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A B S T R A C T   

Statistical learning (SL) is considered a cornerstone of cognition. While decades of research have unveiled the 
remarkable breadth of structures that participants can learn from statistical patterns in experimental contexts, 
how this ability interfaces with real-world cognitive phenomena remains inconclusive. These mixed results may 
arise from the fact that SL is often treated as a general ability that operates uniformly across all domains, 
typically assuming that sensitivity to one kind of regularity implies equal sensitivity to others. In a preregistered 
study, we sought to clarify the link between SL and language by aligning the type of structure being processed in 
each task. We focused on the learning of trigram patterns using artificial and natural language statistics, to 
evaluate whether SL predicts sensitivity to comparable structures in natural speech. Adults were trained and 
tested on an artificial language incorporating statistically-defined syllable trigrams. We then evaluated their 
sensitivity to similar statistical structures in natural language using a multiword chunking task, which examines 
serial recall of high-frequency word trigrams—one of the building blocks of language. Participants’ aptitude in 
learning artificial syllable trigrams positively correlated with their sensitivity to high-frequency word trigrams in 
natural language, suggesting that similar computations span learning across both tasks. Short-term SL taps into 
key aspects of long-term language acquisition when the statistical structures—and the computations used to 
process them—are comparable. Better aligning the specific statistical patterning across tasks may therefore 
provide an important steppingstone toward elucidating the relationship between SL and cognition at large.   

1. Introduction 

Statistical learning (SL) is a foundational building block of human 
cognition. Recent years have seen an upswell of studies evaluating the 
connection between the learning of statistical patterns and a multitude 
of high-level cognitive abilities (and disabilities) across domains 
(Bogaerts, Siegelman, Christiansen, & Frost, 2022), particularly in lan-
guage. This interest in individual differences is in part predicated on one 
of the central premises of SL experiments: that they simulate how 
learning unfolds in the real world. These studies are treated as a window 
onto how linguistic skills progress more broadly, and critically inform 
theories of language development, usage, and evolution. 

Currently, however, direct evidence bridging SL and language re-
mains inconclusive. Although some studies have unearthed positive 
correlations between SL and language aptitude, others report little to no 
correlation. For example, several experiments find that SL predicts 
reading (Arciuli & Simpson, 2012) and sentence processing (Misyak & 

Christiansen, 2012), while others display null correlations with related 
skills (e.g., Haebig, Saffran, & Ellis Weismer, 2017; Siegelman & Frost, 
2015; van Witteloostuijn, Boersma, Wijnen, & Rispens, 2021). These 
conflicting results pose a fundamental challenge to our understanding of 
SL’s role in language, and in cognition in general: if SL studies do in fact 
tap into mechanisms involved in real-world learning, then reliable re-
lationships between the two would be expected (Kidd, Donnelly, & 
Christiansen, 2018). 

The mixed correlations between SL and other cognitive functions 
derive from a variety of sources. Perhaps the most formative of these is 
how the psychological sciences have historically conceptualized SL: as a 
single, general-purpose mechanism that is deployed across all cognitive 
arenas independent of the statistics involved. However, sensitivity to 
one kind of statistical information does not necessitate equal proficiency 
in processing another. Striking differences in SL across modalities and 
domains have been documented (e.g., Conway & Christiansen, 2005; 
Siegelman & Frost, 2015), as well as across statistical dependencies 
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within domains (e.g., Trotter, Monaghan, Beckers, & Christiansen, 
2020). Indeed, even within individuals, sensitivity to adjacent regular-
ities does not predict sensitivity to non-adjacent regularities in the same 
modality and domain (Siegelman & Frost, 2015), suggesting some de-
gree of structure-related specificity of statistical computations even 
among patterns that are closely related. Furthermore, the regularities 
most relevant to navigating the natural environment remain poorly 
understood, making it difficult to deduce what constitutes a “good” 
statistical learner—whether shared statistical computations are 
deployed across distinct cognitive domains, or if they vary according to 
context (see Bogaerts et al., 2022, for a review). 

Though often implicit, the theoretical assumption of SL as a single 
all-purpose mechanism has far-reaching repercussions for how the link 
between SL and learning in the real world is typically probed. While 
most SL studies present a single type of dependency such as adjacent or 
non-adjacent regularities, the natural language tasks that SL is compared 
against typically involve sensitivity to a much broader assortment of 
regularities. For example, many studies have focused on SL’s connection 
with broad language-related cognitive abilities such as literacy (Qi, 
Sanchez Araujo, Georgan, Gabrieli, & Arciuli, 2019) or syntax (Kidd & 
Arciuli, 2016), despite mounting evidence suggesting the structure- 
dependent specificity of SL computations. A critical first step to estab-
lishing more robust theoretical links between SL and learning “in the 
wild” may therefore lie in determining whether sensitivity to specific 
kinds of artificial statistics predicts sensitivity to analogous statistics in 
natural language. 

In the current paper, we tested whether sensitivity to syllable tri-
grams in the classic Saffran, Aslin, and Newport (1996) SL paradigm 
predicts sensitivity to high-frequency word trigrams in natural language. 
We chose combinations of three consecutive words as our natural lan-
guage targets because such multiword chunks have been proposed as 
key building blocks of language learning and use (Goldberg, 2006; 
Lieven, Pine, & Baldwin, 1997), in both first and second language 
acquisition (Arnon & Christiansen, 2017; Ellis, 2012). Multiword chunks 
consisting of two or more words can be derived from the statistical 
properties of language (e.g., McCauley & Christiansen, 2019a), enabling 
the discovery of phrases and phrase fragments (e.g., have to eat) and the 
ability to generalize across them (e.g., have to ___ ≥ have to go, have to 
leave, etc.; McCauley & Christiansen, 2019b). In this way, multiword 
sequences lay the foundation for many higher-level language skills 
including comprehension and production (Arnon & Snider, 2010; Ban-
nard & Matthews, 2008; McCauley et al., 2021). Multiword chunks thus 
point to a kind of statistical structure that is highly relevant to natural 
language, and which may draw on similar statistical computations as 
those leveraged in SL experiments. 

In the current experiment, we investigated the connection between 
artificial and natural language SL to determine whether different tests of 
in-lab SL vary in their ability to predict long-term distributional sensi-
tivity. We exposed participants to an artificial language, then tested 
learning using the classic 2AFC task and the statistically-induced 
chunking recall task (SICR; Isbilen, McCauley, Kidd, & Christiansen, 
2020), which gauges SL by comparing participants’ serial recall of syl-
lable strings that either adhere to or violate the statistics of the artificial 
language.1 We then employed a multiword chunking task (MWC; 

McCauley, Isbilen, & Christiansen, 2017) to measure individuals’ 
sensitivity to similar statistical patterns in natural language, accrued 
over many years of linguistic experience. In MWC, participants recall 12- 
word-long strings—a formidable challenge to typical working memory 
limitations (4 ± 1 items; Cowan, 2001). These strings are either 
composed of four high-frequency word trigrams (three-word combina-
tions from natural language), or the same words presented in a random 
order. MWC can be construed as a measure of natural language SL: 
participants should perform better on the statistically-derived items if 
they have successfully acquired these trigram word co-occurrences from 
natural language, in line with growing literature on the importance of 
such multiword units in language acquisition and processing (see 
Christiansen & Arnon, 2017, for a review).2 

We hypothesized that individual differences in sensitivity to artificial 
syllable trigrams would predict sensitivity to comparable trigram word 
structures from natural language. However, we expected that only SICR 
would correlate with natural language SL, given recent work demon-
strating its superior reliability in measuring SL relative to 2AFC in both 
adults (Isbilen et al., 2020) and children (Kidd et al., 2020).3 If 
confirmed, these results would provide key evidence to establishing the 
connection between SL and natural language, and lay the foundation for 
future studies clarifying the contribution of SL to broader cognitive 
functions. 

2. Method 

2.1. Participants 

As was preregistered, 70 participants were recruited from Prolific 
(prolific.co). This number was based on a power analysis with an esti-
mated effect size of d = 0.4, power = 0.9, and p = .05. Five participants 
were excluded due to technical errors/failure to complete the experi-
ment. The final analyses were conducted on the remaining 65 partici-
pants (39 females/22 males/4 nonbinary; M age = 20.81, range =
18–30, SD = 2.08). All were native speakers of American English, and 
were compensated with monetary payment.4 

2.2. Materials 

To measure artificial language SL,5 the same language from Isbilen 
et al. (2020) was used, which consisted of six syllable trigrams/words 
(tagalu, lomari, topoka, latibi, modipa, kibudu). In addition, six 2AFC foils 
were created by randomizing the syllables of the target words, avoiding 
transitional probabilities from the language (dikabi, lopadu, polubu, 
kigala, mamoti, tatori). For SICR, 36 items (18 target/18 random) were 
created. The target trials comprised two-word combinations from the 
language (e.g., tagalulomari), and the random trials presented the same 
syllables in a randomized order that avoided reusing transitional prob-
abilities from the language and 2AFC foils (e.g., rilobimatila). 

The 20 MWC items (10 target/10 random) were adapted from 
McCauley et al. (2017) and Jolsvai, McCauley, and Christiansen (2020). 

1 The use of serial recall to measure statistical sensitivity is motivated by the 
fact that performance on such memory tasks is fundamentally shaped by 
distributional learning. For example, classic studies show that participants 
exhibit enhanced recall of sequences composed of high-frequency English word 
transitions compared to sequences comprising low-frequency transitions (Miller 
& Selfridge, 1951). Similarly, consonant strings containing high-frequency 
letter transitions are recalled better than those containing low-frequency tran-
sitions (Baddeley et al., 1965), with comparable memory facilitation observed 
from high-frequency digit sequences (Jones & Macken, 2015), and from arti-
ficial grammar statistics (Conway, Bauernschmidt, Huang, & Pisoni, 2010). 

2 MWC, as with any other natural language measure, likely captures more 
than statistical sensitivity alone, including aspects of semantics (Jolsvai et al., 
2020) and syntax. However, given that previous SL studies have revealed null 
correlations with other measures of semantics and syntax, we hypothesized that 
the alignment of specific computational structures between the artificial and 
natural language measures might provide clearer correlations.  

3 While the fact that both MWC and SICR are recall tasks may play a role in 
any observed correlation, previous work on MWC demonstrates that it does not 
necessarily correlate with other recall tasks such as nonword repetition 
(McCauley et al., 2017). See Section 3 for further discussion. 

4 As per the Prolific study platform guidelines at the time of testing, partic-
ipants were compensated $9.60/h.  

5 An extended methods section detailing stimulus creation, presentation, and 
data processing prior to analysis is reported in the Supplemental Materials. 
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Target items consisted of high-frequency word trigrams, extracted from 
a combination of the Fisher (Cieri, Graff, Kimball, Miller, & Walker, 
2005) and American National corpora (Reppen, Ide, & Suderman, 
2005), comprising 39 million words of American English. Each trigram 
was non-idiomatic and possessed an average frequency of 0.73/million 
words. Four high-frequency word trigrams were concatenated to form 
each target item (e.g., have to eat good to know don’t like them is really 
nice). The same 12 words from each string were randomized to create the 
foils, avoiding high-frequency bigrams and trigrams (e.g., really them 
nice have eat know to don’t good like is to). 

All stimuli were synthesized using Google Text-to-Speech.6 Tran-
scriptions of the SICR and MWC items are reported in the Appendix.7 

2.3. Procedure 

To create the artificial language, 96 blocks, each containing a 
randomization of the six words mentioned above, were concatenated 
into an 11-min-long file. Participants were instructed to listen to the 
language carefully, and pay attention to the structures it may contain. 

Following exposure, 2AFC was administered. On each trial, partici-
pants heard a target word and foil, and selected the one they remem-
bered from training. Each target word was presented once with each foil, 
yielding 36 trials. 

For SICR, the 36 strings described above were presented for serial 
recall. On each trial, participants heard a six-syllable-long string, after 
which a text box appeared, prompting them to type their response. 
Participants were not informed of the items’ statistical structure: they 
were simply asked to remember each syllable to the best of their ability 
and type them in the correct order (Isbilen et al., 2020). To reduce 
spelling-related variability in their responses, participants were pre-
sented with a chart depicting the transcription of the syllables in the 
language before the task. 

For MWC, a similar method to SICR was adopted. Participants were 
instructed to listen to each string carefully and type the words in the 
correct order when a text box appeared. Participants were asked to use 
correct spelling and separate each word with a space. 

The study utilized Qualtrics survey software. Each participant was 
given the same task order and pseudo-randomized item order within 
each task, to reduce inter-individual variability due to order effects 
(James, Fraundorf, Lee, & Watson, 2018). Participation lasted 35 min. 

2.4. Results 

All analyses and hypotheses were preregistered (https://aspredicted. 
org/f4x8b.pdf). All data and code are available at: https://osf.io/sj9cf/. 

2.4.1. Artificial language statistical learning 
2AFC performance was significantly above chance (M = 0.68, SD =

0.13, Range = 0.41—1; t(64) = 11.24, p < .0001, d = 1.40). 
For SICR,8 two performance measures were calculated: the total 

number of syllables recalled (which measures the general impact of SL 
on basic recall abilities) and the number of full trigrams recalled. 
Trigram recall measures how well participants acquired the specific 
words from the input in the target trials (e.g., whether they recall tagalu 

and/or lomari in tagalulomari), which can be compared against baseline 
working memory for the items in the same positions in the random trials 
(syllables 1 + 2 + 3 and/or 4 + 5 + 6). Linear mixed-effects models were 
run on the SICR data using the “lmerTest” package (Kuznetsova, 
Brockhoff, & Christensen, 2017) in R, version 4.0.2 (R Core Team, 
2020), with item type (target/random) as a fixed effect, and subject and 
items as random effects. 

For the total number of syllables recalled, participants performed 
significantly better on the target over the random items (χ2(1) = 27.86, 
p < .0001; difference estimate = − 0.93, SE = 0.15, z = − 6.39, p <
.0001). For the total number of syllable trigrams recalled, participants 
performed significantly better on the target items (χ2(1) = 30.95, p <
.0001; difference estimate = − 0.43, SE = 0.06, z = − 6.90, p < .0001). 
The summary statistics for each SICR measure are reported in Table 1. 

2.4.2. Natural language statistical learning 
As with SICR, the total number of words correctly recalled was 

evaluated as a general measure of performance in MWC.9 The number of 
word trigrams recalled was used to assess participants’ sensitivity to 
specific multiword units. Linear mixed-effects models were constructed 
using item type (target/random) as a fixed effect, with subject and items 
as random effects. 

For the total number of words recalled, participants performed 
significantly better on the target over the random items (χ2(1) =52.77, p 
< .0001; difference estimate = − 5.13, SE = 0.33, z = − 15.63, p <
.0001). Participants also recalled significantly more trigrams in the 
target items (χ2(1) = 53.07, p < .0001; difference estimate = − 2.18, SE 
= 0.14, z = − 15.71, p < .0001). The summary statistics for each MWC 
measure are reported in Table 2. 

2.4.3. Correlations between tasks 
Because we were interested in the degree to which sensitivity to 

trigrams in SL is associated with sensitivity to similar structures in 
natural language,10 we conducted a series of correlational analyses using 
the SICR and MWC trigram difference scores11 (target—random), which 
control for baseline working memory (recall of the random items). As 
predicted, SICR and MWC trigram recall were significantly correlated: r 

Table 1 
SICR results.   

% Syllables Recalled % Syllable Trigrams Recalled 

Mean SD Range Mean SD Range 

Target 65 18 31—97 44 25 3—92 
Random 50 18 25—99 23 22 0—97  

6 Each syllable in the artificial language tasks and each word in MWC were 
synthesized individually, then combined with 75 ms pauses between each to 
create the input and test items. This was done in order to eliminate prosody and 
coarticulation.  

7 All stimuli are available at: https://osf.io/sj9cf/.  
8 Prior to analysis of the SICR data, an anchoring procedure was used to align 

syllable productions as closely as possible to the presented stimulus, to award 
maximal points for every syllable correctly recalled. Consistent syllable mis- 
transcriptions were also corrected. See the Supplemental Materials for further 
information. 

9 Like SICR, an anchoring procedure was used for MWC, to grant participants 
maximum credit for every correctly recalled word. Misspellings were also 
corrected. The full details of the data pre-processing are reported in the Sup-
plemental Materials.  
10 We solely analyzed the trigram scores, as these provide the most direct 

signature of sensitivity to the targeted statistical structure. By contrast, the total 
scores likely include sensitivity to other kinds of information, such as positional 
or bigram information.  
11 The difference scores are conservative estimates (Draheim, Mashburn, 

Martin, & Engle, 2019), as the maximum correlation of differences scores is 
limited by the error of both measures (target item recall and random item 
recall; Caruso, 2004), and difference scores amplify the amount of noise in the 
data (Zumbo, 1999). 
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(63) = 0.37, p = .002, whereas 2AFC12 and MWC were not: r(63) = 0.11, 
p = .36 (Fig. 1). However, the two SL tasks, 2AFC and SICR trigram 
recall, were significantly correlated: r(63) = 0.41, p = .0008. 

3. Discussion 

Does sensitivity to statistical dependencies in the laboratory predict 
natural language abilities? Here, we took a step toward forging this link 
by aligning the specific statistical regularities involved in tasks of both 
kinds, and thus, presumably, the computations involved in detecting 
them. We found that SL in the lab predicts distributional sensitivity in 
the real world, but that differences arise due to task. 

In our experiment, the classic 2AFC task did not correlate with nat-
ural language SL as measured by MWC. This may in part stem from the 
limited reliability of 2AFC both in our dataset and others (e.g., Arnon, 
2020; Isbilen et al., 2020; Kidd et al., 2020). And although SICR and 
MWC have similar task demands in that they are both memory recall 
tasks, 2AFC also involves the same memory component as SICR. Both 
2AFC and SICR require participants to keep two trisyllabic nonsense 
words in memory before making a response (a Yes/No key press for 
2AFC and recalling the 6 syllables for SICR). Furthermore, previous in-
dividual differences work with MWC (McCauley et al., 2017) demon-
strates that MWC does not correlate with nonword repetition (NWR) 
performance—the recall task that SICR was modeled on. It is thus not the 
case that recall tasks automatically correlate with one another by virtue 
of shared task demands. The NWR task in McCauley et al. (2017) 
manipulated the word-likeness of the stimuli, such that they were either 

similar or dissimilar to phoneme combinations in English. However, 
these phoneme combinations were not limited to trigram statistics, and 
thus tested broader aspects of statistical knowledge than MWC. Indeed, 
one might expect that the NWR and MWC tasks in McCauley et al. 
(2017) should show a stronger correlation than the one observed here: 
both tested sensitivity to natural language statistics at different levels of 
linguistic abstraction. By contrast, the artificial language in the current 
paper was designed to resemble English words as little as possible (see 
Isbilen et al., 2020, for further details). This further underscores the idea 
that the shared statistical computations across SICR and MWC—the 
processing of statistically-defined trigrams—most likely drove the cor-
relation between the two. Thus, the shared recall component alone 
cannot explain the connection between SICR and MWC—not least 
because the SICR-MWC correlations control for baseline working 
memory—though we acknowledge that it may play a partial role. 

Moreover, it is worth noting that while SICR lacks semantics, MWC 
inevitably draws upon stimuli with known meanings, and likely taps 
into aspects of syntactic knowledge. Despite this added complexity, and 
the fact that MWC involves processes beyond statistical computation 
alone, the correlation remains strong. Furthermore, semantics play a 
considerably smaller role in our task than the tests of reading and vo-
cabulary typically used for comparisons with SL, where meaning is key 
to performance. Indeed, previous studies have revealed mixed correla-
tions between SL and other natural language tasks involving semantic 
and syntactic processing, including reading and grammar (e.g., Gabay, 
Thiessen, & Holt, 2015; Haebig et al., 2017). If semantics and syntax 
were the only factors driving the effect in the SL-MWC correlation, then 
it stands to reason that SL should reliably correlate with these other 
natural language tasks that also rely on similar processes. Furthermore, 
while meaningfulness does play a role in the processing of multiword 
chunks (Jolsvai et al., 2020), there is a growing body of work showing 
that frequency has a strong effect on both the processing (e.g., Arnon & 
Snider, 2010; Bannard & Matthews, 2008) and production (e.g., Arnon 
& Clark, 2011; Arnon & Cohen-Priva, 2013) of multiword sequences (see 
Arnon & Christiansen, 2017, for a review). 

Sensitivity to syllable trigrams derived from the Saffran et al. (1996) 
SL study as measured by SICR significantly predicted sensitivity to high- 
frequency word trigrams derived from natural language (multiword 
units being a building block for numerous linguistic skills). Short-term 
statistical learning in the lab induced changes to memory comparable 
to those produced by long-term learning in the real world, whereby 
participants display superior recall of statistical sequences that occur 
frequently in the environment (Baddeley, Conrad, & Hull, 1965; Jones & 
Macken, 2015; Miller & Selfridge, 1951). This suggests that SL taps into 
key aspects of natural language acquisition, with proficiency in assimi-
lating novel statistics predicting proficiency in acquiring comparable 
structures from speech and written text. It also suggests that a general 
ability to discover adjacent statistical patterns may be common across 
different levels of linguistic abstraction, spanning individual words to 
multiword patterns. The inconsistent pattern of correlations between SL 
and other aspects of cognition may thus in part arise from an incon-
gruence in the targeted statistical structures, in line with prior evidence 
pointing to the specificity of SL computations (e.g., Siegelman & Frost, 
2015). 

Usage-based theories have long advocated the centrality of multi-
word chunks to language, both in childhood and adulthood (e.g., 
Goldberg, 2006; Lieven, 2016). By detecting and storing statistically- 
contiguous multiword patterns in speech, individuals can abstract over 
encountered sequences to form novel generalizations, setting the stage 
for grammatical development and linguistic productivity—abilities that 
many SL studies aim to capture individual differences in. Usage of 
multiword chunks is a key signature of linguistic fluency, with second 
language learners producing significantly fewer multiword units than 
first language learners in speech and writing (Paquot & Granger, 2012). 
High-frequency multiword units are comprehended and produced faster 
than low-frequency units (Bannard & Matthews, 2008), similar to SL 

Table 2 
Multiword chunking results.   

% words recalled % word trigrams recalled 

Mean SD Range Mean SD Range 

Target 76 14 45—99 65 18 30—98 
Random 34 17 15—94 11 18 0—85  

Fig. 1. Correlations between the artificial statistical learning measures and 
natural language statistical learning. SICR significantly correlates with sensi-
tivity to natural language trigrams, whereas 2AFC does not. 

12 We computed the reliability/internal consistency of each measure (Cron-
bach’s alpha; α). While SICR demonstrated excellent reliability (α = 0.95 for 
both the total and trigram scores), and MWC demonstrated acceptable to 
excellent reliability (total score: α = 0.75; trigram score = α = 0.90), 2AFC 
demonstrated questionable reliability (α = 0.68; see Supplemental Material for 
full details). The low reliability of 2AFC may have been one factor that influ-
enced the uneven pattern of correlations. 
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reaction time data showing that participants are faster to respond to 
acquired statistical patterns (e.g., Hunt & Aslin, 2001). High frequency 
multiword chunks from natural speech are more robust to production 
errors (Arnon & Clark, 2011), similar to how production errors in SL 
tasks tend to occur at item boundaries where statistical probabilities are 
lower, rather than within statistically-coherent units (Krishnan, Carey, 
Dick, & Pearce, 2021). Here we provide behavioral evidence that the 
acquisition of multiword chunks may be underpinned by basic statistical 
learning mechanisms, supplementing recent computational modeling 
illustrating how distributional learning and memory processes work 
together to discover, produce, and comprehend language across 29 Old 
World languages (McCauley & Christiansen, 2019a). 

Understanding the relationship between individual differences in SL 
and language is a longstanding goal of cognitive science. Here, we 
demonstrate that participants’ proficiency in acquiring trigram structure 
in an artificial language significantly correlates with their sensitivity to 

high-frequency word trigrams in natural language. Designing studies 
that better tap into specific statistical knowledge and computations may 
thus provide an important steppingstone to interpreting the connection 
between SL and cognition at large. 
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Appendix A. SICR items  

Target Corresponding foil 

kibudulatibi tidubibulaki 
kibudutopoka bukapodukito 
latibilomari rilobimatila 
latibitagalu tabigatilula 
lomarikibudu lobukimaduri 
lomarimodipa moripadimalo 
modipakibudu dibumokidupa 
modipatopoka popamokadito 
tagalulomari tarimalugalo 
tagalumodipa gaditamolupa 
topokalatibi bikatolapoti 
topokatagalu kalutotapoga 
lomaritopoka tomakaloripo 
modipatagalu taludigamopa 
kibudulomari dumabulokiri 
modipalatibi patilamobidi 
topokakibudu kipobutokadu 
tagalulatibi tatigabilalu  

Appendix B. MWC items  

Target Corresponding foil 

had a dream kind of silly something to say on a diet diet a silly say dream kind to of a something on had 
have a secret time to stop all the hype in the mailbox secret the have all to mailbox time the a in hype stop 
to the edge have some fun don’t know me not really familiar familiar the to fun have know edge not don’t some me really 
don’t like them good to know is really nice have to eat really them nice have eat know to don’t good like is to 
at the moment what you said one of these I guess not of I one what guess said moment at not the you these 
take the quiz sample of data really don’t matter this is typical is take data really the this don’t of sample quiz matter typical 
such a burden that’s the agreement into the unknown nothing to wear unknown wear into the that’s to such the nothing agreement burden a 
a personal nature get a certificate across the highway take a stroll highway a take personal the across a nature a get stroll certificate 
off the path see the picture kind of disturbing a bad attitude attitude a off disturbing the see bad of picture kind path the 
its a lie when I die be a burden in a dispute when burden lie a be I a its die a dispute in  
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