
Topics in Cognitive Science 9 (2017) 637–652
Copyright © 2017 Cognitive Science Society, Inc. All rights reserved.
ISSN:1756-8757 print / 1756-8765 online
DOI: 10.1111/tops.12258

This article is part of the topic “More than Words: The Role of Multiword Sequences in
Language Learning and Use,” Morten H. Chrisiansen and Inbal Arnon (Topic Editors).
For a full listing of topic papers, see: http://onlinelibrary.wiley.com/doi/10.1111/tops.2017.
9.issue-2/issuetoc

Computational Investigations of Multiword Chunks
in Language Learning

Stewart M. McCauley,a Morten H. Christiansenb

aDepartment of Psychological Sciences, University of Liverpool
bDepartment of Psychology, Cornell University

Received 22 October 2015; received in revised form 1 September 2016; accepted 26 September 2016

Abstract

Second-language learners rarely arrive at native proficiency in a number of linguistic

domains, including morphological and syntactic processing. Previous approaches to understand-

ing the different outcomes of first- versus second-language learning have focused on cognitive

and neural factors. In contrast, we explore the possibility that children and adults may rely on

different linguistic units throughout the course of language learning, with specific focus on the

granularity of those units. Following recent psycholinguistic evidence for the role of multiword

chunks in online language processing, we explore the hypothesis that children rely more heavily

on multiword units in language learning than do adults learning a second language. To this

end, we take an initial step toward using large-scale, corpus-based computational modeling as a

tool for exploring the granularity of speakers’ linguistic units. Employing a computational

model of language learning, the Chunk-Based Learner, we compare the usefulness of chunk-

based knowledge in accounting for the speech of second-language learners versus children and

adults speaking their first language. Our findings suggest that while multiword units are likely

to play a role in second-language learning, adults may learn less useful chunks, rely on them

to a lesser extent, and arrive at them through different means than children learning a first

language.
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1. Introduction

Despite clear advantages over children in a wide variety of cognitive domains, adult

language learners rarely attain native proficiency in pronunciation (e.g., Moyer, 1999),

morphological and syntactic processing (e.g., Felser & Clahsen, 2009; Johnson & New-

port, 1989), or the use of formulaic expressions (e.g., Wray, 1999). Even highly proficient

second-language users appear to struggle with basic grammatical relations, such as the

use of articles, classifiers, and grammatical gender (DeKeyser, 2005; Johnson & Newport,

1989; Liu & Gleason, 2002), including L2 speakers who are classified as near-native

(Birdsong, 1992).

Previous approaches to explaining the differences between first-language (L1) and sec-

ond-language (L2) learning have often focused on neural and cognitive differences

between adults and children. Changes in neural plasticity (e.g., Kuhl, 2000; Neville &

Bavelier, 2001) and the effects of neural commitment on subsequent learning (e.g., Wer-

ker & Tees, 1984) have been argued to hinder L2 learning, while limitations on chil-

dren’s memory and cognitive control have been argued to help guide the trajectory of L1

learning (Newport, 1990; Ramscar & Gitcho, 2007).

While these approaches may help to explain the different outcomes of L1 and L2

learning, we explore an additional possible contributing factor: that children and adults

differ with respect to the concrete linguistic units, or building blocks, used in language

learning. Specifically, we seek to evaluate whether L2-learning adults may rely less heav-

ily on stored multiword sequences than L1-learning children, following the “starting big”

hypothesis of Arnon (2010; see also Arnon & Christiansen), which states that multiword

units play a lesser role in L2, creating difficulties for mastering certain grammatical rela-

tions. Driving this perspective on L2 learning are usage-based approaches to language

development (e.g., Lieven, Pine, & Baldwin, 1997; Tomasello, 2003), which build upon

earlier lexically oriented theories of grammatical development (e.g., Braine, 1976) and

are largely consistent with linguistic proposals, eschewing the grammar-lexicon distinc-

tion (e.g., Langacker, 1987). Within usage-based approaches to language acquisition, lin-

guistic productivity is taken to emerge gradually as a process of storing and abstracting

over multiword sequences (e.g., Goldberg, 2006; Tomasello, 2003). Such perspectives

enjoy mounting empirical support from psycholinguistic evidence that both children (e.g.,

Arnon & Clark, 2011; Bannard & Matthews, 2008) and adults (e.g., Arnon & Snider,

2010; Jolsvai, McCauley, & Christiansen, 2013) in some way store multiword sequences

and use them during comprehension and production. Computational modeling has served

to bolster this perspective, demonstrating that knowledge of multiword sequences can

account for children’s online comprehension and production (e.g., McCauley & Chris-

tiansen, 2011, 2014, unpublished data), as well as give rise to abstract grammatical

knowledge (e.g., Solan, Horn, Ruppin, & Edelman, 2005).

In the present paper, we compare L1 and L2 learners’ use of multiword sequences

using large-scale, corpus-based modeling. We do this by employing a model of online

language learning in which multiword sequences play a key role: the Chunk-Based
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Learner (CBL) model (Chater, McCauley, & Christiansen, 2016; McCauley & Chris-

tiansen, 2011, 2014, 2016). Our approach can be viewed as a computational model-based

variation on the “Traceback Method” of Lieven, Behrens, Speares, and Tomasello (2003).

Using matched corpora of L1 and L2 learner speech as input to the CBL model, we com-

pare the model’s ability to discover multiword chunks from the utterances of each learner

type, as well as its ability to use these chunks to generalize to the online production of

unseen utterances from the same learners. This modeling effort thereby aims to provide

the kind of “rigorous computational evaluation” of the Traceback Method called for by

Kol, Nir, and Wintner (2014).

In what follows, we first introduce the CBL model, including its key computational

and psychological features. We then report results from two sets of computational simula-

tions using CBL. The first set applies the model to matched sets of L1 and L2 learner

corpora in an attempt to gain insight into the question of whether there exist important

differences between learner types in the role played by multiword units in learning and

processing. In the second set of simulations, we use a slightly modified version of the

model, which learns from raw frequency of occurrence rather than transition probabilities,

in order to test a hypothesis based on a previous finding (Ellis, Simpson-Vlach, & May-

nard, 2008) suggesting that while L2 learners may employ multiword units, they rely

more on sequence frequency as opposed to sequence coherence (as captured by mutual

information, transition probabilities, etc.). We conclude by considering the broader impli-

cations of our simulation results.

2. The Chunk-Based Learner model

The CBL model is designed to reflect constraints deriving from the real-time nature of

language learning (cf. Christiansen & Chater, 2016). Firstly, processing is incremental

and online. In the model, all processing takes place item-by-item, as each new word is

encountered, consistent with the incremental nature of human sentence processing (e.g.,

Altmann & Steedman, 1988). At any given time-point, the model can rely only upon

what has been learned from the input encountered thus far. This stands in stark contrast

to models which involve batch learning, or which function by extracting regularities from

veridical representations of multiple utterances. Importantly, these constraints apply to the

model during both comprehension-related and production-related processing.

Secondly, CBL employs psychologically inspired learning mechanisms and knowledge

representation: the model’s primary learning mechanism is tied to simple frequency-based

statistics, in the form of backward transitional probabilities (BTPs),1 to which both infants

(Pelucchi, Hay, & Saffran, 2009) and adults (Perruchet & Desaulty, 2008) have been

shown to be sensitive (see McCauley & Christiansen, 2011, for more about this choice of

statistic, and for why the model represents a departure from standard n-gram approaches,

despite the use of transitional probabilities). Using this simple source of statistical infor-

mation, the model learns purely local linguistic information rather than storing or learning

from entire utterances, consistent with evidence suggesting a primary role for local
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information in human sentence processing (e.g., Ferreira & Patson, 2007). Following evi-

dence for the unified nature of comprehension and production processes (e.g., Pickering

& Garrod, 2013), comprehension- and production-related processes rely on the same

statistics and linguistic knowledge (Chater et al., 2016).

Thirdly, CBL implements usage-based learning. All learning arises from individual

usage events in the form of attempts to perform comprehension- and production-related

processes over utterances. In other words, language learning is characterized as a problem

of learning to process, and involves no separate element of grammar induction.

Finally, CBL is exposed to naturalistic linguistic input. It is trained and evaluated

using the corpora of real learner and learner-directed speech taken from public databases.

2.1. CBL model architecture

The CBL model has been described thoroughly as part of previous work (e.g., McCau-

ley & Christiansen, 2011, 2016). Here, we offer an account of its inner workings suffi-

cient to understand and evaluate the simulations reported below. While comprehension

and production represent two sides of the same coin in the model, as noted above, we

describe the relevant processes and tasks separately, for the sake of simplicity.

2.1.1. Comprehension
The model processes utterances online, word by word as they are encountered. At each

time step, the model is exposed to a new word. For each new word and word-pair (bi-

gram) encountered, the model updates low-level distributional information online (incre-

menting the frequency of each word or word-pair by 1). This frequency information is

then used online to calculate the BTP between words. CBL also maintains a running

average BTP reflecting the history of encountered word pairs, which serves as a “thresh-

old” for inserting chunk boundaries. When the BTP between words rises above this run-

ning average, CBL groups the words together such that they will form part (or all) of a

multiword chunk. If the BTP between two words falls below this threshold, a “boundary”

is created and the word(s) to the left are stored as a chunk in the model’s chunk inven-

tory. The chunk inventory also maintains frequency information for the chunks them-

selves (i.e., each time a chunk is processed, its count in the chunk inventory is

incremented by 1, provided it already exists; otherwise, it is added to the inventory with

a count of 1).

Once the model has discovered at least one chunk, it begins to actively rely upon the

chunk inventory while processing the input in the same incremental, online fashion as

before. The model continues calculating BTPs while learning the same frequency infor-

mation, but uses the chunk inventory to make online predictions about which words

should form a chunk, based on existing chunks in the inventory. When a word pair is

processed, any matching sub-sequences in the inventory’s existing chunks are activated:

if more than one instance is activated (either an entire chunk or part of a larger one), the

words are automatically grouped together (even if the BTP connecting them falls below

the running-average threshold) and the model begins to process the next word. Thus,
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knowledge of multiple chunks can be combined to discover further chunks, in a fully

incremental and online manner. If less than two chunks in the chunk inventory are active,

however, the BTP is still compared to the running average threshold, with the same con-

sequences as before. Importantly, there are no a priori limits on the size of the chunks

that can be learned by the model.

2.1.2. Production
While the model is exposed to a corpus incrementally, processing the utterances online

and discovering/strengthening chunks in the service of comprehension, it encounters utter-

ances produced by the target child of the corpus (or, in the present study, target learner,
which is not necessarily a child)—this is when the production side of the model comes

into play. Specifically, we assess the model’s ability to produce an identical utterance to

that of the target learner, using only the chunks and statistics learned up to that point in

the corpus. We evaluate this ability using a modified version of the bag-of-words incre-
mental generation task proposed by Chang, Lieven, and Tomasello (2008), which offers a

method for automatically evaluating a syntactic learner on a corpus in any language.

As a very rough approximation of sequencing in language production, we assume that

the overall message the learner wishes to convey can be modeled as an unordered bag-of-

words, which would correspond to some form of conceptual representation. The model’s

task, then, is to produce these words, incrementally, in the correct sequence, as originally

produced by the learner. Following evidence for the role of multiword sequences in child

production (e.g., Bannard & Matthews, 2008), and usage-based approaches more gener-

ally, the model utilizes its chunk inventory during this production process. The bag-of-

words is thus filled by modeling the retrieval of stored chunks by comparing the learner’s

utterance against the chunk inventory, favoring the longest string which already exists as

a chunk for the model, starting from the beginning of the utterance. If no matches are

found, the isolated word at the beginning of the utterance (or remaining utterance) is

removed and placed into the bag. This process continues until the original utterance has

been completely randomized as chunks/words in the bag.

During the sequencing phase of production, the model attempts to reproduce the lear-

ner’s actual utterance using this unordered bag-of-words. This is captured as an incremen-

tal, chunk-to-chunk process, reflecting the incremental nature of sentence processing (e.g.,

Altmann & Steedman, 1988; see Christiansen & Chater, 2016, for discussion). To begin,

the model removes from the bag-of-words the chunk with the highest BTP given a start-

of-utterance marker (a simple hash symbol, marking the beginning of each new utterance

in the prepared corpus). At each subsequent time-step, the model selects from the bag the

chunk with the highest BTP given the most recently placed chunk. This process continues

until the bag is empty, at which point the model’s utterance is compared to the original

utterance of the target child.

We use a conservative measure of sentence production performance: the model’s utter-

ance must be identical to that of the target child, regardless of grammaticality. Thus, all

production attempts are scored as either a 1 or a 0, allowing us to calculate the percent-

age of correctly produced utterances as an overall measure of production performance.
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3. Simulation 1: Modeling the role of multiword chunks in L1 versus L2 learning

In Simulation 1, we assess the extent to which CBL, after processing the speech of a

given learner type, can “generalize” to the production of unseen utterances. Importantly,

we do not use CBL to simulate language development, as in previous studies, but instead

as a psychologically motivated approach to extracting multiword units from learner

speech. The aim is to evaluate the extent to which the sequencing of such units can

account for unseen utterances from the same speaker, akin to the Traceback Method of

Lieven et al. (2003).

To achieve this, we use a leave-10%-out method, whereby we test the model’s ability

to produce a randomly selected set of utterances using chunk-based knowledge and statis-

tics learned from the remainder of the corpus. That is, CBL is trained on 90% of the

utterances spoken by a given speaker and then tested on its ability produce the novel

utterances from the remaining 10% of the corpus from that speaker. We compare the out-

come of simulations performed using L2 learner speech (L2 ? L2) to two types of L1

simulation: production of child utterances based on learning from that child’s own speech

(C ? C) and production of adult caretaker utterances based on learning from the adult

caretaker’s own speech (A ? A). The C ? C simulations provide a comparison to early

learning in L1 versus L2 (as captured in the L2 ? L2 simulations), while the A ? A
simulations provide a comparison of adult L1 language to adult speech in an early L1 set-

ting. A third type of L1 simulation is included as a control, allowing comparison to

model performance in a more typical context: production of child utterances after learn-

ing from adult caretaker speech (A ? C). Crucially, the L2 ? L2, C ? C, and A ? A
simulations provide an opportunity to gauge how well chunk-based units derived from a

particular speaker’s corpus generalize to unseen utterances from the same speaker (similar

to the Traceback Method), while the A ? C simulations provide a comparison to a more

standard simulation of language development.

If L2 learners do rely less heavily on multiword units, as predicted, we would expect

for the chunks and statistics extracted from the speech of L2 learners to be less useful in

predicting unseen utterances than for L1 learners, even after controlling for factors tied to

vocabulary and linguistic complexity.

3.1. Methods

3.1.1. Corpora
For the present simulations, we rely on a subset of the European Science Foundation

(ESF) Second Language Database (Feldweg, 1991), which features transcribed recordings

of L2 learners over a period of 30 months following their arrival in a new language envi-

ronment. We employ this particular corpus because its nonclassroom setting allows better

comparison with child learners. The data were transcribed for the L2 learners in interac-

tion with native-speaker conversation partners while engaging in such activities as free

conversation, role play, picture description, and accompanied outings. Thus, the
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situational context of the recorded speech often mirrors the child–caretaker interactions

found in the corpora of child-directed speech.

For child and L1 data, we rely on the CHILDES database (MacWhinney, 2000). We

selected the two languages most heavily represented in CHILDES (German and English),

which allowed for comparison with L2 learners of these languages (from the ESF corpus),

while holding the native language of the L2 learners constant (Italian). We then used an

automated procedure to select, from the large number of available CHILDES material, the

corpora which best matched each of the available L2 learner corpora in terms of size

(when comparing learner utterances) for a given language. Thus, we matched one L1 lear-

ner corpus to each L2 learner corpus in our ESF subset. The final set of L2 corpora

included: Andrea, Lavinia, Santo, and Vito (Italians learning English); Angelina, Marcello,

and Tino (Italians learning German). The final set of matched CHILDES corpora included:

Conor and Michelle (English, Belfast corpus); Emma (English, Weist corpus); Emily (Eng-

lish, Nelson corpus); Laura, Leo, and Nancy (German; Szagun corpus). Because utterance

length is an important factor, we ran tests to confirm that neither the L1 child utterances (t
(6) = �1.3, p = .24) nor the L1 caretaker utterances (t(6) = 0.82, p = .45) differed signifi-

cantly from the L2 learner utterances in terms of number of words per utterance.

While limitations on the number of available corpora made it impossible to match the

corpora along every relevant linguistic dimension, we controlled for additional relevant

factors in our statistical analyses of the simulation results. In particular, we were inter-

ested in controlling for linguistic complexity and vocabulary range: as a proxy for lin-

guistic complexity, we used mean number of morphemes per utterance (MLU), which has

previously been shown to reflect syntactic development (e.g., Brown, 1973; de Villiers &

de Villiers, 1973). Additionally, type-token ratio (TTR) served as a measure of vocabu-

lary range, as the corpora were matched for size. Because the corpora are matched for

length (number of word tokens), TTR allows us to factor the number of unique word

types used into an overall measure of vocabulary breadth. Details for each corpus and

speaker are presented in Table 1.

Each corpus was submitted to an automated procedure whereby tags and punctuation

were stripped away, leaving only the speaker identifier and original sequence of words

for each utterance. Importantly, words tagged as being spoken by L2 learners in their

native language (Italian in all cases) were also removed by this automated procedure.

Long pauses within utterances were treated as utterance boundaries.

3.1.2. Simulations
For each simulation, we ran 10 separate versions, each using a different randomly

selected test group consisting of 10% of the available utterances. In each case, the model

must attempt to produce the randomly withheld 10% of utterances after processing the

remaining 90%. For each L1–L2 pair of corpora, we conduct four separate simulation

sets: one in which the model is exposed to the speech of a particular L2 learner and must

subsequently attempt to produce the withheld subset of 10% of this L2 learner’s utter-

ances (L2 ? L2), and three simulations involving the L1 corpus (one in which the model

is tasked with producing the left-out 10% of the child utterances after exposure to the
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other utterances produced by this child [C ? C], one in which the model must attempt

to produce the withheld L1 caretaker utterances after exposure to the other L1 utterances

produced by the same adult/caretaker [A ? A], and one in which the model must attempt

to produce a random 10% of the child utterances after exposure to the adult/caretaker

utterances [A ? C]). Thus, we seek to determine how well a chunk inventory built on

the basis of a learner’s speech (or input) helps the model generalize to a set of unseen

utterance types.

3.2. Results and discussion

As can be seen in Fig. 1, the model achieved stronger mean sentence production per-

formance for all three sets of L1 simulations than for the L2 simulations (L2 ? L2:
36.3%, SE: 0.6%; Child ? Child: 49.6%, SE: 0.8%; Adult ? Adult: 42.1%, SE: 0.7%;

Adult ? Child: 47.5%, SE: 0.9%). To examine more closely the differences between the

speaker types across simulations while controlling for linguistic complexity and vocabu-

lary breadth, we submitted these results to a linear regression model with the following

predictors: Learner Type (L1 Adult vs. L1 Child vs. L2 Adult, with L1 Adult as the base

case), MLU, and TTR. The model yielded a significant main effect of L2 Adult Type

(B = �5.67, t = �1.98, p < .05), reflecting a significant difference between the L2

Table 1

Details of corpora and speaker types

Corpus Speaker Type Language MLU TTR

Conor Child English 3.10 0.10

Emily Child English 4.13 0.09

Emma Child English 3.32 0.07

Michelle Child English 4.60 0.09

Laura Child German 2.51 0.13

Leo Child German 2.41 0.10

Nancy Child German 1.92 0.08

Conor Adult English 5.26 0.05

Emily Adult English 7.20 0.10

Emma Adult English 3.67 0.06

Michelle Adult English 6.07 0.05

Laura Adult German 3.90 0.09

Leo Adult German 3.78 0.10

Nancy Adult German 3.33 0.09

Andrea L2 English 3.98 0.10

Lavinia L2 English 5.32 0.08

Santo L2 English 4.60 0.10

Vito L2 English 3.05 0.12

Angelina L2 German 3.70 0.13

Marcello L2 German 4.72 0.15

Tino L2 German 5.10 0.12
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performance scores and the base case (L1 Adult). The Child L1 Type did not differ sig-

nificantly from the Adult L1 Type. While there was a marginal effect of TTR (B = �0.7,

t = �1.7, p = .08), none of the other variables or interactions reached significance. The

model had an adjusted R2 value of 0.83.

Thus, CBL’s ability to generalize to the production of unseen utterances was signif-

icantly greater for L1 children and adults, relative to L2 learners. This suggests that

the type of chunking performed by the model may better reflect the patterns of L1

speech than those of L2 speech. This notion is consistent with previous hypotheses

suggesting that adults rely less heavily than children on multiword chunks in learning,

and that this can negatively impact mastery over certain aspects of language use (see

Arnon & Christiansen, for discussion). It also fits quite naturally alongside findings of

differences in L2 learner use of formulaic language and idioms (e.g., Wray, 1999).

In addition, CBL exhibited no significant difference in its ability to capture L1

adult versus child speech, once linguistic factors tied to MLU and TTR were con-

trolled for. This is consistent with previous work using the CBL model, which sug-

gests that multiword chunks discovered during early language development do not

diminish, but may actually grow in importance over time (McCauley & Christiansen,

2014), reflecting recent psycholinguistic evidence for the use of multiword chunks in

adults (e.g., Arnon, McCauley, & Christiansen, 2017; Arnon & Snider, 2010; Jolsvai

et al., 2013).

To compare the structure of the chunk inventories built by models for each learner

type, we calculated the overall percentage of chunks falling within each of four size

groupings: one-word, two-word, three-word, and four-or-more-word chunks. The results

of this comparison are depicted in Fig. 2. As can be seen, there were close similarities in

terms of the size of the chunks extracted from the input across learner types, despite clear

differences in the ability of these units to account for unseen learner speech. In

Fig. 1. Graph depicting the mean sentence production accuracy scores on the leave-10%-out task for each of

the four simulation types.
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Appendix A, we list the top ten most frequent chunks across L1 child and L2 learners for

the English language corpora.

It is important to reiterate that the aims of Simulation 1 are to compare the extent to

which multiword units extracted from the speech of L1 versus L2 learners can generalize

to unseen utterances from the same speakers; though CBL could theoretically be used to

do so, the present simulations are not intended to provide an account of L2 acquisition.

For such an endeavor, it would be necessary to account for a variety of factors, such as

the influence of preexisting linguistic knowledge from a learner’s L1 (cf. Arnon, 2010;

Arnon & Christiansen) and the role of overall L2 exposure (e.g., Matusevych, Alishahi,

& Backus, 2015).

While these additional factors may be key sources of the differences between L1 and

L2 learning outcomes, the results of Simulation 1 support the idea that L1 and L2 learn-

ers learn different types of chunk-based information or use that information differently.

In our simulations, L2 chunk inventories were less useful in generalizing to unseen utter-

ances. Nevertheless, L2 and child L1 inventories exhibited similarities in terms of struc-

ture: McCauley (2016) shows, using a series of network analyses, that the chunk

inventories constructed by the model for L2 and L1 child simulations exhibit similar pat-

terns of connectivity (between chunks) while differing significantly from chunk invento-

ries constructed for L1 adult simulations.

One intriguing possibility for explaining lower performance on the L2 simulations is

that L2 learners are less sensitive to coherence-related information (such as transition

Fig. 2. Percentage of chunk types by size for each learner type.

646 S. M. McCauley, M. H. Christiansen / Topics in Cognitive Science 9 (2017)



probability, in the present case), and may rely more on raw frequency of exposure. If so,

a model based on raw co-occurrence frequencies may provide a better account of L2 lear-

ner chunking than the CBL model. It is to this possibility that we turn our attention in

the second simulation.

4. Simulation 2: Evaluating the role of raw frequency versus coherence

The chunk inventories learned by the CBL model for L2 learners are structurally quite

similar to those learned for L1 children. Nevertheless, the results of Simulation 1 suggest

that there may be important differences in the utility of these chunks, as well as the

extent to which they are relied on by the two types of learner. Here, we turn our attention

to exploring a possible difference in the means by which the two learner types arrive at

chunk-based linguistic units: In a study conducted by Ellis et al. (2008), L2 learners were

shown to rely more heavily on raw sequence frequency, while L1 adult subjects displayed

a sensitivity to sequence coherence (as reflected by mutual information). Following this

finding, we explore the hypothesis that raw frequency-based chunks may provide a better

fit to the speech of L2 learners than those discovered through transition probabilities (as

in the CBL model), while yielding the opposite result for L1 child and adult speakers.

Thus, the purpose of Simulation 2 is to determine the extent to which the move to a

purely raw frequency-based style of chunking affects performance when compared to the

transition probability-based chunking of CBL.

To this end, we conduct a second round of production simulations, identical to those

of Simulation 1, but with a modified version of the model in which chunks are acquired

through the use of raw frequency rather than transitional probabilities. If the findings of

Ellis et al. (2008) do indeed correspond to a greater reliance on raw frequency—as

opposed to overall sequence coherence—in L2 learners, we would expect that a raw fre-

quency-based version of the model would improve production performance in the L2 sim-

ulations while lowering performance across the L1 simulations.

4.1. Method

4.1.1. Corpora
The corpora and corpus preparation procedures were identical to those described for

Simulation 1.

4.1.2. Model architecture
We implemented a version of the model which was identical in all respects, save one:

All BTP calculations were replaced by the raw frequency of the sequence in question

(i.e., Frequency[XY] as opposed to Frequency[XY]/Frequency[Y]). Thus, boundaries were

inserted between two words when their raw bigram frequency fell below a running aver-

age bigram frequency, while they were grouped together as part of a chunk if their raw

bigram frequency was above this running average. During production, incremental chunk
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selection took place according to raw frequency of two chunks’ co-occurrence in

sequence (as opposed to using the BTPs linking them): At each time step, the chunk in

the bag which formed the highest-frequency sequence when combined with the preceding

chunk was chosen.

4.1.3. Simulations
Using the modified, raw frequency-based version of the model, we ran a parallel series of

simulations (one simulation corresponding to each simulation in Simulation 1). The out-

comes of both sets of simulations were then compared to assess whether the switch to raw

frequency-based chunking affected the outcomes of L1 and L2 learner simulations differ-

ently.

4.2. Results and discussion

The aim of Simulation 2 was to determine how much the switch to raw frequency-

based chunking affected performance for a parallel version of each original CBL simula-

tion (as before, 10 simulations for each corpus and simulation type). We compared the

two model/simulation sets directly by calculating the difference in performance scores

between Simulations 2 and 1. As predicted, this switch tended to improve L2 perfor-

mance scores while decreasing L1 adult and child scores. While the differences in overall

means calculated across learner types were small (L2 ? L2: +1%, A ? A: �1%,

C ? C: �2%), there were considerable individual differences across simulations (SD of

4%, with change sizes ranging from 0% to 11%).

These differences in performance across learner types were further underscored by an

interaction between learner type and model version: a four-way ANCOVA with Simulation

Type (Original CBL versus Raw Frequency), Learner Type (Adult L1, Child L1, and

Adult L2), MLU, and TTR as factors confirmed a significant interaction between Simula-

tion Type and Learner Type (F(1, 412) = 4.31, p < .05), in addition to main effects of

Learner Type (F(1, 412) = 393.7, p < .001), TTR (F(1, 412) = 68.2, p < .001), and

MLU (F(1, 412) = 769.7, p < .001), with post hoc tests confirming greater improvement

for L2 simulations over Adult L1 (t(129.6) = 2.39, p < .05) and Child L1 simulations

(t(119.6) = 4.39, p < .001).

Therefore, as hypothesized, the raw frequency-based chunking model was better able

to capture the speech of the L2 adult learners, while the transition probability-based

chunking of the CBL model provided a better fit to the L1 child and L1 adult learners

alike. Why might this be the case? It is clear that both types of information are highly

complementary: For instance, McCauley and Christiansen (2014) show that developmen-

tal psycholinguistic results which appear to stem from overall sequence frequency (e.g.,

Bannard & Matthews, 2008) can also be accounted for using transition probability-based

chunking of the sort performed by CBL. If amount of exposure to the target language

was the primary driving factor, we would expect the L1 child speech to behave more

similarly to that of the L2 adults in this context. This supports the notion that L2 learning

adults learn from the input differently, in ways that go beyond mere exposure. Preexisting
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knowledge of words and word-classes may lead L2 learners to employ different strategies

than those used in L1—and while such knowledge is not factored into our simulations

explicitly, it is implicitly reflected in the nature of the L2 speech being chunked and

sequenced by the model. Nevertheless, Simulation 1 revealed remarkable similarities in

the L1 Child versus L2 learner chunk inventories in terms of chunk structure (see also

McCauley, 2016), suggesting that knowledge of multiword sequences could still play an

important role in the speech of our L2 sample. It may merely be that these sequences are

discovered and used in ways that are less closely captured by the CBL model.

5. General discussion

This study represents an initial step toward the use of large-scale, corpus-based compu-

tational modeling to uncover similarities and differences in the linguistic building blocks

used by different learner types (in this case, L1 and L2 learners). We have sought to

answer the call of Kol et al. (2014) and have provided a computationally explicit approach

to the Traceback Method (Lieven et al., 2003), relying on CBL as a psychologically moti-

vated model of language acquisition. Together, our findings suggest that multiword

sequences play a role in L1 and L2 learning alike, but that these units may be arrived at

through different means and employed to different extents by each type of learner.

The first set of simulations shows that a chunk-based model of acquisition, CBL

(McCauley & Christiansen, 2011, 2014, unpublished data), better generalizes to the pro-

duction of unseen utterances when exposed to corpora of children and adults speaking

their L1 than when exposed to corpora of L2 learners. This finding complements previous

work showing that L2 learners do not use multiword sequences to support grammatical

development to the same extent as children do (e.g., Wray, 1999).

Secondly, we tested the notion, derived from the findings of Ellis et al. (2008), that L2

learners may arrive at knowledge of multiword chunks through different means than L1

learners. The study of Ellis et al. (2008) showed that L2 learners were sensitive to raw

sequence frequency but not the overall coherence of a sequence (such as would be

reflected by mutual information, transition probabilities, etc.), in contrast to L1 adults. As

expected, we found that the switch to a raw frequency-based version of the CBL model

improved scores on L2 simulations to a statistically significant extent, while models of

L1 child and adult speech were stronger when using the transition probabilities (as in the

original set of simulations).

Thus, taken together, our findings support the notion that there may be important dif-

ferences in the building blocks typically involved in L1 versus L2 learning, and that these

differences cannot be explained away merely on the basis of amount of exposure: Despite

similarities in the structure of the chunk inventories learned by CBL when exposed to L1

child and L2 adult speech, those chunks were more useful for production of the child

utterances, with further simulations supporting the notion that multiword units may be

arrived at through different means in L1 versus L2. While these findings can be taken to

support the hypothesis that multiword units play a lesser role in L2, creating difficulties
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for mastering certain grammatical relations (e.g., Arnon, 2010; Arnon & Christiansen),

further work using longitudinal corpora of L2 learner speech will be necessary to gain a

clearer picture of the development of multiword units in L2. Another potential contribut-

ing factor to the differences observed in the present study is that knowledge of semantic

and/or syntactic categories tied to words in a learner’s L1 may shape the types of units

drawn upon in their L2 learning. Implicit attempts to overlay L2 words upon L1 cate-

gories and constructions may lead to sensitivity to statics over abstract categories—for

instance, statistics computed over word classes—which could account for L2 learners’

lesser sensitivity to item-based coherence, as observed by Ellis et al. (2008) and in the

present simulations. The present study serves to demonstrate the promise of large-scale,

corpus-based modeling for exploring these and other questions related to the differences

between L1 and L2 learning.
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Note

1. We compute backward transition probability as P(X|Y) = F(XY)/F(Y), where F(XY)
is the frequency of an entire sequence and F(Y) is the frequency of the most

recently encountered item in that sequence.
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Appendix A: Top 10 most frequent chunks for English learners

Learner Type Top Ten Chunks

Emma Child L1 This is; you can; I think; I want; and then; I don’t; in there; how about;

I’m gonna; you tell

Conor Child L1 I’ve got; that one; I have; in there; Jurassic Park; this is; look at; I don’t;

you see; a big

Michelle Child L1 I don’t know; that one; I don’t; I have; and then; this one; in there;

my mummie; this here; my bed room

Emily Child L1 And then; I want; I need; go to; I think; I don’t know; I don’t; my daddy;

my back; my bed

Andrea Italian Speaker L2 I don’t know; I think; there are; I have; the door; in Italy; we have; the bag;

in front; the table

Lavinia Italian Speaker L2 You know; I don’t know; I think; I don’t; my husband; I have; this one;

you have; to find; to go

Santo Italian Speaker L2 I think; in Italy; for me; this is; I don’t know; I see; I mean; I don’t; I go;

you know what

Vito Italian Speaker L2 I dunno; I don’t know; I think; the house; too much; come back; in Italy;

in the; the left; this girl
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