McClelland, J.L. (1991). Graded state machines: The 

representation of temporal dependencies in simple recurrent networks. Machine Learning, 
7, 161–193.

Si, Y., Xu, J., Zhang, Z., Pan, J., & Yan, Y. (2012). An improved Mandarin voice input system 
using recurrent neural network language model. In Computational Intelligence and Security 
(CIS), Eighth International Conference on (pp. 242–246). IEEE.

Socher, R., Manning, C.D., & Ng, A.Y. (2010). Learning continuous phrase representations and 
syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010 Deep 
Learning and Unsupervised Feature Learning Workshop. Hilton: Cheakmus.

Sutskever, I., Martens, J., & Hinton, G. (2011). Generating text with recurrent neural networks. 
In Proceedings of the 2011 International Conference on Machine Learning (ICML-2011).

Tabor, W. (2011). Recursion and recursion-like structure in ensembles of neural elements. In 
H. Sayama, A. Minai, D. Braha, & Y. Bar-Yam (Eds.), Unifying themes in complex systems. 
Proceedings of the VIII International Conference on Complex Systems (pp. 1494–1508). 
 Berlin: Springer.

Takac, M., Benuskova, L, & Knott, A. (2012). Mapping sensorimotor sequences to word 
sequences: A connectionist model of language acquisition and sentence generation. Cogni-
tion, 125, 288–308. DOI: 10.1016/j.cognition.2012.06.006

Vokey, J.R., & Brooks, L.R. (1992). Salience of item knowledge in learning artificial grammar. 
Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 328–344.

 DOI: 10.1037/0278-7393.18.2.328

Appendix A. Measures of associative learning

Global associative chunk strength (GCS, Knowlton & Squire, 1994) averages the frequencies 
of all bigrams and trigrams that appear in strings. For instance, one can calculate the GCS for 
grammatical test items in set-size 2. The form of each test item is AiXjBi, with 3 Ai_Bi dependen-
cies and 2 Xj-elements. A specific item, for instance A1X2B1, is composed of 2 bigrams, A1X2 and 
X2B1, each repeated 72 times during training, and one trigram A1X2B1, repeated 72 times. The 
GCS measure for this item is obtained by averaging the summed frequencies of each n-gram by 
the number of n-grams:

( ) ( ) ( )1 2 2 1 1 2 1 72 72 72
72

3 3
freq A X freq X B freq A X B+ + + +

= =
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Likewise, the GCS for an ungrammatical test item in set-size 2, say A1X2B2, is calculated as 
follows:

( ) ( ) ( )1 2 2 2 1 2 2 72 72 0
48

3 3
freq A X freq X B freq A X B+ + + +

= =

The Anchor Associative Chunk strength measure (ACS, Reber & Allen, 1978) is similar to the 
Global Chunk Strength measure, but gives greater weight to the salient initial and final symbols 
of each string. It is computed by averaging the frequencies of the first and last bigrams and 
trigrams in each string. In this particular case, because the strings only contain three items the 
ACS scores are the same as the GCS scores (see Table 2). The first two rows in Table 2 show that 
GCS/ACS values are always higher for grammatical than for ungrammatical sentences (with 
a constant ratio of 1.5) and that both values decrease as a function of set-size. Such measures 
predict that if learners were relying on chunk strength association, their performance should 
decrease as set-size increases, and thus they do not capture the U shape.

The Novelty measure counts the number of fragments that are new in a sentence presented 
at test (Redington & Chater, 1996; 2002). This score is 0 for grammatical test strings across 
conditions, because they do not contain novel fragments and 1 for ungrammatical test strings 
because they contain one new trigram AiXBj. This measure predicts a preference for grammati-
cal strings across conditions, and thus does not capture the U shape either. Yet another mea-
sure is novel fragment position (NFP, Johnstone & Shanks, 2001), which counts the number of 
known fragments in novel absolute position. This score is 0 for both grammatical and ungram-
matical test strings, since no fragment appears in a new position with respect to training items 
and thus cannot account for any differences in grammaticality judgments across conditions. 
Lastly, Global Similarity (GS) measures the number of letters in a test string that differ from the 
nearest training string (Vokey & Brooks, 1992). For grammatical test strings this score is 0, and 
for ungrammatical test items it is 1. Since this value is the same across conditions, GS predicts 
preference for grammatical strings in all conditions, and again fails to capture the U shape.
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