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Abstract

Statistical learning is a key concept in our understanding of language acquisition. Ample work has
highlighted its role in numerous linguistic functions—yet statistical learning is not a unitary construct,
and its consistency across different language properties remains unclear. In a meta-analysis of auditory-
linguistic statistical learning research spanning the last 25 years, we evaluated how learning varies
across different language properties in infants, children, and adults and surveyed the methodological
trends in the literature. We found robust learning across stimuli (syllables, words, etc.) in infants, and
across stimuli and structures (adjacent dependencies, non-adjacent dependencies, etc.) in adults, with
larger effect sizes when multiple cues were present. However, the analysis also showed significant
publication bias and revealed a tendency toward using a narrow range of simplified language proper-
ties, including in the strength of the transitional probabilities used during training. Bayes factor anal-
yses revealed prevalent data insensitivity of moderators commonly hypothesized to impact learning,
such as the amount of exposure and transitional probability strength, which contradict core theoreti-
cal assumptions in the field. Methodological factors, such as the tasks used at test, also significantly
impacted effect sizes in adults and children, suggesting that choice of task may critically constrain
current theories of how statistical learning operates. Collectively, our results suggest that auditory-
linguistic statistical learning has the kind of robustness needed to play a foundational role in language
acquisition, but that more research is warranted to reveal its full potential.

Keywords: Statistical learning; Auditory-linguistic statistical learning; Cross-situational learning;
Language; Language acquisition; Meta-analysis

Correspondence should be sent to Erin S. Isbilen, Haskins Laboratories, 300 George Street, #900, New Haven,
CT 06511, USA. E-mail: erin.isbilen@yale.edu



2 of 35 E. S. Isbilen, M. H. Christiansen / Cognitive Science 46 (2022)

1. Introduction

Statistical learning, the ability to track recurring distributional patterns in the environment,
is an integral component of cognition in humans and other species. It has been implicated
as a key theoretical construct in numerous cognitive abilities, spanning the auditory (e.g.,
Saffran, Johnson, Aslin, & Newport, 1999), visual (e.g., Fiser & Aslin, 2001; 2005), and tac-
tile modalities (e.g., Conway & Christiansen, 2005), in both human and non-human animals
(Hauser, Newport, & Aslin, 2001; Newport, Hauser, Spaepen, & Aslin, 2004). This versatile
ability is cited as a cornerstone of many sophisticated behaviors, including the development
of social inference in young children (e.g., Kushnir, Xu, & Wellman, 2010), the classification
of novel objects into distinct categories (e.g., Folstein, Gauthier, & Palmeri, 2010), and even
the learning of action sequences (Baldwin, Andersson, Saffran, & Meyer, 2008) and emo-
tional expressions (Mermier, Quadrelli, Turati, & Bulf, 2022). Of particular interest, the last
25 years have seen a surge of studies exploring the role of statistical learning in one of our
most unique and complex abilities as a species: human language.

Perhaps the best-known example of statistical learning in the linguistic domain comes from
the formative study by Saffran, Aslin, and Newport (1996). This study demonstrated that
8-month-old infants could track the transitional probabilities between one syllable and the
next after mere minutes of exposure to an artificial language (e.g., for the sequence AB, the
probability of B given A). Sensitivity to such statistical information is found to be useful
for segmenting continuous speech, even when controlling for the frequency of syllable co-
occurrences (i.e., how often they appear in the language; Aslin, Saffran, & Newport, 1998).
This kind of statistical learning may thus help individuals break down linguistic input into
words and phrases using simple, domain-general cognitive mechanisms (Saffran, 2003). This
groundbreaking finding sparked an explosion of studies devoted to testing the potential of
statistical learning in explaining behavior across different domains, age groups, and structures
(for a review, see Frost, Armstrong, & Christiansen, 2019). Since then, it has been shown that
infants, children, and adults can all leverage statistical regularities to discriminate words that
they have been exposed to in fluent speech from foil items that were not present in the input,
and that this ability extends to non-adjacent regularities (items that do not occur directly next
to one another in a sequence; R. L. Gómez, 2002; Newport & Aslin, 2004). This ability can
even predict individual differences in language proficiency across development (e.g., R. L. A.
Frost et al., 2020; Gabay, Thiessen, & Holt, 2015; Isbilen, McCauley, & Christiansen, 2022;
Mirman, Magnuson, Estes, & Dixon, 2008; see Mirman, Graf Estes, & Magnuson, 2010,
for computational modeling of this effect), suggesting that these simple, laboratory-based
experiments may capture fundamental aspects of language learning in the real world.

Statistical learning has been implicated in a stunning breadth of linguistic abilities, from the
acquisition of phonological regularities to the learning of grammatical patterns. However, the
question of how multipurpose versus stimulus-specific such learning is remains a central topic
of theoretical debate (for a review, see Frost, Armstrong, Siegelman, & Christiansen, 2015).
Indeed, some researchers have questioned whether statistical learning may be an overly broad
term that links disparate learning phenomena (Thiessen, 2017): given the considerable differ-
ences among statistical learning tasks, do they in fact all depend on shared cognitive processes
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or different mechanisms? In this paper, we set out to test how the efficacy of statistical learn-
ing might vary across different language properties by performing a meta-analysis on a large
sample of the published research on auditory-linguistic statistical learning. We focus on this
particular form of learning as it is one of the most widely studied subareas and is arguably
the most relevant for understanding the contribution of statistical learning to language acqui-
sition in hearing populations.1 As statistical learning is hailed as a cornerstone of language, it
is, therefore, imperative to understand its strengths and limitations given the current state of
the field and whether key theoretical assumptions uphold across the literature.

To motivate our analysis, we start by discussing the nature of statistical learning. We review
the auditory-linguistic statistical learning literature to pinpoint current theoretical questions
and assumptions about how this phenomenon operates. We then explain how meta-analyses
enable researchers to empirically test these questions and assumptions by pooling data from
numerous samples to deduce which effects are most robust in the literature. In the present
case, we also use the meta-analysis to identify methodological trends in statistical learning
research. Identifying these trends can elucidate what areas of the literature are well explored,
what areas require additional inquiry, and how current methods might constrain our under-
standing of statistical learning behavior. Finally, we conclude the introduction by presenting
our moderators of interest, all of which are commonly assumed to significantly influence sta-
tistical learning, and language learning at large: the properties of the input languages, how
participants were trained, how they were tested, and how these features influence perfor-
mance across development (in infants, children, and adults). Given the theorized centrality of
statistical learning to numerous aspects of language acquisition, the analysis of these features
enables us to gauge the degree to which it is truly general purpose, and how it might vary
across different linguistic inputs.

1.1. The multifaceted nature of statistical learning

Statistical learning has been documented across a broad range of domains and modali-
ties, lending weight to the idea that such learning may serve as a mainspring of cognition in
humans and other species. Yet despite its generality, this line of research also poses several
theoretical challenges: though multipurpose, statistical learning is not uniform. For instance,
auditory and visual statistical learning seem to follow different developmental trajectories,
with the learning of auditory regularities outpacing the learning of visual regularities (Raviv
& Arnon, 2018). Moreover, the question of whether statistical learning operates uniformly
across the different surface properties of stimuli even within a single domain and modal-
ity is vigorously debated (see R. Frost et al., 2019, for a review). For example, individuals’
capacity to learn adjacent auditory-linguistic regularities does not reliably predict their ability
to learn non-adjacent auditory-linguistic regularities, even though both structures share the
same modality and domain (Siegelman & Frost, 2015). Such findings have led researchers
to question what makes a “good” statistical learner when the learning of one kind of struc-
ture does not necessarily predict sensitivity to other similar structures (Bogaerts, Siegelman,
Christiansen, & Frost, 2022). As the staggering diversity of the world’s languages suggests,
natural languages are richly varied, sporting a panoply of phonological, grammatical, and
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morphological structures (Evans & Levinson, 2009). To date, research on statistical learning
has greatly enriched our understanding of how individuals overcome what is commonly cited
as a key initial hurdle for novice learners: finding the words in continuous speech. However,
the segmentation of individual words is far from the only aspect of language acquisition—
learning in the real world is considerably more complex. In order for statistical learning to
cash in on its promise as a central component of language acquisition, its utility should gen-
eralize at least to some degree to other structures and contexts, beyond the segmentation of
individual words.

Some headway has been made into these issues, both within the statistical learning liter-
ature and under the banners of artificial grammar learning or implicit learning (for reviews
on the historical separations in the literature, see Christiansen, 2019; Perruchet & Pacton,
2006). Scores of studies have now tested the acquisition of artificial grammars involving
multiple types of regularities (e.g., Getz, Ding, Newport, & Poeppel, 2018; R. L. Gómez &
Gerken, 1999; Saffran, 2001), illustrating that statistical learning can capture the acquisition
of linguistic structures beyond individual words. Others have successfully extended the statis-
tical learning framework to model facets of multimodal integration and semantic acquisition,
demonstrating that individuals can map newly acquired auditory words onto visual refer-
ents based on their statistical co-occurrence with one another during training (e.g., Benitez,
Yurovsky, & Smith, 2016; Graf Estes, 2012). The boundaries of this ability have been fur-
ther probed by experiments investigating how learners aggregate cross-situational statistics
in the auditory and visual modalities. Cross-situational learning paradigms simulate language
learning in the real world by presenting participants with words or phrases that can potentially
map onto multiple competing objects or scenes in the environment (e.g., an infant hears the
word “ball,” which can map onto numerous toys in their field of vision). Over time, learners
can capitalize on these co-occurrences to acquire words, phrases, and their meanings (e.g.,
Monaghan, Schoetensack, & Rebuschat, 2019; Smith & Yu, 2008; Yurovsky, Fricker, Yu, &
Smith, 2014; Yurovsky, Yu, & Smith, 2013), just as they do in natural settings (e.g., the infant
consistently hears the word “ball” in relation to small round objects and eventually surmises
that such objects are the referents for this word).

However, while evidence of statistical learning has been cataloged across several different
types of language properties, considerable differences within auditory-linguistic statistical
learning have also been observed. As mentioned above, individuals’ ability to acquire
adjacent linguistic dependencies does not significantly correlate with their ability to acquire
non-adjacent linguistic dependencies (e.g., Misyak & Christiansen, 2012; Siegelman & Frost,
2015). Prior language experience might also affect learning differentially (e.g., Trecca et al.,
2019), with patterns that deviate from one’s native language being considerably harder to
learn. Furthermore, some studies find that adjacent word dependencies appear to be easier to
acquire than non-adjacent word dependencies, with the learning of non-local regularities only
occurring under particular conditions (e.g., only when the intervening units display sufficient
variability; R. L. Gómez, 2002; R. L. Gómez & Maye, 2005). However, others suggest that
when probabilities are controlled, both types of regularities can be learned simultaneously
and at the same rate (Vuong, Meyer, & Christiansen, 2016). This was revealed by online
serial reaction time (RT) data, whereas offline grammaticality judgment data suggested that
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adjacent dependencies were better learned. These disparities give rise to the question of
whether statistical learning might work equally well across all linguistic features, or if it
is better equipped to support certain kinds of learning over others. It also suggests that the
results of statistical learning studies may be critically influenced by the tasks used to measure
it, in some cases leading to weak correlations between tasks that are designed to tap into
the same kinds of auditory regularity (e.g., Erickson, Kaschak, Thiessen, & Berry, 2016;
Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018).

Researchers have also explored whether statistical learning might be facilitated by addi-
tional cues in the environment, which appear to be an important feature of language acquisi-
tion in the real world. Natural languages are rife with cues beyond the statistical probabilities
between linguistic elements, and the interactive nature of language introduces a host of factors
that may facilitate acquisition. The presence of multiple cues can enrich the learning environ-
ment by drawing learners’ attention to salient features of the input, which may help them gain
a foothold in the language system (e.g., Bates & MacWhinney, 1989; Gleitman & Wanner,
1982; Morgan, 1996). For instance, social cues such as eye gaze can help direct attention
to the correct referent for novel labels in cross-situational learning tasks, enabling individ-
uals to identify the target object among a multitude of competitors (MacDonald, Yurovsky,
& Frank, 2017). This closely resembles what has been observed in infant–caretaker interac-
tions in natural settings, with infants attending to caretaker gaze and other referential actions
during labeling events (e.g., Baldwin, 1993; Yu & Smith, 2012). Prosodic cues, such as the
exaggerated pitch contours frequently present in child-directed speech, can also help learners
determine the boundaries of words in statistical segmentation tasks (e.g., Endress & Mehler,
2009; Jusczyk, Houston, & Newsome, 1999; Morgan, Meier, & Newport, 1987; Mueller,
Bahlmann, & Friederici, 2010; Thiessen & Saffran, 2003). Additionally, others have shown
that more complex, probabilistic non-adjacent patterns can only be learned when additional
visual or auditory cues are provided (Van den Bos, Christiansen, & Misyak, 2012). These
studies provide important insights into how statistical learning interfaces with aspects of nat-
ural language acquisition, suggesting that additional cues can be integrated with the statistics
of the language to improve learning outcomes.

Collectively, the last quarter of a century of statistical learning research suggests that
acquired sensitivity to distributional patterns may play a role in many aspects of language
learning, from the acquisition of individual words from fluent speech to the generalization
of grammatical regularities. It can support the formation of word-referent mappings and can
work in tandem with additional environmental cues to bolster learning. While numerous stud-
ies showcase the ubiquity of statistical learning across many aspects of language acquisition,
what remains unclear is its relative strength across different linguistic features. As statistical
learning is cited as a central feature of language acquisition, it is crucial to assess what theo-
retical assumptions hold across the literature and isolate which ones fail to reach significance,
in order to hone future theories and guide the next decades of research.

1.2. A meta-analytic approach to statistical learning

In this paper, we take stock of a large sample of studies published on auditory-linguistic
statistical learning since the seminal Saffran et al. (1996) study. We evaluate the contribution
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of this form of statistical learning to different aspects of language acquisition by conducting a
meta-analysis of a large subset of papers published over the last 25 years. Meta-analyses offer
a powerful tool for analyzing a phenomenon across labs, methodologies, and populations,
allowing researchers to isolate which effects are most reliable in the literature. They are
typically conducted by analyzing the effect sizes of published studies, enabling scientists to
explore the impact of various moderators on the strength of learning. Here, we additionally
use our meta-analysis to reveal the most common methodological practices in the literature.
While a few prior meta-analyses on statistical learning have been conducted (infant statis-
tical learning: Black & Bergman, 2017; artificial grammar learning across species: Trotter,
Monaghan, Beckers, & Christiansen, 2020; statistical learning in specific language impair-
ment: Lammertink, Boersma, Wijnen, & Rispens, 2017), they have typically worked with
smaller sample sizes and adopted different foci than the present analysis. To our knowledge,
the meta-analysis presented here is the largest analysis of auditory-linguistic statistical
learning to date.

Synthesizing the results from 175 papers and 636 studies on auditory-linguistic statistical
learning, we ask: How is statistical learning impacted by different language and training prop-
erties? What are the kinds of methods that have been used to test statistical learning and are
some tasks more adept at capturing this behavior? Do different age groups vary in their ability
to learn certain language properties and are they differentially impacted by methodological
factors? And importantly, where is further work needed?

Based on the methods laid out in Trotter et al. (2020), which outlines a comprehensive
guide for conducting large-scale meta-analyses related to artificial grammar learning, we
examined the influence of an extensive collection of moderators on statistical learning effect
sizes in infants, children, and adults. We take an in-depth look at several key factors that
are hypothesized to impact learning: the language properties, the training methods, and the
testing methods.

The language properties describe the nature of the input that participants were tasked with
learning. These moderators include stimulus type (e.g., whether the input presents syllable-
level dependencies, word-level dependencies, phoneme dependencies, etc.), structure type
(e.g., adjacent dependencies, non-adjacent dependencies, or multiple-regularity languages2

that involve a combination of adjacent, non-adjacent, or other grammatical structures), and the
strength of the transitional probabilities utilized in the language. These moderators allow us to
gauge how statistical learning fluctuates across inputs, to determine the degree to which it is
general purpose versus stimulus specific. It also allows us to survey what language properties
are well represented in the literature, and what warrants further examination.

The training methods describe how participants were trained during the exposure phase
of each experiment. We evaluate whether the number of training items shapes the strength
of statistical learning, and, specifically, whether increasing the number of items significantly
decrements effect sizes. In addition, we gauge how the number of exposures to each train-
ing item impacts effect size. These moderators address how task load and exposure influence
learning in the different age groups. Indeed, studies have shown that the amount of exposure,
the number of words in a language, and the length of those items all significantly impact
statistical learning, with fewer exposures, more items, and longer items hindering learning
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(Frank, Goldwater, Griffiths, & Tenenbaum, 2010). These analyses on training methods dove-
tail with questions raised in the language acquisition literature at large, such as how the quan-
tity and variability of input influence developmental outcomes (e.g., Hart & Risley, 2003). In
addition, we analyzed how the presence of multiple cues (prosodic cues, speaker cues, visual
cues, etc.) impacts statistical learning, building upon a long lineage of studies demonstrat-
ing the importance of multiple cue integration to language. We also assessed whether prior
knowledge (e.g., whether the trained languages are constructed to be congruent or incongru-
ent with the phonotactics of the learner’s native language; Finn & Hudson Kam, 2008; 2015)
determines the strength of statistical learning, for studies that manipulated these dimensions.

Finally, the testing methods describe the way that participants’ knowledge of the trained
languages is tested. In recent years, it has come to light that different tests of statistical learn-
ing vary in their reliability and sensitivity to individual differences in learning (e.g., Arnon,
2020; Siegelman et al., 2017; Siegelman, Bogaerts, Christiansen, & Frost, 2017), which sug-
gests that the choice of task that experimenters employ may at least in part affect the strength
of the observed results. In addition, the nature of the tasks used and the computations they
rely upon have recently been called into question. Reflection-based measures, such as the clas-
sic two-alternative forced-choice (2AFC) task, require participants to deliberate over learned
material, thereby potentially adding noise to such measures due to individual variation in
people’s ability to introspect about what they have learned (Christiansen, 2019). These tasks
are argued to recruit cognitive processes that are not directly relevant for learning and may
inevitably capture individual differences in reflective and decision-making abilities in addi-
tion to the studied phenomenon.

This shortcoming has led to the development of what Christiansen (2019) and others now
refer to as processing-based measures—tasks that more directly tap into the mechanisms
involved in the processing of statistical regularities. These measures include variants on RT
tasks (e.g., Batterink, 2017; Batterink & Paller, 2017; Franco, Eberlen, Destrebecqz, Cleere-
mans, & Bertels, 2015; D. M. Gómez, Bion, & Mehler, 2011; Karuza, Farmer, Fine, Smith,
& Jaeger, 2014; Poulin-Charronnat, Perruchet, Tillmann, & Peereman, 2017; Qi, Sanchez,
Georgan, Gabrieli, & Arciuli, 2019; Siegelman, Bogaerts, Kronenfeld, & Frost, 2018) as well
as those that utilize serial recall to test learning (e.g., Conway, Bauernschmidt, Huang, &
Pisoni, 2010; Isbilen, Frost, Monaghan, & Christiansen, 2022; Isbilen, McCauley, Kidd, &
Christiansen, 2020; Kidd et al., 2020). We, therefore, evaluated whether test type (process-
ing vs. reflection based) significantly influenced effect sizes in adults and children, where
such tasks are commonly used. Taking an even finer-grained approach, we also assessed the
influence of specific tasks (AFC, grammaticality/familiarity ratings, RT tasks, recall, etc.).
These analyses of testing methods may inform the theoretical considerations investigated in
the meta-analysis by highlighting better methods of testing and identifying where choice of
task might influence the theoretical deductions made about statistical learning.

In addition, we evaluated several other methodological factors, examining whether the
number of test trials affected test outcomes, to determine whether longer tests resulted in
poorer performance (e.g., due to fatigue effects or motivational factors). Lastly, as inter-
est in individual differences has been burgeoning in the study of statistical learning (for a
review, see Siegelman et al., 2017), we assessed whether studies that self-report as taking an
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individual differences approach (as opposed to a group-level approach) generated stronger
results. We also investigated how all of these factors influence cross-situational learning,
where participants are tasked with matching newly acquired words to referents across dif-
ferent visual contexts.

By evaluating the impact of these mediating factors—language properties, training meth-
ods, and testing methods—we can not only get insight into the current state of the art in the
field but also illuminate where future experimentation might be needed so that the full theo-
retical impact of the role of statistical learning in language acquisition can be better appraised.

2. Method

2.1. Literature search

For this meta-analysis, we were interested in pinpointing behavioral studies on auditory-
linguistic statistical learning. Studies were included in the analysis if they trained participants
on novel auditory-linguistic materials (either artificial or non-native speech) in an exposure
phase, where statistical regularities served as the main cue to learning. Following the guide-
lines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA;
Moher, Liberati, & Altman, 2009), the literature search was conducted using the SCOPUS
database (Scopus, 2019), on journal articles published in English from January 1996 when
Saffran et al. (1996) was published through December 2020. Both the search criteria and
analyses were pre-registered (https://aspredicted.org/rr49u.pdf).

To target studies on auditory-linguistic statistical learning, the database was searched for
the keywords3 “‘language’ AND ‘statistical’ OR ‘distributional’ AND ‘learning,’” where all
terms were required in an article’s title, keywords, and/or abstract. This returned 3,633 total
articles, which were further refined by filtering out studies that did not meet certain criteria
through the filters in the Scopus search portal. To pinpoint behavioral studies, further exclu-
sions were done on the basis of subject area (the list for each subject area was gone through
by hand to ensure that no relevant articles would be lost). All subject areas other than the
following were excluded: arts and humanities, psychology, social sciences, multidisciplinary,
and computer science (which contained several relevant records, but mostly modeling papers
which were then manually excluded). This resulted in 1,925 articles that were then individ-
ually screened (1,924 after one duplicate paper was removed). Of these, 622 were excluded
because they were computer science papers, computational simulations, or corpus analyses
with no human behavioral data. Furthermore, 927 other articles were excluded, as they con-
tained the relevant search terms but were not statistical learning studies that trained partic-
ipants on novel linguistic materials (e.g., computer science papers, natural language studies
that situate their findings within the statistical learning framework, or papers that analyze the
statistical properties of natural languages).

Studies that did not include data on auditory-linguistic statistical learning (e.g., visual,
tactile, or auditory non-linguistic statistical learning) were excluded (85 articles in total).
Furthermore, only studies that report human behavioral data were analyzed: papers on non-
human animals (eight articles) that included no human data were excluded. Similarly, six

https://aspredicted.org/rr49u.pdf
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neuroimaging papers that contained no behavioral data were excluded (those that did report
behavioral data were included in the analysis), as was one article that tested atypical pop-
ulations but reported no control condition with neuro-typical participants. Despite the use
of filters through the Scopus database, additional 51 review papers and meta-analyses were
manually excluded from the search. Finally, six articles were not accessible, either through
the database or a Google Scholar search.

While our search resulted in a large number of articles, we also acknowledge that some
statistical learning studies are likely missing from our analysis. To ensure that our literature
search is easily replicable by other researchers, we elected to not manually include studies
that fell outside of the search parameters. Nonetheless, as the final sample includes a large
number of studies that span many years, we are confident that the current paper still provides
a thorough overview of the auditory-linguistic statistical learning literature.

2.2. Study selection

Data extraction was attempted on the remaining 215 articles. However, during this process,
it was discovered that a subset of papers was missing data critical to the meta-analysis, such
as the raw means, standard deviations, standard errors, and/or the number of participants per
condition. The authors of those papers were contacted for the missing data, but did not always
respond or no longer possessed the original data. This led to the exclusion of 32 additional
articles. One further article was excluded because of a small sample size (N = 4), which
made the calculation of Cohen’s d (the dependent variable of interest) impossible. Finally,
10 additional articles were coded then ultimately removed from the final analysis because
they introduced significant collinearities to the data (i.e., two or more of the moderators were
the only instances of a particular structure and stimulus type in the entire dataset), which had
been resulting in several false positive findings.

As was pre-registered, for studies that reported the results from atypical populations, only
the data from typically developing controls were included. For studies that assessed test–retest
reliability, only the data from the first session was tabulated. For the papers that contained
control conditions where participants were exposed to a speech stream lacking statistical cues,
these control studies were excluded, as there was no structure to be learned. For studies that
present multiple languages or used multiple tests to assess learning of the same language (e.g.,
an online test and an offline test; Batterink & Paller, 2017), these were treated as separate
studies, but the analyses controlled for multiple comparisons. In total, the search yielded 175
articles, which provided data from 636 studies, consisting of 14,986 unique participants (not
including multiple comparisons). The search criteria and process are depicted in the PRISMA
flowchart in Fig. 1 (adapted from Moher et al., 2009). The full list of papers included in the
meta-analysis can be found on OSF (https://osf.io/7vkdt/).

The papers included in this meta-analysis cover a broad range of tasks, including tra-
ditional statistical learning studies that test sensitivity to transitional probabilities or other
structures/regularities, to those that test participants’ aptitude in mapping statistically learned
words to referents (e.g., Hay, Pelucchi, Estes, & Saffran, 2011). The goal of the meta-analysis
was to assess the contribution of statistical learning to language acquisition at large, and the

https://osf.io/7vkdt/
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Fig. 1. PRISMA flowchart of the literature search criteria.

inclusion of diverse tasks may provide a more ecologically valid estimate of how statistical
learning operates in the natural environment.

2.3. Data extraction and effect-size calculation

The data presented in this meta-analysis were manually coded from the 175 papers in the
final literature search. For studies that reported their results graphically, the relevant data were
extracted using the program Digitizeit (https://www.digitizeit.de). For studies with missing
data, the corresponding author of each paper was contacted, and the missing values requested.
In cases where studies reported the standard error (SE) rather than the standard deviation (SD),
the standard deviation was derived by multiplying the standard error by the square root of the
number of participants (N) in the study (SD = SE × �N).

Cohen’s d effect sizes were calculated for each study’s statistical learning test data using the
metafor package (Viechtbauer, 2010) in R version 3.6.1 (d = Mean1 – Mean2/SDpooled, where
SDpooled =

√
SD12 + SD22/2). Based on the methods of Trotter et al. (2020), the effect sizes

of alternative forced-choice and grammaticality judgment tasks were computed based on the
mean’s difference from chance4 (d = Mean – Chance/SDpooled). For studies that reported RTs,
participant RTs were recorded from the final block of the study (where the strongest learning
effects are typically observed; e.g., Batterink, 2017), and a difference score was calculated

https://www.digitizeit.de
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by subtracting the mean of the target items from the foil items, which was then divided by
the pooled SD. The same was done for studies that compare RTs to target syllables within
different positions of words: RTs to the third/final syllable in the sequence (e.g., the stimulus
that is reported to be most predictable if statistical learning has occurred) was subtracted
from the averaged RTs to the first and second syllables (which learners are slower to predict;
Batterink, 2017; Batterink & Paller, 2017, 2019). A similar method was used for studies
that reported looking times (e.g., Saffran et al., 1996), where the looking duration of the foil
items in the final test block was subtracted from the looking duration of the target items in
the final test block, with a positive number indicating a preference for target items (e.g., a
familiarity effect in infant studies). In cases where the authors report a significant novelty
preference (e.g., Hay et al., 2011), the absolute values of these data were used,5 as was done
in the meta-analysis by Trotter et al. (2020). As both familiarity and novelty preferences are
indicative of infant learning (Hunter & Ames, 1988), this ensured that the current paper did
not underreport the extent of learning in this population. Composite scores were computed
for studies that tested participants using multiple foil types in the same testing session (e.g.,
Endress & Mehler, 2009) by calculating the arithmetic mean and pooled standard deviations
of the different tests.

It is worth noting that the effect sizes calculated here may differ from those reported in some
of the original papers. These divergences do not reflect errors in reporting but instead arise due
to differences in how the effect sizes were calculated. For instance, in Lammertink, Boersma,
Wijnen, and Rispens (2020), the effect sizes reported in the original text are based on the
outcomes of generalized mixed effects models which controlled for a variety of variables in
their sample (such as age, experiment version, and condition). By contrast, the current paper
calculated effect sizes based on the raw means and standard deviations, with our moderators
of interest used as predictors in our meta-analytic models.

The moderators recorded for each study provided data about the population of the sample
(i.e., age), characteristics of the training stimuli, and characteristics of testing. This included
information about the properties of the trained language, including stimulus type (whether the
input manipulated phoneme, syllable, or word-level dependencies), structure type (whether
participants were trained on adjacent dependencies, non-adjacent dependencies, or multiple-
regularity languages), and the strength of the transitional probabilities (whether they occurred
with 100% regularity or otherwise). In addition, we recorded the number of exposures to each
training item that participants received, the manner in which they were tested (e.g., using
processing-based vs. reflection-based tasks), the number of test trials (for studies that report
this information), the presence of multiple cues, and whether the experiment utilizes stimuli
that leverages (or conflicts with) participants’ prior knowledge. Lastly, we logged whether the
study utilized a group-level approach or self-identified as employing an individual differences
approach.

3. Results

All of the analyses presented in this section were pre-registered6 through aspredicted.org
(https://aspredicted.org/rr49u.pdf). In addition, all data and code are available through the
Open Science Framework (https://osf.io/7vkdt/).

https://aspredicted.org/rr49u.pdf
https://osf.io/7vkdt/
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Table 1
Participant characteristics

Age Group N Studies N Papers N Participants Mean Age (Years) Age Range

Adults 429 105 11,733 25.14 18.52–78.60
Children 60 24 2,487 7.83 3.30–14.30
Infants 147 46 3,248 12.33 (months) 5.1–31.2 (months)
Total 636 175 17,468

3.1. Descriptive statistics

The first analyses provide a comprehensive overview of the entire dataset. They also lend
insights into some of the trends that have emerged in the auditory-linguistic statistical learning
literature over the last 25 years. These summaries are descriptive in nature and report on the
characteristics of the participants, training materials/methods, and tests.

3.1.1. Participant characteristics
The sample contains data from a total of 17,468 participants (with multiple comparisons).

This covers a wide array of ages, ranging from 5 months to 78.60 years of age. Participants
fall into three broad categories: infants, children, and adults. One paper (Hsu, Tomblin, &
Christiansen, 2014) identified their participants (14-year-olds) as adolescents. However, since
another paper in the meta-analysis classified 13-year-old participants as children (Mayo &
Eigsti, 2012), we included the 14-year-olds from Hsu et al. (2014) in the child sample rather
than the adult sample. Additionally, one paper with toddlers was grouped with the infants
(∼31-month-olds in Scott & Fisher, 2012), as the test procedure used was the same as those
employed by infant studies (central fixation paradigm). Summary statistics of the participant
characteristics are reported in Table 1.

Most of the studies in this sample were conducted with native English speakers (354 of 636
total studies). Other prominent native language groups include Spanish (33 studies), French
(33 studies), Hebrew (20 studies), and Dutch (16 studies). The lowest frequency language
groups included Cantonese and Japanese (one study each), Danish, Korean, and Norwegian
(two studies each), Catalan, Thai, and Khalka Mongolian (three studies each), German (six
studies), and Mandarin (eight studies). The remaining studies either consist of participants of
mixed language backgrounds (five studies) or did not report the participants’ native language
(103 studies).

3.1.2. Language properties and training methods
The next set of summaries describes the characteristics of the training stimuli in the current

dataset, including the types of structures presented, the kinds of dependencies that the lan-
guage manipulated, the number of training items that participants were tasked with learning,
and the amount of exposure to each item (for studies that report this information).

Most of the studies in the sample manipulate dependencies at the syllable level (348
studies), while 162 manipulate dependencies between words. An additional 89 present
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Fig. 2. The number of studies by structure type and publication year (AD = adjacent dependency, NAD = non-
adjacent dependency, Multi = multiple regularity languages, XSIT = cross-situational learning).

participants with isolated words (as is the case with many cross-situational learning tasks), 19
manipulate dependencies between phonemes, 2 present isolated phonemes, while 16 present
novel words embedded in sentences (5 in foreign language sentences, 11 in native-language
sentences).

The bulk of the studies train participants on dependencies between adjacent syllables (308
studies in total, including studies that present isolated words that were not cross-situational
learning experiments and studies that present words embedded in native language sentences).
An additional five train participants on dependencies between adjacent words, while six train
on adjacent phoneme dependencies. Furthermore, 101 studies train participants on dependen-
cies between non-adjacent elements (13 phoneme level, 42 word level,7 46 syllable level).
A further 99 present languages with multiple regularities (5 syllable level, 2 phoneme level,
87 word-level). Finally, 108 consist of cross-situational learning studies. The distribution of
these studies over time is depicted in Fig. 2.

Surprisingly, the survey of the literature revealed considerable paucity in the types of
transitional probabilities that participants are trained on. Of the 405 studies that report the
transitional probability strength of their items, 335 utilize transitional probabilities of 1.
Indeed, many of the studies in our sample largely follow the general method of the landmark
Saffran et al. (1996) study: 142 studies consist of stimuli that utilize triplets of consonant-
vowel syllables with adjacent transitional probabilities of 1. Raincloud plots depicting the
number of studies, distributions, and boxplots of the effect sizes for each transitional proba-
bility type can be found in Fig. 3.
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Fig. 3. The distributions, boxplots, and number of studies for each transitional probability strength. Most of the
studies in this sample present items comprising transitional probabilities of 1.

Lastly, we tabulated the number of training items and the number of exposures to each
item that participants receive during training. The majority of the studies train participants on
a relatively small number of items (4–10 items), and most commonly administer a relatively
small number of exposures (1–10 exposures to each item). An overview of the training details
can be found in Table 2.

3.1.3. Testing methods
Of the entire sample, 182 studies employ processing-based measures to test learning (of

which 147 are infant studies), while 454 employ reflection-based methods. Of the latter, 393
utilize forced-choice tasks (and of these, 317 are 2AFC tasks). The second most common
paradigm includes looking time-based measures. Most of these were infant studies that self-
reported using central fixation preference (59 studies) or headturn preference (88 studies).
Central fixation paradigms present visual stimuli on a monitor (or side-by-side monitors;
Pons & Toro, 2010; Scott & Fisher, 2012) while auditory stimuli play from speakers located
in the same vicinity of the screen, requiring infants to only orient toward a central source of
information. Headturn preference procedures place infants in an experiment room with one
central light, and two side lights. A trial is initiated by the blinking of the central light, after
which one of the side lights is activated. As soon as the infant orients toward the blinking
side light, auditory stimuli are repeated from a speaker in that same location for as long as the
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Table 2
Training methods

Moderator Number of Studies

Number of training items
1 10
2 42
3 19
4 165
5–10 194
11–24 110
25+ 96

Number of exposures
1–10 174
11–20 38
21–40 72
41–100 104
101+ 120
Mixed 43
Zipfian 9

infant maintains fixation to that side light, or until the maximum trial duration elapses. This
procedure requires infants to turn their heads toward different sources of information and has
been cited as being potentially more cognitively demanding than central fixation procedures
(Cristia, Seidl, Singh, & Houston, 2016). The sample also includes eye-tracking methods
that measure looking time in children (Kavakci & Dollaghan, 2019) and looking accuracy in
adults (Wonnacott, Newport, & Tanenhaus, 2008). Fig. 4 depicts the number of studies that
utilize each task by publication year.

In addition, a total of 65 studies self-report taking an individual differences approach to
studying statistical learning. The remaining 571 did not self-identify as such, and for the
purpose of this meta-analysis these were classified as taking a group-level approach.

Finally, 59 studies in the meta-analysis comprise conditions designed to disrupt learning:
for example, studies that divided participant attention (Batterink & Paller, 2019), increased
cognitive load (Palmer, Hutson, White, & Mattys, 2019), or presented statistical cues that
conflicted with lexical stress (Fernandes, Ventura, & Kolinsky, 2007). These studies did not
significantly decrement learning in the whole sample (F(1, 634) = 2.34, p = .13). However,
since such conditions were designed to disrupt learning, and exhibited lower means overall,
they were nonetheless excluded from the main moderator analyses to ensure that no additional
noise was introduced to the analyses (except for in Section 3.6, where the effects of conflicting
multiple cues and prior knowledge on statistical learning were analyzed).

3.2. Overall effect of statistical learning

First, we analyzed the pooled effect size of the entire dataset to determine whether sig-
nificant evidence of statistical learning was present in the sample as a whole (following the
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Fig. 4. The number of studies using specific tasks by year (Gram = grammaticality, LDT = lexical decision task,
Fam = familiarity, RT = reaction time).

guidelines of Trotter et al., 2020). To this end, we conducted a random-effects model using
the R package metafor. This model operates under the assumption that the data of each paper
were collected from separate populations and thus assumes a distribution of true effect sizes
rather than a single true effect size (Borenstein, Hedges, Higgins, & Rothstein, 2010). It also
assumes that the effect sizes of the studies in the meta-analysis may deviate from the true
effect due to sampling error as well as differences in population. As in Trotter et al. (2020),
all of the models in this meta-analysis utilize the restricted maximum likelihood estimate,
which accounts for multiple sources of error variation.

The results demonstrate that on the whole, significant statistical learning occurred in the
sample. The mean effect size as measured by Cohen’s d was 1.22 (95% Confidence interval
(CI) = 1; 1.44, p < .0001) when controlling for paper and multiple comparisons. Significant
learning was also observed within each age group (adults: d = 1.50, 95% CI = 1.21; 1.80, p
< .0001; children: d = 0.99, 95% CI = 0.58; 1.40, p < .0001; infants: d = 0.63, 95% CI =
0.32; 0.92, p < .0001), while controlling for paper and multiple comparisons. The distribution
of effect sizes for each study by age group can be found in Fig. 5.

In addition, a Cochran’s Q test, which calculates the difference between the observed effect
sizes and the estimate of the random-effects model, revealed significant heterogeneity in the
entire sample (Q(576)= 41,474,013.32, p < .0001). This suggests that the studies display
greatly varying degrees of learning (prediction interval: d = −2.01; 4.58), which may in part
be explained by the age of the participants and our moderators of interest.
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Fig. 5. Funnel plot depicting the relationship between effect size (Cohen’s d) and standard error. The plot exhibits
notable asymmetry, with many studies clustering on the higher end of the null (represented by the vertical black
line) and reporting standard errors near 0.

3.3. Publication bias

Next, the data were analyzed for the presence of publication bias. Historically, published
articles have tended to report studies that exhibit larger effect sizes, whereas studies with small
effect sizes or null results are often left unpublished. This “file-drawer effect” may lead to an
overabundance of published studies with larger effect sizes, whereas studies with small effect
sizes may be underrepresented in the literature (Rothstein, Sutton, & Borenstein, 2005). This
can lead to the true effect of statistical learning in the overall population being overestimated.

Although a substantial number of the studies in this meta-analysis do in fact report
null results (102 studies; 123 when counting studies designed to disrupt learning), the
data nevertheless demonstrate significant publication bias. The results of an Egger’s test,
which quantifies the asymmetry of the funnel plot in Fig. 5, reveal significant asymme-
try in the model (t(576)= −3.64, 95% CI = −69.93; −21.01, p = .0003). Similar results
hold within age groups as well (adults: t(387)= 3.19, 95% CI = 23.78; 99.73, p = .002;
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children: t(56)= −7.78, 95% CI = −154.67; −92.40, p < .0001; infants: t(131)= −2.06,
95% CI = −10.59; −0.27, p = .04). The results from this meta-analysis must thus be inter-
preted in light of the publication bias evident in the sample.

3.4. Moderator analyses

We next analyzed the impact of our pre-registered moderators on study effect size: stimulus
type (syllables, words, etc.), structure type (adjacent dependencies, non-adjacent dependen-
cies, multiple-regularity languages), the number of training items, and the tasks used at test.
Additional models were run on the studies that included information on the number of repeti-
tions of items during training, the strength of the transitional probabilities or other statistical
dependencies in the input language, and the number of test trials, excluding the papers that
failed to report this information in text. Like in Trotter et al. (2020), we conducted these
models separately for each age group to gain more reliable estimates of the moderators’ con-
tribution to the effect sizes in each population. Following their methods, we also ran separate
models for each moderator to gain estimates of their unique contribution to effect size. We
did not pre-register any interaction terms. Furthermore, exploratory analyses revealed that
two post hoc interactions (the number of training items by the number of exposures to each
item and structure type by the number of exposures) did not reach significance for any of the
three age groups, and are hence not reported here.

We elected to analyze most of the structure types (studies that present adjacent dependen-
cies, non-adjacent dependencies, and multiple-regularity languages) together, as they did not
possess significant collinearities with the other moderators: all displayed variance inflation
factors (VIF) below the suggested cutoff of 10 (Craney & Surles, 2002), save for in the child
sample, where collinearities for two moderator analyses were controlled for (see note 8). This
also allowed us to assess one of our main questions of interest: whether different language
properties significantly impact effect size. Furthermore, as the data were already subsetted
by age group, it was not always possible to analyze each structure type alone due to small
sample sizes (e.g., there were only six non-adjacent dependency studies in the child sample,
only five multiple-regularity language studies in the infant sample, etc.). We also elected to
analyze the cross-situational learning studies separately from the other structures, as the task
demands (e.g., mapping words to competing referents) are considerably different than stud-
ies that present linguistic materials in isolation. Furthermore, the cross-situational learning
studies did display high collinearity with stimulus type (most of the studies in the dataset that
present isolated words were cross-situational learning studies), which made it impossible to
tease apart the unique contributions of structure from stimulus type (i.e., whether a significant
finding might have been an effect of cross-situational learning itself or an effect of presenting
isolated words).

For our analyses, we ran three-level multianalytic models, which account for variance
at three levels: the study level, the participant level (nested within each study level), and
variance between studies (Assink & Wibbelink, 2016). The use of these models was moti-
vated by the fact that they provide more accurate estimates of the true effect size of the
population by accounting for any potential interdependencies between studies, including
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Table 3
Moderator contributions to effect size in adult statistical learning

Moderator category Moderator F DFs p-Value Bayes factor

Language properties
Stimuli (syllables, words, etc.) 1.50 (6, 301) .18 23.03
Structure (adjacent, non-adjacent, multiple) 1.10 (2, 305) .34 9.77
Transitional probability strength 0.61 (4, 224) .66 0

Training methods Number of training items 0.19 (1, 306) .66 4.08
Number of exposures (to each item) 2.64 (1, 262) .11 0

Testing methods Test type (Processing vs. reflection-based) 2.42 (1, 306) .12 0.99
Task (AFC, RT, recall, etc.) 540.67 (7, 380) <.0001 –
Number of test trials 3.69 (1, 353) .06 0
Approach (Group-level or IDs) 2.26 (1, 306) .13 0.96

Note. AFC, alternative forced choice; DFs, degrees of freedom; RT, reaction time.

multiple comparisons. The models were run with the moderator of interest as a fixed effect
and with paper and study as a nested random effect.

3.4.1. Analysis of adult statistical learning
In terms of the language properties, structure, stimuli, and transitional probability strength

did not significantly impact effect size in adults (N = 308 studies). The F statistics of each
model, which provide an estimate of how much between-study heterogeneity each moderator
accounts for, and their associated p-values can be found in Table 3.

To further evaluate the null effects of the language properties, we ran Bayes factor (BF)
analyses on structure, stimulus, and transitional probability strength. This allowed us to assess
whether these non-significant results lend credence to the theory that statistical learning is
equally robust across different language properties in this sample (i.e., is in favor of the null
hypothesis), or whether the data are simply insensitive to potential differences in these areas.
A BF of greater than 3 is taken as evidence in favor of the null hypothesis, whereas a BF
of less than 3 is taken as evidence for data insensitivity (Dienes, 2014). In the case of adult
participants, stimulus and structure revealed BF greater than 3 (BF = 23.03 and 9.77, respec-
tively). By contrast, transitional probability strength revealed a BF of less than 3 (BF = 0),
suggesting that the current dataset may be insensitive to differences in transitional probability
strength.

In terms of testing methods, the type of test (reflection-based vs. processing-based) did
not influence effect size (and revealed data insensitivity; BF = 0.99), although trending in
the expected direction, with processing-based measures revealing larger effect sizes. The spe-
cific choice of task did significantly impact effect size. Specifically, production/recall tasks,
grammaticality/familiarity rating, RT, and eye-tracking tasks all led to significantly higher
effect sizes than forced-choice tasks (both p < .0001). However, the number of test trials
had no impact on effect size in adults nor did the study’s approach (i.e., taking a group-level
or individual differences approach), and both revealed data insensitivity (BF = 0 and 0.96,
respectively).
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Table 4
Moderator contributions to effect size in child statistical learning

Moderator category Moderator F DFs p-Value Bayes factor

Participant Age 0.67 (1, 32) .42 0.0001
Language properties Stimuli (syllables, words, etc.) 2.90 (2, 36) .07 0.13

Structure (adjacent, non-adjacent, multiple) 0.36 (2, 36) .70 1.06
Transitional probability strength 0.23 (2, 24) .80 0

Training methods Number of training items 0.04 (1, 37) .85 1.62
Number of exposures (to each item) 0.77 (1, 34) .39 0.02

Testing methods Test type (Processing vs. reflection-based) 33.20 (1, 37) <.0001 —
Task (AFC, RT, recall, etc.) 7.25 (5, 33) <.0001 —
Number of test trials 2.93 (1, 31) .10 0
Approach (Group-level or IDs) 0.38 (1, 37) .54 1.27

Note. AFC, alternative forced choice; DFs, degrees of freedom; RT, reaction time.

3.4.2. Analysis of child statistical learning
The same set of analyses conducted on the adult data was next run on the child data (N =

39 studies). We also included child age as an additional moderator to determine whether age
significantly influenced effect size in this sample.

Overall, none of the language properties or training methods impacted effect size.8 By
contrast, two of the testing moderators were significant for the child dataset. The type of
test (reflection based vs. processing based) significantly influenced effect sizes in children,
with reflection-based tasks leading to significantly smaller effect sizes than processing-based
tasks (t(38)= −5.76, p < .0001; mean effect size, reflection based = 0.86; mean effect size,
processing based= 1.66). Task was also significant, with production and recall tasks leading
to larger effect sizes than forced-choice tasks (t(38)= 5.83, p < .0001). The number of test
trials was not significant nor was there an effect on whether the study took a group-level or
individual differences approach (Table 4). The BFs for all null moderators were less than 3,
suggesting that the current dataset may be insensitive to variation in these predictors.

3.4.3. Analysis of infant statistical learning
Once more, the same set of analyses was run on the infant data (N = 127 studies).

The looking-time-based measures used in infant studies were not counted as forced-choice
paradigms, since forced-choice tasks in the adult and child literature constitute reflection-
based tasks: tasks that require participants to reflect over presented stimuli and make an
explicit decision about which stimulus was present in the training set. Looking-time-based
measures in infants reflect more implicit processing, with a child’s attention being drawn
to a learned or novel stimulus. They were thus categorized as processing-based task since
they do not require translating implicitly acquired information into a conscious response (this
is also the criteria used in the meta-analysis on artificial grammar learning conducted by
Trotter et al., 2020). Since infant behavior was exclusively measured using processing-based
paradigms, test type was omitted from the analyses.
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Table 5
Moderator contributions to effect size in infant statistical learning

Moderator Category Moderator F DFs p-Value Bayes factor

Participant Age 0.18 (1, 123) .68 0.15
Language properties

Stimuli (syllables, words, etc.) 1.06 (5, 121) .39 7.21
Structure (adjacent, non-adjacent, multiple) 2.39 (2, 118) .10 0
Transitional probability strength 1.65 (2, 124) .20 1.33

Training methods Referent mapping 0.22 (1, 125) .64 2.07
Number of training items 0.08 (1, 113) .77 0
Number of exposures (to each item) 0.79 (1, 81) .38 0

Testing methods
Task (headturn preference/central fixation) 1.15 (1, 125) .29 1.35
Number of test trials 0.19 (1, 118) .66 0.0001
Approach (group level or IDs) 0.05 (1, 125) .82 2.84

None of the language or training properties significantly influenced infant statistical learn-
ing. Stimulus had a BF of above 3, suggesting that infant statistical learning is robust across
stimulus types, but structure, transitional probability strength, the number of training items,
and number of exposures to each item indicated data insensitivity. None of the testing mod-
erators impacted effect size in this population, and all revealed data insensitivity.

A supplementary moderator analysis was run to test whether the presence of referents sig-
nificantly impacted effect sizes in infants. Unlike with the adults and older children, where all
of the studies that trained participants to map referents were cross-situational learning tasks,
most of the infant studies that involved referents were not. This made it possible to evalu-
ate the unique contribution of referent mapping on effect size in a way that was not possible
with the older children and adults in our sample. A total of 16 infant studies (not including
cross-situational learning studies) involved the mapping of labels to referents. However, the
presence of referents did not significantly alter effect sizes in this sample and revealed data
insensitivity (Table 5).

3.5. Cross-situational learning

We performed a subgroup analysis that solely appraised cross-situational learning studies
(103 studies in total; 80 adults, 18 children, and 5 infants). This decision was determined
by two main factors. First, the task constraints of cross-situational learning experiments are
significantly different from purely auditory statistical learning experiments (i.e., mapping lin-
guistic items to competing referents vs. listening to linguistic material in isolation). Second,
this paradigm was highly collinear with stimulus type: most studies that presented isolated
words in this meta-analysis were cross-situational learning studies. While we observed sig-
nificantly higher effect sizes for studies of this nature compared to the other studies in our
sample (cross-situational: M = 1.60, SD = 2.09; non-cross-situational: M = 1.13, SD = 1.55,
t(127.47)= 2.16, p = .03, d = 0.28), it was impossible to tease apart whether this difference



22 of 35 E. S. Isbilen, M. H. Christiansen / Cognitive Science 46 (2022)

Table 6
Moderator contributions to effect size in cross-situational learning

Moderator Category Moderator F DFs p-Value Bayes factor

Participant Age group (adults, children,
infants)

0.89 (2, 100) .41 1.19

Language properties
Stimuli (isolated words, multiple

words, etc.)
0.85 (2, 100) .43 1.14

Training methods Number of training items 0.92 (1, 101) .34 1.03
Number of exposures (to each

item)
0.30 (1, 81) .59 0

Testing methods Task (AFC, word ranking, etc.) 0.18 (2, 96) .84 0
Number of test trials 0.02 (1, 85) .90 0
Approach (group level or IDs) 2.81 (1, 101) .10 0.35

Note. AFC, alternative forced choice; DFs, degrees of freedom.

was due to the presentation of isolated words, the presence of referents, the cross-situational
nature of stimulus presentation, or a combination of these factors.

Test type (reflection or processing based) was not included as a moderator, as there was
a near-perfect collinearity with age group (i.e., all of the studies that utilize processing-
based methods were infant studies, with the exception of one). Similarly, transitional prob-
ability strength was also omitted, as all the studies presented items with fixed transitional
probabilities.

Of all the potential moderators, none significantly influenced cross-situational learning
effect sizes. The BFs of all of the null moderators were below 3, suggesting that the data
may be insensitive to variation in cross-situational learning among the targeted dimensions
(Table 6). When the analyses were redone on the adult sample only (excluding infants and
children), the same pattern of data insensitivity emerged, suggesting that it was not the inclu-
sion of the infants and child data in these models that led to these effects.

3.6. The impact of multiple cues and prior knowledge on learning

The presence of multiple cues has long been hypothesized to significantly impact language
acquisition (e.g., Bates & MacWhinney, 1989; Gleitman & Wanner, 1982; Morgan, 1996).
For this reason, we were interested in assessing the impact of multiple cues on statistical
learning effect sizes.

In total, 179 studies in the meta-analysis reported manipulating multiple cues (153 congru-
ent cues, 26 conflicting). These cues either took the form of auditory cues, visual cues, social
cues (classified as such by the authors of the original papers), or conflicting cues. Conflict-
ing cues are mismatched with the statistical information of the presented language. Examples
include the asynchronous presentation of potential referents (Lavi-Rotbain & Arnon, 2018),
or where lexical stress cues that denote word boundaries in one’s native language contradict
the learned language’s statistical information (Thiessen & Erickson, 2013). A full list of the
cues present in the meta-analysis can be found in Table 7.
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Table 7
Multiple cue types

Cue domain Cue Type Number of Studies

Auditory (N = 140) Auditory nonlinguistic 8
Combined auditory cues 6
Conflicting cues 15
Duration 1
Lexical/sublexical 17
Morphological 6
Pauses 20
Phonological 14
Phonotactic 3
Pitch 16
Prosodic 3
Speaker (voice) 9
Stress cues 18
Tone 4

Visual (N = 30) Conflicting cues 10
Speaker (video or image) 3
Visual cue 17

Social (N = 9) Eye gaze 8
Conflicting cues 1

Total 179

Overall, there was a significant effect of congruent multiple cues on effect size (excluding
conflicting cues; F(1, 634) = 319.47, p < .0001), with the presence of multiple cues leading
to an increase in effect size. There was also an effect of modality (F(3, 632)= 109.07, p <

.0001), with congruent auditory and visual cues on the whole leading to significantly larger
effect sizes.

To disentangle the results of modality, an analysis of multiple cue type was performed on
the full dataset of 636 studies (including studies designed to disrupt learning, which allowed
us to gauge the effect of conflicting cues on effect size). The effect of cue type was significant,
with auditory pause cues, in particular, leading to larger effect sizes (F(16, 607) = 34.86,
p < .0001). Within this model, conflicting cues did not lead to a significant decrement in
effect size.

In addition to the presence of multiple cues, we also analyzed the data for the effect of prior
knowledge (22 studies in total). Studies that investigate the impact of prior knowledge manip-
ulate properties of the artificial language, such that they are either congruent or incongruent
with the learners’ native language statistics (e.g., the phonotactics of the trained language
either resemble or violate the phonotactics of the learner’s native language; Finn & Hudson
Kam, 2008; 2015). We found no effect of either congruent or incongruent prior knowledge
on effect size, with a BF greater than 3 (F(2, 633) = 1.34, p = .26, BF = 10.01), suggesting
that the manipulation of prior knowledge congruency had no meaningful impact on learning
in this dataset.
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4. Discussion

Over the last 25 years, the study of statistical learning has greatly enriched our understand-
ing of language acquisition and cognition as a whole. In the current paper, we tested the
potential strengths and limitations of auditory-linguistic statistical learning across develop-
ment, language properties, and methodologies. The goal of these analyses was to test common
theoretical assumptions about statistical learning, including the generality of this phenomenon
across structures and stimuli, the impact of input qualities, and the influence of multiple cues.
Our pre-registered hypotheses predicted that statistical learning would be influenced by many
of these moderators. However, while the presence of multiple cues came out as a significant
predictor, as did task in adults and children, overall, the analysis revealed considerable data
insensitivity and limited variability in many of the null moderators, such as in transitional
probability strength. In addition, the presence of publication bias in the current sample means
that all results must be interpreted with this consideration in mind.

Statistical learning is a key construct in cognitive science across domains and modalities,
especially in the study of language. However, while typically discussed and investigated as
a general-purpose learning mechanism that unites many diverse behaviors, research suggests
that statistical learning varies considerably across different input features, even within modal-
ities and domains (R. Frost et al., 2015). This variability bears to question whether such
divergent forms of learning do in fact deploy the same computations or whether the dif-
ferences between tasks necessitate distinct computations (Thiessen, 2017). In terms of the
theoretical implications of our results, this meta-analysis suggests that the different studies
of auditory-linguistic statistical learning in this sample can achieve largely similar degrees of
learning despite differences in stimuli in infants and adults. Adult statistical learning is also
resilient across linguistic structures, suggesting robust learning of different types of depen-
dency patterns—whether this is the outcome of a developmental trend will require more
research given the data insensitivity of the infant and child populations.

From a theoretical viewpoint, it is important to note that our meta-analysis does not resolve
the issue of whether statistical learning consists of one or more mechanisms—it only shows
that statistical learning is robust across different auditory-linguistic stimuli and structures in
certain populations. It also does not speak to how statistical learning operates in different
modalities and domains. Thus, although statistical learning is likely to recruit a host of cogni-
tive abilities, including attentional (Toro, Sinnett, & Soto-Faraco, 2005), memory (Thiessen,
Kronstein, & Hufnagle, 2013), and modality-specific processes (Conway & Christiansen,
2005), its power across linguistic structures highlights how such learning might support an
array of complex language-related abilities in adults. These results provide strong support for
the role of statistical learning in multiple aspects of language acquisition, in accord with a
long line of theories advocating its fundamentality.

Perhaps the most surprising results were those concerning the lack of impact of transitional
probability strength on statistical learning across all three populations. Differences in item
recognition based on transitional probability strength is one of the core assumptions of
statistical learning, dating back to the original Saffran et al. (1996) study: Infants were
able to reliably discern words from the input (with transitional probabilities of 1) from
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partwords that straddle item boundaries, which occur in the input but exhibit weaker tran-
sitional probabilities. This null effect in the meta-analysis likely derives from the fact that
across the entire sample, the bulk of the studies trained participants on linguistic stimuli
comprising transitional probabilities of 1 (see Fig. 3). The overrepresentation of such tran-
sitional probabilities has critical implications for the field of statistical learning. First, many
hypotheses surrounding statistical learning may be predicated upon conditions where syllable
co-occurrence information is perfectly uniform. This may also tie into why many studies
fail to find reliable individual differences between statistical learning of artificial languages
and language learning in the real world, where natural languages are infinitely more varied
in terms of their statistical properties (Isbilen et al., 2022). It is thus imperative for future
research to expand the diversity of the transitional probabilities that participants are trained
on. This may lead to stronger theories about how statistical learning operates across different
inputs, both in the lab and in the natural world.

Furthermore, effect sizes remained largely unchanged by the number of training items in
the language (with BFs for this moderator being above 3 for adults), and the number of expo-
sures to these items (BFs indicated data insensitivity for this moderator across all popula-
tions). These results contradict research suggesting that such factors critically influence the
strength of statistical learning (Frank et al., 2010) and have far-reaching implications for chil-
dren’s natural language acquisition (Hart & Risley, 2003). It is possible that adult learning is
more resilient to larger learning loads than younger populations, although the null effect of
the number of exposures across the three populations is puzzling, given the legacy of psy-
cholinguistic research underscoring the importance of frequency in language learning and
processing (for reviews, see, e.g., Ambridge, Kidd, Rowland, & Theakston, 2015; Diessel,
2007; Ellis, 2002; Gries & Divjak, 2012). Although there was greater variability in these
moderators than for transitional probability strength, these results may still reflect the ten-
dency of most studies to utilize a narrow set of simplified languages. The limited diversity
of the language and training properties may tie into the publication bias9 found in the sam-
ple: using low transitional probability strengths, many training items, and/or a small number
of exposures to each item are likely to significantly impair learning, which may lead to null
results that are often left unpublished. The relatively brief length of statistical learning studies
may also contribute, as learners are limited in what they are able to learn in a short period
of time, and studies conducted with children and infants are required to be brief to fit the
attention spans of these populations. A fruitful area for future research may include diversi-
fying the input languages or investigating ways to bolster learning of more difficult to acquire
material.

In adults and children, task was a significant predictor of statistical learning effect size,
suggesting that the methods used at test have a profound bearing on the effects observed in the
literature. Processing-based measures led to consistently higher effect sizes than reflection-
based measures in children (and trended in that direction with adults). Forced-choice tasks
in particular resulted in markedly weaker effect sizes in both populations. This finding is
especially noteworthy given that these tasks dominate the statistical learning literature, and
since an increasing number of studies have brought to light the poor reliability, sensitivity,
and internal consistency of forced-choice paradigms (Arnon, 2020; Isbilen et al., 2020).
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Production and recall-based tasks appear to be the most efficacious in testing adult and child
learning (although grammaticality/familiarity rating tasks were robust in adults as well), in
line with studies showing that recall measures are more reliable and consistent measures of
statistical learning in both populations (Isbilen et al., 2020; Kidd et al., 2020c). These results
thus further question the efficacy of reflection-based forced-choice tasks in measuring what
is widely understood to be an implicit form of learning. Reflection-based tasks require partic-
ipants to ruminate over tacit knowledge and then decide how to respond. The scores of these
tasks may therefore capture some degree of individual differences in decision processes, in
addition to measuring the behavior of interest (Christiansen, 2019). This feature of reflection-
based tasks may wash out subtle variation in learning, potentially leading researchers to either
over- or underestimate the true effect of this phenomenon in the population (Siegelman et al.,
2017). Indeed, the classic two-alternative forced-choice task has been shown to only capture
knowledge that the participant is consciously aware of, even when RTs and neural activity
indicate learning of material that is not available to conscious awareness (Batterink, Reber,
Neville, & Paller, 2015). The results from this meta-analysis further endorse the notion that
processing-based tasks provide a more powerful index of learning in children, which may in
part stem from the fact that they circumvent many of the confounds associated with reflection-
based tasks. The adoption of more sensitive and reliable measures may serve to enhance
future theories on statistical learning. The shortcomings of these tasks may also in part
explain the prevalent data insensitivity of the other moderators observed in the child sample.

Like the child population, the cross-situational learning sample revealed substantial data
insensitivity despite its relatively large sample size (103 studies). However, on the whole,
these studies did appear to yield larger effect sizes than non-cross-situational studies, though
it is difficult to determine precisely which factors drove the finding. It may in part be explained
by the fact that many (but not all) of the cross-situational learning studies in the sample pre-
sented two or more words separated by pauses, which could potentially be easier to acquire
than words embedded in continuous speech. Indeed, the meta-analysis confirmed that pauses
inserted at word boundaries facilitate the learning of structure from continuous speech (e.g.,
Endress & Mehler, 2009; Finn & Hudson Kam, 2008), suggesting that hearing words in
relative isolation may bootstrap acquisition. It has also been shown in corpus analyses of
child-directed speech that the frequency with which caretakers use a given word in isolation
positively predicts children’s comprehension and production of that word (Brent & Siskind,
2001). Isolated words may therefore work to scaffold early vocabulary development, perhaps
in part by solving what is often cited as one of the primary obstacles to word acquisition: the
challenge of identifying word boundaries in continuous speech (see e.g., Monaghan & Chris-
tiansen, 2010, for a computational account). It is also possible that the inclusion of visual
scenes may facilitate the task and make it more interesting for participants (perhaps because
it more closely resembles language learning in natural settings; e.g., Bergelson & Swingley,
2012; Tincoff & Jusczyk, 1999, 2012).

Our final set of analyses revealed that the presence of multiple cues significantly increased
statistical learning effect sizes. In line with a long tradition of research emphasizing its mer-
its in assisting infants with natural language acquisition (e.g., Bates & MacWhinney, 1989;
Gleitman & Wanner, 1982; Morgan, 1996), multiple cue integration also reliably bootstraps
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language acquisition in the laboratory. This was particularly the case for auditory and visual
cues. Pause cues (e.g., brief silences between items) were particularly helpful for learning.
Conflicting cues that distract from the statistics of the input language did not decrease learn-
ing, similar to the findings of the meta-analysis by Black and Bergman (2017) on infant
statistical learning. Given that spurious cues unrelated to the patterns to be learned are likely
to be ubiquitous, from a theoretical perspective this result thus points to the kind of robust-
ness needed for multiple cue-based statistical learning to play a foundational role in language
acquisition. While trending in the expected direction, prior knowledge did not influence statis-
tical learning effect sizes, regardless of whether the trained language was congruent or incon-
gruent with aspects of the participants’ native language. Further work may thus be needed in
order to isolate the effects of prior learning on the acquisition of novel linguistic materials.

The results of this meta-analysis bring to light several key considerations that may benefit
future research. On the methodological front, our results provide important insights into sev-
eral features of experimental design that may help researchers develop more reliable statistical
learning studies. In terms of training procedures, the inclusion of multiple cues may contribute
to the robustness of learning. Such cues can even be used in conjunction with cross-situational
learning tasks (e.g., Frinsel, Trecca, & Christiansen, 2020; Monaghan et al., 2019; Walker,
Monaghan, Schoetensack, & Rebuschat, 2020), offering a more ecological approach to study-
ing language acquisition than presenting isolated linguistic input. Furthermore, processing-
based measures appear to provide more robust assessments of learning in children (and trend
in that direction with adults), suggesting that a shift away from reflection-based measures, and
forced-choice tasks specifically, may improve our understanding of individual differences in
statistical learning across development. In particular, testing using production (e.g., Hopman
& MacDonald, 2018; Perek & Goldberg, 2015; Wonnacott, 2011; Wonnacott et al., 2008), and
recall (e.g., Botvinick & Bylsma, 2005; Conway et al., 2010; Isbilen et al., 2020; Kidd et al.,
2020; Majerus, van der Linden, Mulder, Meulemans, & Peters, 2004) may lead to demonstra-
bly stronger results (although grammaticality/familiarity rating tasks are also strong options
for adults). The widespread employment of such methods may thus provide a clearer picture
of learning in adults and children and in turn critically inform the development of statistical
learning theories.

Theoretically speaking, our meta-analysis has provided substantial support for theories of
language that argue for a key role of statistical learning in the acquisition of different kinds
of linguistic structures (e.g., Saffran, 2003). More research is needed, however, to flesh out
this theoretical conclusion—especially given the publication bias we observed in our results.
We suggest that a fruitful way forward to further elaborate the role of statistical learning
in theories of language acquisition is to investigate how individual differences in statistical
learning map onto variation across individuals in their language skills. Following Bogaerts
et al. (2022), we argue that this might be best done by an approach that utilizes corpus analy-
ses to determine the distributional patterns of specific aspects of linguistic structure and then
conduct statistical learning experiments that closely target similar patterns in artificial minia-
ture languages. This dovetails with recent empirical work illustrating how aligning the kinds
of structures targeted between artificial and natural language learning tasks provide stronger
links between the two phenomena, and better informs how they are related (Isbilen et al.,
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2022). Such studies would be expected to provide stronger evidence for the theoretical link
between statistical learning and native language function (and dysfunction) and may also help
inform studies of second language acquisition.

In conclusion, we performed a large-scale meta-analysis of research on auditory-linguistic
statistical learning spanning the last 25 years. The results reveal that adult statistical learn-
ing is largely multipurpose across linguistic stimuli and structures, although further work
is required to determine whether this extends to developmental populations. We found that
processing-based tasks led to significantly larger statistical learning effect sizes in children,
with similar findings in adults, and are significantly boosted by additional cues. However,
we also uncovered several methodological limitations that critically impact the effect size of
statistical learning and its potential theoretical implications. We, therefore, hope that these
results may help improve future experimentation and the scientific community’s comprehen-
sion of statistical learning as a whole.
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Notes

1 While auditory-linguistic statistical learning is likely most pertinent to spoken language
acquisition, it is important to acknowledge that visual statistical learning also plays a
central role in language, particularly for sign language acquisition and the development
of reading-related skills (although see Qi, Sanchez, Georgan, Gabrieli, & Arciuli, 2019,
for a discussion of the importance of auditory statistical learning for reading).

2 Whereas studies investigating adjacent and non-adjacent dependencies typically only
measure learning of a single kind of regularity (e.g., adjacent dependencies: Saffran et al.,
1996; non-adjacent dependencies: Endress & Mehler, 2009), other studies involve mul-
tiple regularities implemented by grammars. The latter type of studies includes work
in the artificial grammar learning literature (e.g., Conway, Bauernschmidt, Huang, &

https://osf.io/7vkdt/
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Pisoni, 2010) as well as statistical learning studies involving artificial languages manip-
ulating syntactic patterning (e.g., Saffran, 2002), and studies that present adjacent and
non-adjacent regularities together (e.g., Vuong et al., 2016).

3 The keywords “language” AND “statistical learning” were pre-registered. However,
upon editorial review, a broadening of the search terms was requested, and the meta-
analysis was redone to include the term “distributional learning.” This is why the final
search terms deviate from the pre-registration. We did not include the search terms “audi-
tory statistical learning,” as this line of work also focuses on the acquisition of tone and
non-linguistic sound sequences. We also did not search for “artificial grammar learning,”
as many such studies focus on the acquisition of visual items (e.g., Reber, 1967) and
would have limited the search to a certain kind of structure. Furthermore, as this line of
work predates Saffran et al. (1996), the term captured an abundance of work not mod-
eled on this paradigm (although see the meta-analysis on artificial grammar learning by
Trotter et al., 2020). The term implicit learning was excluded for similar reasons, while
“artificial language learning” missed many key studies. Furthermore, we did not include
the terms “word segmentation” or “cross-situational learning,” as it was the goal of the
meta-analysis to capture as wide an array of structures and methodologies as possible.

4 It is possible that this equation may overestimate the effect of learning, if participants
learn at test.

5 We analyzed the mean effect sizes of the novelty versus familiarity preference data and
found no significant differences. Resigning the looking time means thus has not influ-
enced the analyses.

6 In our pre-registration, we had proposed using foil type as a moderator. However, due to
near-perfect collinearities between foil and task, these analyses were dropped from the
analysis. We had also proposed a set of exploratory analyses that evaluated the pattern
of findings on the correlations between individual differences in statistical learning and
other aspects of cognition. However, the information on this was sparse in the dataset.
Null correlations were often not reported, and the tasks used were highly varied, which
precluded the deduction of any meaningful conclusions for any of the age groups. They
were thus not included in the final meta-analysis. Similarly, the data for the pre-registered
moderator of natural language stimuli was also sparse (N = 13 each across the three age
groups). We found no significant effect of natural language stimuli (F(1, 634) = 1.94,
p = .16, BF = 1.68), with the sample revealing data insensitivity.

7 Some non-adjacent dependency studies utilize monosyllabic words. These were logged
as words rather than syllables, based on what the original authors of the paper classified
their stimuli as.

8 Multiple regularity languages exhibited a variance inflation factor above the suggested
cutoff of 10 (VIF = 18.52) in the child dataset, as such studies exclusively presented
words. Further, studies that presented transitional probabilities of 1 were frequently (but
not always) studies that presented adjacent dependencies and had a variance inflation
factor just above the cutoff (VIF = 10.23). However, the same null results and data
insensitivity emerged when these factors were controlled for in the models (stimuli:
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F(1, 23) = 3.31, p = .08, BF = 0; transitional probability strength: F(1, 15) = 0.58,
p = .46, BF = 0).

9 It is important to note that the analyses cannot definitively specify whether it was the
homogeneity of the language and training properties that caused the publication bias in
this sample. It is possible that researchers have only tested a limited array of stimuli, even
in unpublished work.
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