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Abstract

Implicit learning and statistical learning are two contemporary approaches to the long-standing

question in psychology and cognitive science of how organisms pick up on patterned regularities

in their environment. Although both approaches focus on the learner’s ability to use distributional

properties to discover patterns in the input, the relevant research has largely been published in

separate literatures and with surprisingly little cross-pollination between them. This has resulted in

apparently opposing perspectives on the computations involved in learning, pitting chunk-based

learning against probabilistic learning. In this paper, I trace the nearly century-long historical pedi-

gree of the two approaches to learning and argue for their integration under the heading of “im-

plicit statistical learning.” Building on basic insights from the memory literature, I sketch a

framework for statistically based chunking that aims to provide a unified basis for understanding

implicit statistical learning.

Keywords: Statistical learning; Implicit learning; Chunking; Serial recall; Memory; Nonword

repetition

1. Introduction

The popularity of statistical learning research has grown rapidly across the past two

decades (see e.g., Frost, Armstrong, Siegelman, & Christiansen, 2015, for a review)—yet
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surprisingly few researchers are aware that the study of how learners can implicitly use

distributional properties of the input to discover patterned regularities in their environ-

ment goes back nearly a century. Consequently, many of the insights into such learning

discovered prior to the seminal study by Saffran, Aslin, and Newport (1996) have gone

unnoticed in the statistical learning literature. Indeed, a substantial proportion of the con-

tinuation of such early work tends to be published in a separate literature on implicit
learning (see Perruchet, 2008; Rebuschat & Monaghan, this issue, for reviews). However,

if statistical learning is to fulfill its promise and explain key aspects of the development

of cognitive abilities—from language to social cognition—we need to integrate lessons

from its long historical pedigree into our current thinking. This paper, therefore, aims to

situate what I will refer to as “implicit statistical learning” (ISL) within its broader histor-

ical context, pointing to important parallels with the learning and memory literature, and

proposing a framework for understanding its role in language.

1.1. A century of implicit statistical learning

Erwin A. Esper may be one of the most visionary pioneers within the study of ISL that

few people have ever heard of. Inspired by an interest in language change, Esper (1925)

published one of the very first artificial language learning studies,1 in which he, as a

behaviorist, was interested in how statistical patterns may give rise to grammatical cate-

gories (something of keen interest to current ISL researchers, for example, Frost, Mon-

aghan, & Christiansen, 2016). As another first, Esper (1933) documented individual

differences in ISL, which has only recently come to the forefront of contemporary ISL

research (e.g., Siegelman, Bogaerts, Christiansen, & Frost, 2017). Finally, Esper (1966)

conducted the first study of how language change can be explored via cultural transmis-

sion of an artificial language across multiple “generations” of learners (a key paradigm in

recent language evolution research; Kirby, Cornish, & Smith, 2008). Esper’s work was

sidelined following the cognitive revolution, but given the current interest in distributional

learning, and a reemphasis on the importance of linguistic experience in language acquisi-

tion and use, it seems timely to acknowledge his important contributions to ISL.

Importantly, though the idea of using artificial language learning to study language

acquisition did not disappear with behaviorism, but became a part of the methodological

toolkit of cognitive psychology—however, explanations of learning shifted away from

statistical patterns to rules. One of the first examples of such work was George Miller’s

Project Grammarama, which he began in 1957 (described in Miller, 1967). Whereas,

Miller worked within the general framework of formal language theory, Arthur Reber did

similar work with artificial grammars but with the aim of understanding implicit learning

(Reber, 1967). As subsequent research tended to follow one of these two different con-

ceptions of ISL at the expense of the other, two separate literatures emerged over time.

Research on implicit learning tended to involve the artificial grammar learning (AGL)

methodology developed by Reber, but also incorporated novel tasks such as probability

learning (e.g., Berry & Broadbent, 1984), in which participants learn to control complex

systems (such as a manufacturing plant), and serial-reaction time (SRT) studies (Nissen
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& Bullemer, 1987), where participants’ implicit knowledge of repeated visual sequences

is evidenced by their response time patterns. This work focused on the mechanisms

involved in implicit learning (including the role of consciousness and the explicit vs.

implicit nature of exposure) and tended to fall within the purview of cognitive psychol-

ogy, appearing in journals such as Journal of Experimental Psychology: Learning, Mem-
ory and Cognition, Journal of Experimental Psychology: General, and Quarterly Journal
of Experimental Psychology.

By contrast, the work following Miller’s language-oriented approach focused primarily

on the kinds of structure that could be learned, given linguistic and psycholinguistic con-

siderations. This research is represented, for example, by studies investigating artificial

language learning in children (Braine, 1966) and in the context of integrating multiple

cues (e.g., from prosody: Morgan, Meier, & Newport, 1987). This work tended to be pub-

lished in journals like Cognitive Psychology, Journal of Memory and Language, and Cog-
nition. Consequently, the two approaches to ISL remained largely isolated from one

another until quite recently, even after the introduction of the term “statistical learning”

by Saffran, Aslin, and Newport (1996). Perruchet and Pacton (2006) noted the similarities

between the two approaches, and Conway and Christiansen (2006) offered the term “im-

plicit statistical learning” as a unifying term for the parallel work conducted within the

two traditions (see also Perruchet, this issue). Similarly, the work presented in this special

topic and in a recent special issue of Philosophical Transactions of the Royal Society B:
Biological Sciences (Armstrong, Frost, & Christiansen, 2017) constitutes the most recent

examples of this move toward a more unified approach to ISL, seeking to integrate the

previously separate literatures.

A substantial challenge, however, for much current and past ISL work is the method-

ological disconnect between the very nature of this type of learning and the way in which

its effects are measured. In a typical experiment, participants are provided with repeated

exposure to patterned stimuli (such as consonant strings from an artificial grammar or

recurrent syllable triplets). As a first approximation, learning may be construed as involv-

ing gradual changes to the processing of the input, resulting in sensitivity to its inherent

regularities. Although selective attention to the input appears to boost learning (e.g., Toro,

Sinnett, & Soto-Faraco, 2005; Turk-Browne, Jung�e, & Scholl, 2005), what is learned in

ISL studies is largely implicit (i.e., mostly outside conscious awareness).2 Yet, to measure

the effects of learning, participants are typically asked to reflect on what they have

learned and make explicit decisions about test stimuli (using on their “gut feeling”). In

other words, participants are asked to channel the primary processing-based effects of

learning through what we might call a “consciousness filter” to produce a secondary re-
flection-based overt response. Because this consciousness filter is likely to be differently

tuned from person to person, it adds a considerable amount of noise to the secondary

response data. This additional noise makes reflection-based tests problematic as measures

of individual differences in ISL (Siegelman et al., 2017). Reflection-based measures also

pose problems for group-level studies because they are not measuring what ISL research-

ers typically think they are measuring (i.e., processing-based effects of learning). Indeed,

reflection-based tests are likely to underestimate the effects of learning in ISL studies
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relative to processing-based measures (e.g., Batterink, Reber, Neville, & Paller, 2015;

Vuong, Meyer, & Christiansen, 2016).

Although most ISL studies with adult participants still use reflection-based tests of

learning, there are some notable exceptions that employ processing-based measures

instead.3 The majority of these studies relies on reaction times (RTs) to measure the

effects of learning on processing in a speeded target detection task. A classic example is

the SRT task (Nissen & Bullemer, 1987), in which participants respond serially to one of

several alternating targets as quickly as possible, with decreases in RTs resulting from

exposure to patterned regularities (see Misyak, Christiansen, & Tomblin, 2010, for a

cross-modal extension to AGL). A more recent variation is the speeded detection of a sin-

gle target within a longer sequence—for example, a particular shape within a string of

visual shapes (Turk-Browne et al., 2005) or a specific syllable within a stream of sylla-

bles (e.g., Batterink et al., 2015; Franco, Eberlen, Destrebecqz, Cleeremans, & Bertels,

2015). Whereas, the classic SRT task integrates exposure and test, the more recent inno-

vation is meant to replace the standard reflection-based test following the training phase.

As another possible replacement, I focus here on a basic measure from the memory litera-

ture as a novel way to capture processing-based effects of learning.

In this paper, I propose to reconsider ISL in the context of basic mechanisms for learn-

ing and memory. I first briefly review similarities between ISL and immediate memory

processes, suggesting we can employ the classic serial recall memory task to measure sta-

tistical learning implicitly. I then discuss how this approach further allows us to study

ISL “in the wild” as statistically based chunking, demonstrating how the learning of real-

world statistics can facilitate language processing.

2. Memory and implicit statistical learning

When thinking about ISL tasks, it is worth considering what it is that we are trying to

measure. Typically, when approaching some psychological phenomenon, a researcher

employs a task to tap into that aspect of cognitive behavior, often assuming that there is

a dedicated neural or cognitive mechanism that corresponds to the task in question. For

example, many ISL researchers talk about a “statistical learning mechanism” (e.g., Kirk-

ham, Slemmer, & Johnson, 2002). However, the inference from a given behavioral task

to a specific brain mechanism may in many cases be invalid. Consider, for example, the

classic lexical decision task, in which participants observe letter strings on a screen and

have to decide, as quickly as possible, whether the stimulus is a word or not. Lexical

decision has been used in hundreds, if not thousands of studies to gain insights into the

structure of the vocabulary (e.g., Plaut, 1997), the organization of semantic memory (e.g.,

Meyer & Schvaneveldt, 1971), and even social cognition (e.g., Wittenbrink, Judd, &

Park, 1997). Although this task has proven to be incredibly useful for psychology, it is

also clear that there is not a dedicated mechanism for lexical decision. Instead, this task

taps into orthographic, phonological, semantic, and other components of our reading and

language processing system to produce a response (Price & Devlin, 2011).
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In a similar vein, I suggest that ISL tasks do not tap into a dedicated statistical learn-

ing mechanism but, rather, that responses in such tasks depend on the recruitment of

more basic systems for learning and memory, with the specific neural network in question

varying with differences in task demands. As a first approximation, we can construe ISL

as a proxy for the brain’s sensitivity to real-world statistics as reflected by the input to

the organism. Rather than a dedicated statistical learning mechanism, sensitivity to statis-

tical patterns is mediated by basic learning and memory processes, such as chunking

(e.g., Miller, 1956).

Chunking, as a basic cognitive skill, has recently been suggested to provide a way to

overcome the Now-or-Never Bottleneck that results from the fleeting nature of both the

input and our memory for it (Christiansen & Chater, 2016b). For example, our language

system faces a formidable three-pronged challenge: (a) the speech signal is highly tran-

sient (50–100 ms, Remez et al., 2010); (b) normal speech is fast (about 150 words per

minute, Studdert-Kennedy, 1986); and (c) memory for auditory sequences is very limited

(between 4 � 1, Cowan, 2000; and 7 � 2, Miller, 1956). To get an intuitive feel for how

chunking can facilitate processing, compare the difficulty of recalling the following string

of random letters from memory, “l h p a e i c p r a,” with the same 10-letter string reor-

ganized into “a p p l e c h a i r.” Because we automatically chunk the letters in the sec-

ond string into the two words apple and chair, their component letters are easy to recall.

Christiansen and Chater (2016b) argue that to cope with the Now-or-Never Bottleneck,

we learn through everyday language exposure to rapidly compress and recode the input

into chunks, which are immediately passed to a higher level of linguistic representation.

The chunks at this higher level are then themselves subject to the same Chunk-and-Pass
procedure, resulting in progressively larger chunks of increasing linguistic abstraction.

Crucially, given that chunks recode increasingly larger stretches of input from lower

levels of representation, the chunking process enables input to be maintained over larger

and larger temporal windows. It is this repeated chunking of lower level information that

makes it possible for the cognitive system to deal with the continuous deluge of input,

which, if not recoded, is rapidly lost. When it comes to the production of action

sequences (including language), the chunking process roughly goes in the opposite direc-

tion, from higher level chunks all the way down to motor commands.

Importantly, the chunking processes appear to be largely statistically based (at least in

relation to language; McCauley & Christiansen, 2015), suggesting that ISL may be con-

strued as statistically based chunking. Indeed, a considerable portion of the implicit learn-

ing literature has been dedicated to the role of chunk-based (or “fragment”-based)

information in such learning (see Perruchet & Pacton, 2006, for a review). For example,

studies have found that the so-called chunk strength—the relative frequency of two- and

three-element subsequences—affects participants’ ability to distinguish legal from illegal

test items in an AGL task (e.g., Knowlton & Squire, 1994). Effects of chunking strategies

have also been observed in statistical learning studies (e.g., Slone & Johnson, 2015; see

Perruchet, this issue, for a review), and a purely chunk-based computational model, PAR-

SER (Perruchet & Vinter, 1998), is able to simulate data from the Saffran, Newport, and

Aslin (1996) ISL study. More recently, McCauley and Christiansen (2011) developed a
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computational model, the Chunk-Based Learner, which uses statistical information to dis-

cover multiword chunks to facilitate language processing. Thus, there are already both

behavioral and computational modeling results that underscore the potential role of

chunking in ISL.

The similarities between ISL and chunking do not end here: Over the past decade, sev-

eral studies have revealed important modality differences in ISL (see Frost et al., 2015,

for a review) that can also be observed in memory performance (for which chunking is

crucial; Miller, 1956). For example, ISL is superior in the auditory modality compared to

the visual modality (Conway & Christiansen, 2005, 2009), likely reflecting a more basic

auditory superiority effect in memory as measured by serial recall (Drewnowski & Mur-

dock, 1980). Similarly, modality differences in primacy (visual advantage) and recency

(auditory advantage) effects have been observed in an ISL task (Conway & Christiansen,

2009), on par with differences observed in basic memory recall (e.g., Beaman, 2002).

Modality differences in ISL also emerge for different rates of presentation (Emberson,

Conway, & Christiansen, 2011), favoring audition at fast rates and vision at slow rates—
again in line with observations seen for memory performance (Collier & Logan, 2000).

Finally, evidence from both ISL (Conway & Christiansen, 2006; Siegelman & Frost,

2015) and memory tasks indicates that there are separate mechanisms for auditory and

visual input (e.g., Baddeley & Hitch, 1974). Together, these results reveal identical pat-

terns of modality-specific effects across memory and ISL, suggesting that ISL may be

supported by basic memory mechanisms, from which statistical learning inherits its

modality constraints.

Another point of contact between ISL and memory can be found in terms of individual

differences. As noted earlier, Esper (1933) was the first to document individual variation

in ISL (see Siegelman et al., 2017, for a review of recent work). There are significant dif-

ferences in ISL that provide key insights into the nature of ISL and its relationship to

other aspects of cognition (Frost et al., 2015). Individual differences in ISL correlate with

both reading and language (e.g., Frost, Siegelman, Narkiss, & Afek, 2013; Misyak et al.,

2010). Similarly, individual differences in memory abilities correlate with reading and

language (e.g., Daneman & Carpenter, 1980; Huettig & Janse, 2016). Indeed, it has been

suggested that what is measured as individual differences in working memory and lan-

guage may reflect differences in statistical learning from language input (Misyak et al.,

2010; Wells, Christiansen, Race, Acheson, & MacDonald, 2009), likely mediated by

underlying chunking skills (McCauley & Christiansen, 2015; McCauley, Isbilen, & Chris-

tiansen, 2017).

To summarize, this brief review has pointed to an already existing literature on the role

of chunking in ISL, while also noting the similar patterns of modality differences in

memory and ISL, as well as how individual differences in both predict language and

reading skills. A possible objection, though, is that serial recall is normally thought to

involve short-term memory, whereas ISL is about longer term learning. However, current

memory research suggests that there may be no sharp distinction between short- and

long-term memory but rather that the two are intricately intertwined (e.g., Hasson, Chen,

& Honey, 2015). In fact, performance on the standard digit recall task has been shown to
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reflect sensitivity to statistical patterns of recurring digit chunks in a natural-language cor-

pus (Jones & Macken, 2015). Similarly, performance in ISL tasks has been shown to be

sensitive to natural-language statistics, such as those governing word-initial sounds (e.g.,

Onnis, Monaghan, Richmond, & Chater, 2005). Thus, we can construe both ISL and

serial recall tasks as tapping into long-term distributional learning affected by real-world

statistics.

3. Implicit statistical learning as chunking

If ISL relies on basic learning and memory processes to acquire statistical regularities,

we should be able to show evidence of such distributional learning using standard mem-

ory tasks, such as serial recall. The rationale is that if participants are sensitive to the sta-

tistical regularities in the input, they should chunk coherent statistical patterns into larger

units, which should facilitate recall. Indeed, in the initial work on ISL within the cogni-

tive tradition, both Miller (1958) and Reber (1967) used serial recall to demonstrate that

repeated exposure to structured strings (from an artificial grammar) facilitates memory

recall relative to random strings. More recently, immediate recall has been applied to

study both visual (Karpicke & Pisoni, 2004) and auditory (Conway, Bauernschmidt,

Huang, & Pisoni, 2010) ISL, again indicating that distributional learning facilitates short-

term memory performance. Importantly, such statistically-induced facilitation of recall

should be observable not only in the context of experiments with artificial language stim-

uli but also in studies involving real-world natural language statistics. Next, I discuss

experimental results that confirm these predictions for both artificial and natural language

stimuli.

3.1. A processing-based measure of ISL

Isbilen, McCauley, Kidd, and Christiansen (2017) developed a novel experimental

paradigm—the statistically induced chunking recall (SICR) task—which leverages the

general capacity for chunking as a processing-based measure of ISL. Participants first lis-

tened to a continuous stream of syllables, created by concatenating random combinations

of six trisyllabic nonsense words into an 11-minute long input sequence. Following the

original study by Saffran, Newport, and Aslin (1996), differences in the transitional prob-

abilities between pairs of syllables that occur within versus between the trisyllabic words

can be used to discover word boundaries. After exposure to this artificial language, partic-

ipants were asked to verbally recall strings consisting of six auditorily presented syllables

from the input. Crucially, half of these strings, the experimental items, comprised con-

catenations of two words from the input language (e.g., kibudu + latibi ? kibudulatibi).
The other half of the strings, the control items, contained the same syllables as experi-

mental items but presented in a pseudo-random order to remove transitional-probability

information (e.g., kibudulatibi ? tidubibulaki). Isbilen et al. predicted that if participants

had statistically chunked the syllables from the input into word-like units, then they
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should be better able to recall strings consisting of two such words than the same set of

syllables in random order.

A first experiment confirmed this prediction, with participants able to correctly

recall 37% more syllables from the experimental items compared to the control items.

When measuring the recall of syllable trigrams, participants accurately recalled nearly

three times as many words compared to random trigrams from the control items. Par-

ticipants’ knowledge of the statistical regularities in the language was also measured

using the 2AFC task that is typically used in ISL studies (e.g., Reber, 1967; Saffran,

Newport, & Aslin, 1996). Performance was above chance, but subject to an order

effect (the order of the SICR and 2AFC tasks was counter-balanced across partici-

pants). A 7%-point boost in performance was observed when the 2AFC task was

administered after the SICR task. In contrast, the SICR task was not affected by

order, suggesting that it may be more robust than the 2AFC task to within-experimen-

tal confounding factors. Moreover, there was no correlation between SICR and 2AFC

performance, which is consistent with previous studies comparing processing-based

measures of ISL to reflection-based ones (e.g., Batterink et al., 2015; Franco et al.,

2015). Isbilen and colleagues suggested that the reflection-based 2AFC task may cap-

ture more explicit decision-based processing during test, whereas processing-based

tasks like SICR better reflect implicitly acquired statistical regularities about which the

participants lack awareness.

In a second experiment, Isbilen et al. (2017) asked participants to do the SICR task

twice, separated by three weeks, to determine whether performance is reliable across

time. Whereas, the 2AFC task for auditory ISL has a mixed record in terms of such

test-retest reliability (Siegelman & Frost, 2015), the SICR task was found to be highly

reliable for experimental items. These results suggest that SICR has great promise as a

measure of individual differences in ISL. Indeed, preliminary results from an ongoing

study with 5–6-year-old children indicate that performance on the experimental items in

the SICR task correlates significantly with language skill—even when partialling out con-

trol item recall, verbal working memory, nonverbal IQ, vocabulary, and age. In contrast,

2AFC performance does not correlate with language comprehension in this sample of

children. Thus, the ability to statistically chunk an artificial language appears to be a use-

ful predictor of natural language processing (which likely involves similar chunking pro-

cesses; Christiansen & Chater, 2016b).

3.2. Real-world statistics facilitate chunking

Just as the SICR task measures the learning of statistical patterns in an artificial lan-

guage, we might expect that a basic recall task may also reveal sensitivity to real-world

statistics. McCauley and Christiansen (2015) tested this prediction by asking participants

to recall visually presented strings of consonants, eight or nine letters long. Half of the

strings, the experimental items, were created by concatenating consonant bigram or

trigram chunks that had a mid to high frequency of occurrence in a large corpus of

American English (e.g., x p l n c r n g l). The other half of the strings consisted of

M. H. Christiansen / Topics in Cognitive Science 11(2019)475



pseudo-randomized versions of each of the experimental items, such that the resulting

control item has the lowest possible n-gram frequency for the component substrings (e.g.,

l g l c n p x n r). When comparing recall of experimental versus control items, McCauley

and Christiansen found that readers are indeed sensitive to the statistical patterns of con-

sonant chunks in natural language—even though they do not form syllables—and can

draw on this knowledge when they come across those chunks in a novel context. The

results also revealed considerable individual differences in sensitivity to real-world statis-

tics over consonant chunks. These differences in “chunk sensitivity” were found to pre-

dict the amount of difficulty encountered during online processing of sentences with

embedded subject or object relative clauses underlined in (1) and (2), respectively. Partic-

ipants with better chunking ability processed the sentences faster overall, and experienced

less difficulty with more complex object relative clauses.

1. The reporter that attacked the senator admitted the error.
2. The reporter that the senator attacked admitted the error.

Building on this initial study, McCauley et al. (2017) investigated whether statistical

chunking ability at different levels of linguistic abstraction may predict different

aspects of language processing. They devised two distinct recall tasks directed at dif-

ferent hypothesized levels of Chunk-and-Pass language processing (Christiansen & Cha-

ter, 2016b): phonological and multiword chunking. At the phonological level, they

developed a statistically-based version of the classic nonword repetition task (e.g., Dol-

laghan & Campbell, 1998). Nonwords comprising strings of 4, 5, or 6 syllables were

created, and phoneme trigram statistics from a large corpus of American English were

used to identify sequences with high likelihood of occurrence (e.g., krew-ih-tie-zuh).
These “chunk-like” experimental items were contrasted with control items that con-

sisted of the same syllables in a low-frequency combination given triphone statistics

(e.g., tie-zuh-ih-krew). At the multiword level, high chunkability sequences consisting

of four multiword trigrams were constructed based on corpus statistics (e.g., have to
eat good to know don’t like them is really nice).4 These sequences were matched with

low chunkability control items that featured the same functors as the experimental

sequences, along with frequency-matched content words, presented in random order

(e.g., years got don’t to game have she mean to them far is). Significant differences

were found between the recall of experimental versus control items at both the phono-

logical and multiword levels.

Interestingly, although there were significant differences in performance across indi-

viduals for both tasks, the two measures of chunking ability did not correlate with

one another. Indeed, the two types of chunking appear to contribute separately to dis-

tinct aspects of on-line language processing. When processing sentences with phono-

logical overlap between key words as in (3), participants who were good at

phonological chunking experienced little interference relative to sentences such as (4).

Within the Chunk-and-Pass framework, this suggests that individuals who are more

proficient at phonological chunking may be able to pass up these chunks faster to a

higher level of abstraction, and thus overcome the phonological overlap across nouns
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and verbs. In contrast, when processing sentences with locally distracting number

information as in (5), participants who were good at multiword chunking had fewer

problems compared to neutral sentences such as (6). These results suggest that indi-

viduals proficient in multiword chunking may be able to chunk the noun-phrase the
key to the cabinets more efficiently and thereby experience less interference from the

number mismatch between cabinets and was (in 5). Importantly, there was no correla-

tion between phonological chunking ability and the difficulty associated with process-

ing locally distracting number information (in 5); nor was there any correlation

between multiword chunking ability and processing difficulty in sentences with phono-

logical interference (in 3). Together, the patterns of correlations between the two

chunking sensitivity measures and the sentence processing data suggest that chunking

abilities at different levels of linguistic abstraction may affect language processing

separately, consistent with predictions from the Chunk-and-Pass framework.

3. The cook that the crook consoles controls the politician.
4. The prince that the crook comforts controls the politician.
5. The key to the cabinets was rusty from many years of disuse.
6. The key to the cabinet was rusty from many years of disuse

4. Conclusion

In this paper, I have proposed to reconcile the separate literatures on statistical

learning and implicit learning under the banner of implicit statistical learning. I argued

that a unifying perspective might be found by grounding ISL in basic mechanisms of

learning and memory—with an emphasis on the uncontroversial process of chunking.

This approach offers a more robust measure of sensitivity to statistics in the input by

using processing-based test paradigms such as the SICR task instead of the standard

2AFC task (which relies on reflection-based decision processes). By aligning ISL with

more basic learning and memory processes, it may also be possible to extend ISL to

real-world statistics, for which artificial language learning may be construed as being

a proxy. From this perspective, the serial recall task (including its SICR variation)

taps into memory for distributional regularities in the input, gleaned through chunk-

based processing. This opens new avenues for thinking about language processing and

how individual differences in chunking ability might be reflected in skill variation

among language learners and users. Of course, this leaves the question of where the

statistics come from in the first place. One recent suggestion from the field of lan-

guage evolution is that constraints on chunking, amplified by cultural evolution, may

have shaped linguistic structure (Cornish, Dale, Kirby, & Christiansen, 2017). The

hope is that by integrating ISL with basic work on learning and memory, we may

come to a more comprehensive, unified perspective on how ISL may contribute to our

understanding of the processing, acquisition, and evolution of language (Christiansen

& Chater, 2016a).
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Notes

1. Levelt (2013) notes that Fischer (1922) was the first to conduct an artificial lan-

guage learning experiment. However, Esper (1925) was the first artificial language

study published in English.

2. This does not exclude the possibility that learners might become partially aware of

changes in how they process the input. For example, after prolonged exposure to

repeated syllable triplets, some of these may appear to “stand out” as rhythmic

groupings.

3. In the implicit learning literature, “direct” and “indirect” measures are often used

to refer to what I have called reflection-based and processing-based tests, respec-

tively (e.g., Batterink et al., 2015). However, as I take processing-based learning to

be the primary target of ISL research, it seems incoherent to refer to measures that

more closely tap into such learning as “indirect” and measures that only secondar-

ily relate to such learning as “direct.” I therefore have opted not to use these terms

in this paper.

4. There is a growing body of work highlighting the use of multiword chunks as

building blocks in language acquisition and use (see Arnon & Christiansen, 2017,

for review, and the contributions in Christiansen & Arnon, 2017), including how

they may be statistically derived (e.g., McCauley & Christiansen, 2011, 2014).
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