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How individuals learn complex regularities in the environment and generalize them to new instances is a key
question in cognitive science. Although previous investigations have advocated the idea that learning and gen-
eralizing depend upon separate processes, the same basic learning mechanisms may account for both. In lan-
guage learning experiments, these mechanisms have typically been studied in isolation of broader cognitive
phenomena such as memory, perception, and attention. Here, we show how learning and generalization in lan-
guage is embedded in these broader theories by testing learners on their ability to chunk nonadjacent depend-
encies—a key structure in language but a challenge to theories that posit learning through the memorization of
structure. In two studies, adult participants were trained and tested on an artificial language containing nonadja-
cent syllable dependencies, using a novel chunking-based serial recall task involving verbal repetition of target
sequences (formed from learned strings) and scrambled foils. Participants recalled significantly more syllables,
bigrams, trigrams, and nonadjacent dependencies from sequences conforming to the language’s statistics (both
learned and generalized sequences). They also encoded and generalized specific nonadjacent chunk informa-
tion. These results suggest that participants chunk remote dependencies and rapidly generalize this information
to novel structures. The results thus provide further support for learning-based approaches to language acquisi-
tion, and link statistical learning to broader cognitive mechanisms of memory.
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The natural world is awash with statistical regularities, from
which individuals can glean the structure of the environment. Yet
successful learning entails more than the acquisition of distinct
instances from the input: it requires learners to use this informa-
tion flexibly and extrapolate to novel situations. Investigations into
how individuals learn and generalize have a long pedigree in psy-
chology, spanning the domains of episodic learning (Bauer &
Dow, 1994), vision and motor control (Poggio & Bizzi, 2004), and
language (Wolff, 1982). However, the specific mechanisms and
representations involved in these processes, and how individuals
move from encoding individual items to forming category-based
generalizations, remains an area of debate.

In recent years, one formative memory process has advanced to
the frontlines of many discussions on learning across cognitive
domains: chunking. Chunking has long been recognized as a foun-
dational cognitive process, enabling the grouping of discrete ele-
ments into larger units to alleviate the limits of working memory—
a major challenge to the human perceptual system (Cowan, 2001;
Miller, 1956). It plays a key role in many higher level skills such as
chess (Chase & Simon, 1973; Gobet & Simon, 1998) and the per-
ception and production of language in real time (Christiansen &
Chater, 2016). Chunking has even been implicated as a central
component in one of the most powerful means of learning from the
regularities present in the environment: statistical learning (e.g.,
Christiansen, 2019; Perruchet & Pacton, 2006).
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Though often discussed as a single mechanism, and investigated in
relative isolation from other psychological processes, the phenomenon
known as statistical learning may actually comprise a suite of compu-
tations, with distinct cognitive processes handling different aspects of
learning (Frost et al., 2015; Frost et al., 2019). Indeed, mounting evi-
dence highlights the contributions of memory processes and of chunk-
ing, in particular, to statistical learning and the many behaviors for
which it accounts. At a theoretical level, chunking has been defined as
a mechanism by which distributional regularities are used to form dis-
crete representations of an input, especially in the linguistic domain.
Numerous chunking-based computational models can approximate
human statistical learning of language-related distributional patterns
(e.g., French et al., 2011; Perruchet & Vinter, 1998), illustrating how
chunking can enable the cognitive system to combine co-occurring
elements into larger units to represent specific items from an input
(e.g., using the frequent co-occurrence of syllables “A” “B” and “C”
to form the word “ABC”). Chunking models can also simulate child-
ren’s natural language acquisition, comprehension and production by
leveraging transitional probabilities to define multiword chunks—a
finding which extends to numerous languages (McCauley & Christi-
ansen, 2019a).
Behaviorally, chunking-based recall tasks can capture key results

in statistical learning, including the landmark study by Saffran et al.
(1996), which demonstrated that young infants can rapidly pick up
on patterns of syllable co-occurrence in an artificial language con-
sisting of trisyllabic nonsense words. In a recent study, after a brief
exposure to a similar artificial language, adult participants recalled
syllable sequences that adhered to the statistics of the language sig-
nificantly better than sequences containing the same syllables in a
random order (Isbilen et al., 2020). Participants even recalled spe-
cific trigram syllable chunks (or words) from the artificial language,
suggesting the involvement of chunking during statistical learning
that enabled the representation of whole chunks of information.
Similar results were obtained in a follow-up study with 5- to 6-
year-old children (Kidd et al., 2020). Just as high-frequency chunks
in natural language aid the retention of items in memory (e.g.,
recalling the letters ciafbiusa proves easier than recalling uacfisbia,
as it contains the chunks “CIA,” “FBI,” and “USA”; Cowan, 2001),
the chunking of novel statistical patterns confers comparable mem-
ory advantages by reducing cognitive load.
Despite the promise of the chunking account of statistical learning,

supporting evidence is still critically limited. Most prior observations
of statistically based chunking focus on the processing of adjacent
regularities—that is, relationships between items that immediately fol-
low one another in speech. Yet, language also contains dependencies
between elements that do not occur directly next to one another in a
sequence, and the learning of these structures necessitates more than
rote memorization alone. These nonadjacent (or long-distance)
dependencies are ubiquitous in many of the world’s languages, allow-
ing for flexible usage (e.g., is_ing =. is sitting, is always talking;
un__ed =. uncovered, uncensored, unrestrained) and linguistic pro-
ductivity—one of the hallmarks of human language (Hockett, 1959).
From the viewpoint of statistical learning, such nonadjacent depend-
encies constitute reliable statistical relationships between elements
that are separated by one or more intervening items (e.g., in the
sequence AXC, A and C reliably co-occur but the identity of X
varies). They can be learned at the item level (e.g., specific AXC com-
binations), as well as at the structural level (A–C pairings), along with
the ability to generalize these structures to novel instances (e.g., AZC,

where Z represents a new item that was not previously encountered in
the A–C structure). Nonadjacent dependency learning thus provides a
case study for the longstanding debate of how individuals move from
encoding specific items to forming generalizations over them (Gold-
berg, 2006; Radulescu et al., 2020), and for determining whether these
two abilities rely upon the same suite of statistical computations or
require separate processes. It also provides a study of whether chunk-
ing is constrained to the grouping of adjacent relations, or if such
memory processes are more flexible than previously assumed.

Several studies have successfully demonstrated that adults (e.g.,
Frost & Monaghan, 2016; Gómez, 2002; Peña et al., 2002; Perru-
chet et al., 2004; Romberg & Saffran, 2013), and infants (e.g.,
Frost et al., 2019; Gómez, 2002; Gómez & Gerken, 1999; Marche-
tto & Bonatti, 2013, 2015) can acquire nonadjacent dependencies
using statistical learning. Indeed, infants as young as 6.5 months
can leverage redundancy between nonadjacent syllables to boost
recognition of trained target syllables (e.g., ko ba ko, where ba is
the target syllable), suggesting that they are sensitive to noncontig-
uous information starting early in development (Goodsitt et al.,
1984). However, the precise mechanisms subserving the acquisi-
tion of nonadjacent dependencies—and whether they differ from
those used to learn adjacent dependencies—have been subject to
much discussion, particularly regarding whether these computa-
tions draw on statistical learning processes alone or require more
complex algebraic operations (see, e.g., Frost & Monaghan, 2016;
Peña et al., 2002; Perruchet et al., 2004). Although increasing evi-
dence is converging on the notion that nonadjacent dependencies
can be discovered via statistical learning (Wilson et al., 2020), the
extent to which chunking is involved in this process remains
highly contested (Endress & Bonatti, 2016).

Nonadjacent dependencies present a formidable challenge to
theories that view learning as proceeding through the memoriza-
tion and recognition of structure. In fact, there is limited evidence
that nonadjacent information can be represented in memory as
chunks at all, either by human learners or in computational models
(e.g., French et al., 2011; Perruchet & Vinter, 1998). By definition,
statistical chunking involves the grouping together of elements on
the basis of co-occurrence statistics, and it is conceivable that this
may extend to nonadjacent relations. However, Kuhn and Dienes
(2005, p. 1418) have stated that “chunking models are very good
at learning local dependencies but cannot learn nonlocal depend-
encies.” Similarly, Bonatti et al. (2006, p. 320) have claimed that
“much remains to be done before researchers can conclude that
humans rely on chunking, as opposed to computing distant transi-
tional probabilities, to capture nonadjacent relations among com-
ponents of a continuous stream,” with both accounts positing the
acquisition and representation of rules rather than chunks.

The rule-based framework purports that the learning of words
(e.g., AXC) and nonadjacent structure (e.g., A–C pairings)
require separate mechanisms. According to this framework,
although basic statistical computations are sufficient for acquir-
ing individual AXC items from speech, learning A–C structural
relations are thought to require complex, “algebraic” computa-
tions involving rule-like representations to enable generalization
(Endress & Bonatti, 2007, 2016; Endress, Cahill, et al., 2009;
Endress, Nespor, & Mehler, 2009; Peña et al., 2002). This
account further suggests that positional memory mechanisms
may be sufficient to explain sensitivity to nonadjacent dependen-
cies (Endress & Bonatti, 2016), with syllables at the edges of
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these structures being encoded rather than the nonadjacent struc-
ture as a whole (Endress & Bonatti, 2007; Endress & Mehler,
2009). By these views, statistically based chunking is insufficient
to account for the behavioral data, and chunked representations
are rejected in favor of rules and the memorization of ordinal
position. These theories parallel classical linguistic frameworks,
which posit that statistical computations are insufficient for lan-
guage acquisition (Chomsky, 1957, 1980), which must instead
rely on symbolic grammatical inference to generalize beyond the
limited exemplars in the input.
The question of how nonadjacent structures are represented has

been the focus of much attention. Understanding these representa-
tions is of particular importance, as it is from the data of studies
targeted to probe these representations that researchers often infer
the nature of the computations employed during learning and gen-
eralization. Findings from the chunking literature suggest a possi-
ble role for chunking in learning nonlocal structures—a finding
that would be expected if such memory processes are indeed inte-
gral to learning at large. For instance, various studies of artificial
grammar learning (AGL; see Perruchet, 2019 for a review), which
have strong parallels with statistical learning approaches, have
demonstrated the central role of chunk strength (the relative fre-
quency with which bigrams or trigrams in a test item occurred to-
gether during training; Knowlton & Squire, 1994, 1996) in the
learning of simple, variable grammars while discounting the acqui-
sition of rules (Kinder & Assmann, 2000). Indeed, chunking mod-
els appear well suited to capturing human statistical learning
representations in the linguistic domain (e.g., Frank et al., 2010;
Giroux & Rey, 2009), and in the spatial domain (Orbán et al.,
2008), where information is not necessarily contiguous.
Importantly, the chunking perspective makes specific predictions

about both the computations and representations involved in statisti-
cal learning. Based on statistical regularities, the chunking process
combines recurring items into larger units online during learning.
This leads to the formation of concrete, chunked representations of
the input, such as words, phrases, or multiword units that can be
used to formulate novel constructions (e.g., McCauley & Christian-
sen, 2019a). These ideas relate to usage-based frameworks within
the study of language acquisition (e.g., Goldberg, 2006; Lieven et
al., 1997; Tomasello, 2003), where learners are thought to acquire
specific items from the input through experience, which serve as
the foundation for generalization and productivity. Unlike classical
linguistic theories, such exemplar-based learning is not language-
specific but is thought to apply across cognitive domains.
To reappraise the relationship between acquisition and general-

ization, and the role of memory therein, the current article employs
the statistically induced chunking recall task (SICR; Isbilen et al.,
2020), using nonadjacent dependency learning as a test case. SICR
presents both statistically legal items (composed of two trisyllabic
target words) and illegal strings (the same syllables randomized)
from a trained artificial language, which participants are asked to
recall out loud in the correct order. If participants have chunked
the input language into individual words during training (e.g., abc-
def =. “abc” “def”), then recall of the trained items should yield
significantly higher accuracy than recall of the random strings
(e.g., efbdca). Furthermore, as the SICR data is transcribed then
scored syllable by syllable, it is possible to directly examine par-
ticipants’ representations in a manner that standard forced-choice
tasks do not afford. The more detailed memory-based measures of

SICR thus provide specific insights into the representations formed
during processing. Participants’ productions can be analyzed for
specific chunk formation—recall of full words from the trained
target strings, and in the present case, recall of full nonadjacent
dependencies. Sensitivity to statistical structure can thus be meas-
ured by comparing recall of the target strings to recall of the foils,
which serve as a baseline working memory measure.

The SICR paradigm is modeled on key findings from the mem-
ory literature which indicate that immediate recall abilities are fun-
damentally shaped by long-term distributional learning. For
instance, nonwords that adhere to the phonotactic patterns that
occur regularly in natural speech are recalled more accurately than
those based on infrequent phoneme sequences (Gathercole et al.,
1999), and high-frequency digit combinations are recalled more
accurately than lower probability numerical sequences (Jones &
Macken, 2015; see Cowan et al., 2012 for evidence that memory
for high-frequency chunks of linguistic items also benefit from a
similar advantage). Just as chunking-based recall tasks such as
nonword repetition and serial recall provide key insights into both
children’s processing abilities and their current degree of real-
world linguistic knowledge (Jones, 2012), SICR captures the same
effects with the learning of artificial languages.

The current research tests the chunking account of learning, seek-
ing to determine whether general memory processes can capture the
acquisition of nonadjacent structures in a statistical learning paradigm
and whether they are represented as chunks. Crucially, we assess
whether chunking can extend beyond the mere recognition of nonad-
jacent relationships to items that contain generalizations of these
structures. The first experiment investigates the acquisition and gen-
eralization of nonadjacent dependencies, following the methods of
Frost and Monaghan (2016). The second experiment addresses the
long-standing debate concerning the precise nature of the representa-
tions formed during nonadjacency learning, and tests whether such
structures are represented as chunks or whether participants simply
encode the relative positions of individual syllables. Together, these
two experiments speak to the general issue of how nonadjacent struc-
tures are learned and generalized, the role of memory-based chunking
therein, and their relation to language and cognition.

We hypothesized that nonadjacent dependency learning would
boost SICR performance, suggesting that the chunking of accrued
linguistic distributional information can facilitate short-term recall
for sequences comprising nonadjacent dependencies in the same
manner that has been observed for adjacent dependencies (e.g.,
Chen & Cowan, 2009; Jones & Macken, 2015). Furthermore, we
hypothesized that participants would encode specific nonadjacent
pairings (rather than encoding the relative positions of syllables
alone or adhering to the rule structure of the stimuli). We predicted
that these representations would also facilitate generalization, sug-
gesting that statistical learning and generalization may rely upon
the same memory-based mechanisms.

Experiment 1: Statistically Based Chunking of
Nonadjacent Dependencies

The first experiment investigates whether general memory proc-
esses can support the learning and generalization of nonadjacent
structures in an artificial language. To test this, we used the SICR
task (Isbilen et al., 2020), which is a recall task where participants
reproduce strings of syllables that either cohere with or violate the
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statistics of the presented language. Because this task entails the pro-
duction of test strings, participants’ responses can be transcribed and
analyzed for the presence (or absence) of the specific structures from
the training input. This task thereby provides a direct window into
participants’ representations of the language, and the potential
involvement of chunking during learning. For instance, we can exam-
ine the data for two key signatures of statistical chunking behavior:
whether participants recall full trigrams (i.e., full words) and the
number of nonadjacent pairs recalled, with the generalization trials as
the ultimate test of nonadjacent chunking. If participants recall spe-
cific trained nonadjacent pairs on the novel trials, this suggests that
such pairs are represented as a single chunk in memory. We also
administered a two-alternative forced-choice task (2AFC) to provide
an additional measure of learning, and to make contact with the exist-
ing body of literature that tests nonadjacency learning using 2AFC
(e.g., Endress & Mehler, 2009; Frost & Monaghan, 2016; Peña et al.,
2002; Perruchet & Poulin-Charronnat, 2012).
We predicted that learning and generalization would be exhib-

ited on both tests, with recall of the target items being superior to
foils on SICR, and with 2AFC performance being greater than
chance. Additionally, we hypothesized that participants would
recall significantly more legal trigrams (or full words) on the word
learning trials, and that the statistical facilitation from legal nonad-
jacent dependencies would also lead to improved recall of trigrams
on the generalization trials. Last, we hypothesized that participants
would recall specific nonadjacent chunks from the grammatical
items, suggesting that they can in fact chunk such structures.

Method

Participants

Forty-nine undergraduates (30 females, 19 males; age: M =
19.43, SD = 1.30) from Cornell University were recruited. All par-
ticipants were native speakers of American English, with no
known language or hearing disorders. Participation was compen-
sated with course extra credit.

Materials

This study utilized the same artificial language as Frost and Mon-
aghan (2016), which was adapted from Peña et al. (2002). The lan-
guage comprised 9 syllables, which were used to create three
nonadjacent dependencies (e.g., A–C pairings), which each featured
three different middle syllables (e.g., X syllables in AXC), yielding
nine distinct tri-syllabic words that were heard during training
(A1X1C1, A1X2C1, A1X3C1; A2X1C2, A2X2C2, A2X3C2; A3X1C3,
A3X2C3, A3X3C3). Plosives (be, du, ga, ki, pu, ta) were used for the
first and third syllables of each nonadjacent dependency, whereas
continuants (fo, li, ra) were used for the middle syllables (e.g.,
dufoki, duliki, duraki, gafobe, galibe, garabe, tafopu, talipu, tar-
apu).1 To ensure that the study’s results were not due to the particu-
lar features of a single artificial language, four different languages
with different A–C pairings were created, and were counterbal-
anced across participants. The words in each language version were
concatenated together into a single auditory file that was presented
during the training phase, with a 5-s fade in and fade out to prevent
participants from using the onset and offset of the file as a cue for
determining word boundaries. The transcriptions of the words for
each language version can be found in Appendix A.

A further nine generalization words that were not present during
training were created to test how well participants could generalize
their knowledge of the trained nonadjacent dependencies. These
generalization words were composed of the same nonadjacent
dependencies as the input words but featured novel intervening
syllables not heard during training (e.g., Z syllables in AZC). Like
the input words, continuants were used for the middle syllables
(thi, ve, zo). The transcriptions of the generalization words for
each language version can be found in Appendix A.

For SICR, 26 six-syllable-long strings were created, in line
with those used by Isbilen et al. (2020). Of these, nine were com-
posed of two concatenated words (e.g., A1X3C1A2X1C2), nine
were composed of two concatenated generalization words (e.g.,
A1Z3C1A2Z1C2), and eight were foils (to maintain equal num-
bers of each item type: four word-learning and four generaliza-
tion foils). The foils used the same syllables as the target items
but in a scrambled order, avoiding both the adjacent and nonad-
jacent regularities of the artificial language. These foils served as
a baseline working memory measure, which performance on the
target items was compared against to gauge learning. All SICR
test items can be found in Table B1 in Appendix B.

For 2AFC, the same 18 foil words from Frost and Monaghan
(2016) were used: nine part-word foils and nine generalization foils
for each language version. The part-word foils spanned word boun-
daries (e.g., X1C1A2, C2A1X1), and were presented alongside the
input words to test how well participants had picked up on the lan-
guage’s underlying structure. Similarly, the generalization foils were
also part-words that spanned word boundaries, but with the X sylla-
bles replaced with novel, unheard syllables (e.g., Z1C1A2, C2A1Z1),
which were presented at test with the target generalization words. All
2AFC foil words can be found in Table B2 in Appendix B.

All stimuli were synthesized using the Festival speech synthe-
sizer (Black et al., 1990), with each individual trisyllabic sequence
lasting approximately 700 ms. Both stimulus presentation and data
collection utilized E-prime 2.0 (Schneider et al., 2002). The study
was approved by Cornell University’s Institutional Review Board
(IRB), and participants signed a consent form prior to participation.

Procedure

First, participants were trained on the artificial language. The
nine words were randomized to produce a continuous stream, and
participants were instructed to listen to the language carefully and
pay attention to the words it might contain. Each word was pre-
sented 100 times (with each nonadjacency pair occurring 300
times), and training lasted approximately 10.5 min. The nine
words were randomized and concatenated such that there was no
immediate repetition of individual AXC words.

Following exposure, participants completed two tasks: SICR
and 2AFC. The order of these tasks was counterbalanced across
participants. For SICR, the twenty-six strings described above
were presented for recall: nine that tested word acquisition, nine
that tested generalization, and eight random foil strings, to main-
tain equal numbers of word learning and generalization foils (four
each). Participants were told that they would be assessed on how

1 This is in line with the language by Peña et al. (2002). Phonological
similarity between syllables supports the acquisition of nonadjacent
dependencies (Newport & Aslin, 2004; but see Frost et al., 2019 and Onnis
et al., 2005 for evidence that this is not essential for learning).
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well they could reproduce the syllables present in the artificial lan-
guage. They were then asked to listen to each string carefully, and
to repeat the entire string out loud in the correct order as accurately
as possible into a microphone as soon as it was finished playing.
The order of the SICR items was randomized across individuals,
and participants were not informed of any underlying structure
present in the strings.
For 2AFC, participants heard eighteen pairs of words: one target

word and one foil word per trial. Of these, nine pairs tested acqui-
sition of the input words, and nine pairs tested generalization. For
this task, participants were asked to listen to each word pair care-
fully and report which of the two items best matched the artificial
language they were trained on. The order of all 2AFC trials was
randomized across individuals.

Results

SICR Results

Prior to analysis, participants’ verbal responses on the SICR task
were transcribed by two coders who were naive to the purpose of
the study and its design (see Isbilen et al., 2020 for an in-depth
guide on the transcription of SICR sequences). In line with Isbilen
et al. (2020) and methods used in the nonword repetition literature
(Botvinick & Bylsma, 2005), consistent syllable mispronunciations
(e.g., a participant routinely says “le” for the target syllable “li”)
were transcribed as correct (i.e., as “li” rather than “le”), as such
mispronunciations indicate differences in how participants perceive
the syllables produced by the speech synthesizer. In addition, an
anchoring procedure was used to align participants’ productions as
closely as possible to the target items, identical to what is done for
many nonword repetition tasks (e.g., Dollaghan & Campbell, 1998;
Ellis Weismer et al., 2000). For instance, if a target stimulus was
taragabeliki and the participant produced “taraki,” this would be
transcribed as “tara------ki” (with a dash denoting each missed let-
ter). This ensured that participants were granted credit for all of the
syllables that were correctly recalled, even if they returned fewer
syllables than they were presented with. In cases where there were
false starts (e.g., the participant started producing a syllable, paused,
then started again) and self-corrections (where a participant cor-
rected their production of a syllable or item), the original production
was ignored in favor of the second/corrected production. Nonres-
ponses on a trial were automatically given a score of zero.
Following transcription, participants’ responses on both the word

learning and generalization trials were scored for accuracy using
four different measures. The first measure was total accuracy (the
total number of syllables that participants recalled in the correct
order), which allowed us to gauge how well participants performed
on each string as a whole and whether statistical learning conferred
a general memory advantage. The second measure was bigram ac-
curacy (the total number of adjacent two-syllable combinations
recalled within words, out of four possible pairs: e.g., A1X1, X1C1,
A2X2, X2C2 in the target sequence A1X1C1A2X2C2), which indi-
cates how well participants encoded the adjacent bigram informa-
tion within the presented structures. The third measure was trigram
accuracy (the total number of trigrams or full words correctly
recalled in each string, out of two possible pairs: e.g., A1X1C1 and
A2X2C2), which revealed whether participants chunk entire words
in the target word learning trials, and whether nonadjacency

learning enabled better retention of novel words in the generaliza-
tion trials. The final measure was nonadjacent dependency accu-
racy. For the target sequences, this was the number of A–C pairings
that participants recalled from each string, out of two possible pairs:
for example, A1_C1 and A2_C2. For the foils, this score was calcu-
lated based on recall accuracy for pairs of syllables in the analogous
positions, that is, syllables 1 and 3, and syllables 4 and 6. This mea-
sure allowed us to determine whether participants chunked specific
nonadjacent syllable combinations in the target items.

The target item scores were then compared against those of the
foil items, to test statistical learning against baseline working
memory. We report the results from linear mixed-effect model
analyses, which used the lmerTest package (Kuznetsova et al.,
2017) in the statistical software R, Version 4.2 (R Core Team,
2020). For the linear mixed-effects models, the models were built
incrementally, participants and test items were included as random
effects, and word type (target vs. foil) as a fixed effect. Language
version was not included as a separate random effect in the analy-
ses, as it was already redundantly coded in the test item variable.
Each SICR measure (total, bigram, trigram, and nonadjacent de-
pendency accuracy) was modeled separately.

On the word learning trials, when controlling for participants and
test items, the fixed effect of word type on total accuracy was highly
significant (model improvement over model containing only random
effects, v2(1) = 43.16, p , .0001), with participants correctly recall-
ing significantly more syllables in the target items than in the foil
items (difference estimate = –1.16, SE = .14, z = �8.15, p , .0001).
There was also a significant effect of word type on bigram recall
(model improvement over model containing only random effects,
v2(1) = 36.87, p , .0001; difference estimate = –.87, SE = .12, z =
–7.41, p , .0001) and on trigram recall (model improvement over
model containing only random effects, v2(1) = 36.73, p, .0001; dif-
ference estimate = –.42, SE = .06, z = –7.25, p, .0001), with signifi-
cantly higher recall accuracy of legal adjacent syllable combinations
and full trigram words encountered in the input. Finally, there was a
robust effect of word type on nonadjacent dependency accuracy
(model improvement over model containing only random effects,
v2(1) = 34.08, p , .0001), with significantly more nonadjacent
dependencies (syllables in the first and third serial positions and the
fourth and six serial positions) being accurately recalled in the target
items than the foils (which contained no nonadjacent structure; differ-
ence estimate = –.43, SE = .06, z = –6.92, p, .0001).

For the generalization items, there was a significant effect of
word type on SICR total accuracy (model improvement over model
containing only random effects, v2(1) = 25.77, p , .0001), with
participants recalling significantly more syllables in the target
strings (difference estimate = –1.00, SE = .17, z = –5.78, p ,
.0001). The same pattern was observed for bigram accuracy (model
improvement over model containing only random effects, v2(1) =
8.72, p = .003; difference estimate = –.52, SE = .17, z = –3.08, p =
.004) and trigram accuracy (model improvement over model con-
taining only random effects, v2(1) = 36.73, p , .0001; difference
estimate = –.42, SE = .06, z = –7.25, p , .0001), with better accu-
racy for legal adjacent syllable combinations and full novel trigram
words within the target sequences. Last, a strong effect of word
type was also observed for nonadjacent dependency accuracy
(model improvement over model containing only random effects,
v2(1) = 21.95, p , .0001), with participants recalling significantly
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more nonadjacent pairs within the target than foil items (difference
estimate = –.37, SE = .07, z = –5.20, p, .0001).
There was no significant difference between word learning and

generalization as measured by the SICR difference scores (target item
score minus foil item scores), for either total accuracy, or nonadjacent
dependency accuracy (both ps = .10). However, a significant differ-
ence was observed on bigram recall, t(48) = 4.12, p = .0002, d = .59,
and trigram recall, t(48) = 3.86, p = .0003, d = .55. Participants
recalled the bigrams and trigrams they were exposed to significantly
better than the items with novel middle syllables. Mean performance
on these different measures (i.e., the average proportion of syllables,
bigrams, trigrams, and nonadjacent dependencies recalled across all
participants for each trial type) are reported in Table 1, and the serial
position curves are reported in Figure 1.

2AFC Results

As predicted, participants performed significantly above chance
on both the word learning and generalization 2AFC trials (word
learning: t(48) = 18.44, p , .0001, d = 2.63; generalization: t(48) =
6.61, p , .0001, d = .94). Participants’ accuracy was significantly
higher on the word learning than on the generalization trials, t(48) =
5.77, p, .0001, d = .82. The mean scores for each trial type can be
found in Table 2.

Discussion

Experiment 1 provides strong evidence that participants could
identify individual words in an artificial language and detect the
nonadjacent dependencies it contained. Because both words and
structure were defined by (adjacent and nonadjacent) transitional
statistics, these data lend further support to the notion that human
learners can perform computations over the distributional regular-
ities contained in speech, even for dependencies that occur over a
distance. Importantly, participants also successfully generalized
statistically learned chunks of nonadjacent information and could
do so in relative synchrony with learning the precise sequences
that occurred, rather than requiring the progressive formation of
rule-like representations after item learning had been mastered.
Importantly, the results also indicate that our ability to perform

these tasks may be driven (at least in part) by statistically based
chunking. On SICR, recall was significantly better for the structured
strings than random foils, with participants recalling significantly
more bigrams, trigrams and nonadjacent pairs for structured
sequences—structures that have historically posed a challenge for
chunking models. This mirrors prior work demonstrating that indi-
viduals in serial recall tasks can remember items that are

interpolated by additional information, which may be seen as a kind
of nonadjacent structure (Baddeley et al., 1993). For instance, when
tasked with recalling strings of numbers interleaved by words (e.g.,
7-wit-9-bond-6), participants can successfully ignore the words and
recall the numbers, suggesting that distal information can be held in
verbal working memory. This effect replicates for visual–spatial se-
rial information (Nicholls et al., 2005), suggesting that it is a gen-
eral property of memory across domains. Recall in these studies
was somewhat lower for interpolated stimuli than when recall items
were contiguous (with similar findings by Greene et al., 1988;
Hitch, 1975; Murray, 1966), although this effect was small in Bad-
deley et al. (1993) and Nicholls et al. (2005). The current study
moves beyond these results, investigating memory for nonadjacent
information following a training phase on an artificial language, to
measure learning-induced changes to recall. Although previous
studies have shown that participants can suppress interleaved infor-
mation, here we find that individuals can recall adjacent and nonad-
jacent information simultaneously and with comparable accuracy,
facilitated by statistical learning.

The enhanced trigram recall on the target word learning trials sug-
gests that participants had chunked the syllables into wholistic word-
like representations during training. Higher trigram recall on the target
generalization items implies that the chunking of nonadjacent depend-
encies facilitated recall of the new intervening items by reducing
memory load. These findings with nonadjacent patterns parallel prior
research underscoring the contribution of chunking to representing
learned adjacent items in memory in serial recall (Chen & Cowan,
2009) and nonword repetition (Jones et al., 2014), and how long-term
statistical knowledge interacts with these abilities (Cowan et al., 2012;
Jones, 2012; Jones & Macken, 2015). Just as prior studies report
memory advantages for learned chunks of adjacent information, here
we extend these results to the statistical learning of nonlocal struc-
tures, demonstrating how the statistical learning of such structures are
relevant for broader theories of cognition and memory.

Additionally, participants also recalled significantly more trained
nonadjacent dependencies—specific A–C combinations—in the tar-
get items than the foils (which did not contain this structure). This
was true for both the word learning and generalization sequences,
suggesting that participants formed chunked representations of
these dependencies, which they could use flexibly in novel instan-
ces. Participants’ knowledge of the nonadjacent dependencies there-
fore appears to facilitate their ability to recall information on the
generalization trials, whereas the word learning trials demonstrate
evidence of specific item learning. To our knowledge, the present
study is the first to demonstrate that long-term distributional

Table 1
Summary Statistics for SICR by Item Type (Proportion Correct)

Syllables Bigrams Trigrams NADs

Item type M SD Range M SD Range M SD Range M SD Range

Word learning
Target .22 .07 .06–.33 .17 .08 0–.33 .14 .09 0–.31 .16 .09 .02–.31
Foil .09 .04 .02–.17 .05 .04 0–.15 .04 .04 0–.13 .05 .05 0–.15

Generalization
Target .18 .07 .05–.33 .11 .08 0–.32 .09 .08 0–.31 .13 .09 .02–.33
Foil .05 .03 .01–.12 .03 .03 0–.10 .02 .03 0–.10 .03 .03 0–.10
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knowledge facilitates memory for nonadjacent items in the same
manner that has been observed for adjacent items.
Using two assessments of learning (SICR and 2AFC), we

replicated Frost and Monaghan’s (2016) finding that adults can
identify words and word-internal dependency structures to-
gether during learning, from statistical information alone (with-
out the need for additional cues, e.g., Fló, 2021; Peña et al.,
2002), indicating that these tasks may be underpinned by simi-
lar statistical learning and memory processes (see Frost & Mon-
aghan, 2016 for further discussion). Our results thus provide
further evidence for the notion that learning and generalization
may simply be different outcomes of the same statistical learn-
ing processes (Aslin & Newport, 2012) rather than generaliza-
tion requiring separate rule-like computations, suggesting a

more unified framework for nonadjacent dependency learning
and language acquisition at large. However, some outstanding
questions about how nonadjacent information is represented in
memory remain, including whether such information is repre-
sented as chunks or merely encoded positionally.

Experiment 2: Chunked Representations of
Nonadjacent Dependencies

Experiment 1 provides initial support for the chunking of whole
words, and the specific nonadjacent syllables within them. However,
the results might be explained by an alternative possibility: that partici-
pants encoded the relative positions of the syllables rather than the
nonadjacent dependencies as chunks (Endress &Mehler, 2009). Poten-
tial evidence against the chunking hypothesis and for the positional in-
formation hypothesis comes from participants’ inability to distinguish
trained nonadjacent dependencies (e.g., A1XC1) from items that violate
the language’s chunk information while preserving its positional infor-
mation, by replacing the final syllable of one trained dependency with
the final syllable of another (e.g., A1XC2). These items, first introduced
as “class words” (Endress & Bonatti, 2007) and later as “phantom
words” (Endress & Mehler, 2009) reportedly led participants to have
false memories of hearing these words during training, thus suggesting
that positional information—and not chunk information—is the out-
come of nonadjacent dependency learning. However, others have since
shown that participants exhibit a general preference for trained words
over phantom words—consistent with the predictions of chunking-
based computational models (Perruchet & Poulin-Charronnat, 2012).
However, what participants specifically represent—trigrams, nonadja-
cent dependencies, or both—remains an open question.

Given that most prior investigations into this phenomenon have
utilized 2AFC, we sought to revisit the phantom word effect using
SICR. As SICR affords more specific insights into learners’ represen-
tations, we reasoned that it may grant clearer insights into whether
participants acquire chunk information or only positional informa-
tion. Unlike previous work on this topic, we tested both acquisition
and generalization rather than acquisition alone. We hypothesized
that participants would differentiate between trained and phantom
items, showing learning of specific chunks rather than solely posi-
tional information. However, we hypothesized that this would only
be on the SICR task, due to the increased specificity that the recall
data provides about participants’ representations relative to 2AFC.

Method

Participants

We collected data from 75 participants (49 females, 25 males,
one nonbinary; age M = 20.65, SD = 3.07). Due to the COVID-19
pandemic, this experiment was conducted online. We recruited
from both the Cornell University undergraduate population (N =

Figure 1
Serial Position Curves Showing the Accuracy of Recall on the
SICR Task

Note. On the word learning and generalization trials, accuracy was
higher for the target items (which follow the statistics of the artificial lan-
guage) than it was for the foil items. Error bars reflect standard error.

Table 2
Summary Statistics for 2AFC by Item Type (Proportion Correct)

Item type M SD Range

Word learning .84 .13 .56–1
Generalization .70 .21 .22–1
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50) and from the Prolific participant recruitment platform (N =
25). Participation from the Prolific participant pool was limited to
university students who were native speakers of American Eng-
lish, to maintain comparability between the two samples. There
were no significant differences in performance between the two
samples on either SICR or 2AFC (p = .24 or greater). Therefore,
the data from both samples were combined and analyzed together.
This preregistered sample size was determined by a power analysis

based on the results of a pilot experiment run in-lab, wherein we
observed a SICR effect size of approximately d = .41. Due to the
online format of the current study, we anticipated that the observed
effect sizes might be slightly smaller than the pilot study that was
conducted in-person prior to lab closures (e.g., due to potential delays
between stimulus presentation and when participants are cued to start
repeating back stimuli because of differences in Internet connectivity,
differences in headphone types across participants, slight differences
in the volume at which participants listen to stimuli). We therefore
conducted a power analysis based on a reduced effect size of d = .21
(half of the effect size observed in the pilot study). All participants
were native speakers of American English, with no known history of
language or auditory disorders. Participation was compensated with
course extra credit or monetary payment.

Materials

The same four artificial languages as Experiment 1 were used, fea-
turing nine AXC words that were heard during training. In addition,
the same 18 SICR and 18 2AFC target items as Experiment 1 were
used at test (nine that tested word learning and nine that tested gener-
alization in each task). For the foils, eighteen phantom words were
created. Phantom words were constructed by taking the first syllable
of one nonadjacent dependency and pairing it with the final syllable
of a different nonadjacent dependency (e.g., A1X1C2), to preserve the
items’ positional information but disrupt their chunk information (i.e.,
A1 and C2 occur as the first and last syllable in a trisyllabic sequence,
but never occurred together within the same trisyllabic word during
training). The same method was used to create four SICR phantom
word learning trials (A1X3C2A2X1C1) and four SICR phantom gener-
alization trials (A1Z3C2A2Z1C1), yielding eight SICR phantom word
trials in total. The bigram information in the foils was carefully bal-
anced, to make sure that no single bigram appeared in the phantom
word strings more than once, and all phantom A–C pairings occurred
an approximately equal number of times. The phantom word items
for both tasks can be found in Tables C1 and C2 in Appendix C.
As in Experiment 1, all new stimuli were generated using the

Festival speech synthesizer (Black et al., 1990), using the same
voice as the items in the first experiment, with each tri-syllabic
string lasting approximately 700 ms. Both stimulus presentation
and 2AFC data collection utilized Qualtrics survey software. Partic-
ipants’ spoken responses on the SICR task were recorded using the
Zoom conferencing software, in a completely anonymized meeting
session (participants logged in with their randomized participant
numbers and with no video, to ensure that the data was completely
de-identified), as was approved by Cornell University’s IRB. Partic-
ipants signed a consent form prior to participation.

Procedure

Identical to Experiment 1, participants were first trained on the
artificial language for approximately 10.5 min. During this time,

they were asked to listen carefully to the language and pay atten-
tion to any words it might contain. Each word was presented 100
times (and so each nonadjacent dependency was presented 300
times) throughout the course of training.

Following exposure, word learning and generalization were meas-
ured using both SICR and 2AFC. The order of these two tests was
counterbalanced across participants. In SICR, participants heard
strings of syllables over headphones, and were asked to repeat the
entire string out loud to the best of their ability. Participants were not
informed of the strings’ underlying structure. For 2AFC, participants
heard stimulus pairs consisting of words and phantom words. On the
word learning trials, input words were always paired with phantom
input words. On the generalization trials, generalization words were
always paired with phantom generalization words. Participants were
instructed to indicate which of the two words best matched the artifi-
cial language to which they were exposed.

Results

SICR Results

As in Experiment 1, two coders who were blind to the purpose of
the study and its design transcribed the SICR data, using the same
procedures described in the Results section of Experiment 1. Partici-
pants’ productions were then scored for total syllable, bigram, tri-
gram, and nonadjacent dependency accuracy, and learning was
measured by comparing responses on the target items to those on the
phantom word items. Word learning and generalization responses
were modeled separately using linear mixed effects models, with par-
ticipants and test item as random effects, and word type (target vs.
phantom word) as a fixed effect. As in Experiment 1, language ver-
sion was not included in the models as a separate random effect, as it
was already redundantly coded within the test item variable.

When considering the total recall accuracy on the word learning
trials (i.e., the total number of syllables recalled), the fixed effect
of word type was not significant (model improvement over model
containing only random effects, v2(1) = 2.60, p = .11), with no
reliable difference between the number of syllables recalled for
target and phantom word strings (difference estimate = –.23, SE =
.15, z = –1.61, p = .11). Similarly, there was no significant effect
of word type on bigram recall (model improvement over model
containing only random effects, v2(1) = 2.42, p = .12), with per-
formance on both target and phantom strings being approximately
equal (difference estimate = –.22, SE = .14, z = –1.55, p = .13).
However, there was a significant effect of trigram accuracy (model
improvement over model containing only random effects, v2(1) =
4.35, p = .037). Participants recalled significantly more legal tri-
grams than phantom trigrams (difference estimate = –.16, SE =
.08, z = –2.11, p = .04). Similarly, nonadjacent dependency accu-
racy was significantly higher for the target items (model improve-
ment over model containing only random effects, v2(1) = 7.53, p =
.006), with participants recalling more nonadjacent dependencies
that they were exposed to during training than phantom dependen-
cies (difference estimate = –.18, SE = .06, z = –2.82, p = .007).

For SICR generalization, the data reveal the same pattern of results
as those observed for the word learning trials. Similarly, there was no
significant effect of item type on bigram accuracy (model improve-
ment over model containing only random effects, v2(1) = 1.25, p =
.26; difference estimate = –.13, SE = .12, z = –1.11, p = .27).
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However, for trigram recall, word type was significant (model
improvement over model containing only random effects, v2(1) =
4.35, p = .037), with participants recalling significantly more trained
trigrams over phantom trigrams (difference estimate = –.16, SE = .08,
z = –2.11, p = .041). Nonadjacent-dependency recall was also signifi-
cantly impacted by word type (model improvement over model con-
taining only random effects, v2(1) = 5.00, p = .026), with participants
recalling significantly more nonadjacent dependencies for the target
items than in the phantom word items (difference estimate = –.13,
SE = .06, z = –2.62, p = .03).
Performance was significantly higher on the word learning trials

than on the generalization trials for all SICR measures (total accu-
racy: t(74) = 2.63, p = .01, d = .30; bigram accuracy: t(74) = 3.81,
p = .0003, d = .44; trigram accuracy: t(74) = 3.63, p = .0005, d = .42;
nonadjacent dependency accuracy: t(74) = 2.04, p = .05, d = .24).
Mean performance on all SICR measures (e.g., the average propor-
tion of syllables, trigrams or nonadjacent dependencies recalled
across all participants for each trial type) are reported in Table 3, and
the serial position curves are reported in Figure 2.

2AFC Results

Contrary to our preregistered predictions, 2AFC word identifi-
cation performance was significantly above chance, with partici-
pants preferring words over phantom words, t(74) = 5.87, p ,
.0001, d = .68. Generalization performance was also significantly
above chance, t(74) = 1.67, p = .05, d = .19, with participants cor-
rectly selecting novel but structurally consistent words constructed
of target nonadjacent dependencies over phantom dependencies.
There was a significant difference between 2AFC word learning
and generalization performance, t(74) = 3.03, p = .003, d = .35,
with participants performing significantly better on the word learn-
ing than the generalization trials. The mean accuracy of each
2AFC measure is reported in Table 4.

Discussion

In Experiment 2, we expanded on the results of Experiment 1 by
performing a closer examination of the representations that learners
form during statistical nonadjacent dependency learning. In doing so,
we revisited the positional hypothesis proposed by Endress and Meh-
ler (2009), but with two key differences from previous studies. First,
we tested generalization in addition to acquisition, to determine
whether the effect reported for phantom input words would extend to
generalization. Second, we used SICR to gain more detailed insights
into participants’ representations for the newly acquired words/

structures, to disentangle whether these comprise chunks or merely
positional information.

Our results reveal that participants may become sensitive to mul-
tiple kinds of regularities in nonadjacency tasks, including both ad-
jacent and nonadjacent information. However, it also appears that
they do encode specific nonadjacent chunks above and beyond the
positions of syllables alone. For SICR, contrary to our predictions,
no difference was found between recall of the target versus phan-
tom words in terms of the total number of syllables recalled or the
number of bigrams recalled. This finding makes sense when consid-
ering the overall statistical structure of the target and phantom
items: in both cases, the adjacent bigram information was identical.
The only differences between the two lay in the trigram and nonad-
jacency statistics. We observed a robust difference in both the num-
ber of legal trigrams and legal nonadjacent dependencies recalled,
both on the word learning and generalization trials. Although the
distinctions between the target and phantom word items were very
subtle in terms of their statistical structure, participants nonetheless
recalled significantly more trigrams and nonadjacent dependencies
that followed the artificial language’s chunk information. These
findings dovetail with experimental data on visual statistical learn-
ing from Slone and Johnson (2015), demonstrating that participants
can distinguish trained triplets from statistically matched illusory
triplets, and thus represent chunks rather than statistics. Comparable
results have also been reported for linguistic statistical learning
(Perruchet & Poulin-Charronnat, 2012; Wang et al., 2019). How-
ever, although these previous studies have demonstrated a general
preference for trained over phantom items, here we elucidate the
specific representations that learners accrue.

The stronger facilitation from legal nonlocal dependencies has sev-
eral implications for the kind of information that participants glean
from learning. Work from a recent study of online visual statistical
learning shows that there are strong individual differences in the kinds
of dependencies—local versus nonlocal—that participants rely on
(Siegelman et al., 2019), with some individuals preferring one over
the other, whereas some attend to both. Overall, adjacent information
appears to be easier for participants to process and learn (Trotter et al.,
2020), with participants potentially favoring adjacent over nonadja-
cent dependencies when such information is present (Gómez, 2002).
Indeed, Gómez (2002) found that individuals could only learn nonlo-
cal over local information when there was ample variability of the
middle items in the input—even with the inclusion of additional pause
and lexical cues to the nonadjacent structure. The languages in the
present experiment possessed no additional cues and very few middle
items: only three as opposed to the twenty-four middle items required

Table 3
Summary Statistics for SICR by Item Type (Proportion Correct)

Syllables Bigrams Trigrams NADs

Item type M SD Range M SD Range M SD Range M SD Range

Word learning
Target .25 .05 .13–.31 .23 .06 .08–.32 .21 .07 06–.31 .22 .06 .06–.31
Phantom .12 .03 .03–.15 .10 .04 .02–.16 .09 .04 .02–.15 .10 .04 .02–.15

Generalization
Target .22 .06 .08–.31 .18 .07 .04–.32 .16 .08 .02–.31 .20 .07 .06–.31
Phantom .11 .03 .04–.15 .08 .04 0–.16 .07 .04 0–.15 .09 .04 .02–.15
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in Gómez (2002) for participants to endorse grammatical over
ungrammatical nonadjacent sequences above chance in a grammati-
cality judgment task. Here, we contribute further evidence that indi-
viduals can in fact learn and represent adjacent transitional probability
information and nonadjacent information simultaneously, supplement-
ing the results of prior studies (Romberg & Saffran, 2013; Vuong et
al., 2016). Complementary findings are also observed in studies of
children’s nonword repetition using stimuli derived from natural lan-
guage statistics: Through exposure to a language, individuals pick up
on lexical chunks (in this case, nonadjacent frames) and sublexical
chunks (e.g., the bigram information within those frames), leading to
enhanced recall of strings that follow these lexical and sublexical sta-
tistics (Jones, 2016). These findings also illustrate how the behaviors

observed in the current article tap into real-world psychological
phenomena.

Contrary to the results of Endress and Mehler (2009) and in line
with those of Perruchet and Poulin-Charronnat (2012), our 2AFC
results show a significant difference between endorsement of the
words over phantom words on the word identification trials. Further,
we extend these results by observing a comparable effect on the gen-
eralization trials. These trials in particular discount the idea that indi-
viduals encode rule-like representations regarding syllable position—
participants show better endorsement of target over phantom items
even though both follow the purported rule structure (e.g., A precedes
C). Rather, individuals appear to encode specific A–C combinations,
suggesting the acquisition of concrete items over abstract rules. These
results thus lend important insights into the nature of exemplar-based
learning and generalization, and how the two unfold over time: indi-
viduals represent learned items with enough flexibility to generalize
over exemplars relatively early during the learning process.

General Discussion

Successful learning necessitates more than the encoding of specific
items or events in the environment—it requires generalizing to novel
instances. The current article tested the question: can general-purpose
statistical learning and memory processes account for the acquisition
and generalization of nonlocal dependencies, a common challenge to
many memory and exemplar-based learning models? Our results pro-
vide strong evidence for the statistically based chunking of nonadja-
cent structure that is not reducible to positional encoding and does
not require rule learning. The results also suggest that participants
represent nonadjacent information as input-specific chunks that can
scaffold structural generalization (Lieven, 2016).

In line with statistical learning-based theories (e.g., Aslin &
Newport, 2012), our results suggest that structure learning and gen-
eralization may be more computationally unified in adults than pre-
viously assumed (Endress & Bonatti, 2016). Rather than these two
abilities requiring distinct statistical and rule-like computations,
they can instead rely on similar statistical learning and memory
mechanisms (e.g., Frost & Monaghan, 2016; Perruchet et al.,
2004). Furthermore, although some theories posit that statistical in-
formation is insufficient for the acquisition of nonadjacent struc-
tures from speech, let alone generalization (Endress & Mehler,
2009; Endress et al., 2005), we show that nonadjacent dependencies
can be both acquired and generalized without the recruitment of
additional cues, replicating the results of previous studies (Frost &
Monaghan, 2016). Although the recruitment of additional cues can
facilitate the acquisition of nonlocal dependency structures (e.g., de
Diego-Balauger et al., 2007, 2015; Fló, 2021; Newport & Aslin,
2004; Rodríguez-Fornells et al., 2009; Van den Bos et al., 2012),
they are not a strict requirement for learning (Frost et al., 2019;
Onnis et al., 2004).

Figure 2
SICR Serial Position Curves for the Word Learning and
Generalization Trials by Item Type (Target Versus Phantom
Word Strings)

Note. Error bars reflect standard errors.

Table 4
Summary Statistics for 2AFC by Item Type

Item type M SD Range

Word .61 .16 .33–1
Generalization .53 .17 0–1
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Our results further elucidate how individuals move from exem-
plar-based learning to forming broader generalizations—a key area
of inquiry in psychology. Rather than requiring the gradual formation
of abstract rules, learners appear to chunk specific exemplars from
the input based on adjacent and nonadjacent statistical regularities
(e.g., I__them), which serve as a launchpad for generalizing beyond
what was encountered (e.g., I saw them, I like them, I want to eat
them). These results parallel usage-based frameworks of language ac-
quisition (e.g., Lieven, 2016; Tomasello, 2003), which view produc-
tivity as arising from the interplay of encoding input-specific
constructions and abstracting over them to create novel variations.
For example, learners appear to extract and store lexical frames
(Lieven et al., 2003), which are specific multiword constructions that
frequently occur in an input (e.g., I want __). Productivity occurs
when learners insert a novel word or multiword chunk into the empty
slot of the frame (e.g., I want this, I want to go home), enabling learn-
ers to generalize over statistically learned chunks.
A chunking-based computational model that discovers lexical

frames may provide a window into how chunking could operate in
the learning and generalization that took place in our experiments.
This lexical frame discovery model involves a minor, principled
extension to an earlier chunk-based learner model (CBL; McCauley
& Christiansen, 2019a), which aimed to simulate children’s lan-
guage comprehension and production under real-time memory con-
straints. CBL was exposed to corpora of child-directed speech—
one word at a time—using backward transitional probabilities
between words (which learners are sensitive to: e.g., Pelucchi et al.,
2009; Perruchet & Desaulty, 2008; Saffran, 2001, 2002) to decide
whether to group words together as a chunk or not. In this way, the
model processes the input incrementally, while building up an in-
ventory of chunks that consist of one or more words. Through a
simple generalization process, multiword chunks can then be used
to facilitate further processing: previous encountered chunks are
automatically grouped together independently of transitional proba-
bility information. As a model of early language acquisition, CBL
was able to simulate the kind of shallow parsing that likely plays a
role in children’s language comprehension and the use of distribu-
tional regularities in their production of utterances. The model
showed strong performance across a typologically diverse range of
languages (McCauley & Christiansen, 2019a) while also capturing
psycholinguistic data from both children (McCauley & Christian-
sen, 2014) and adults (Grimm et al., 2017).
This lexical frame version of CBL (CBLþLF; McCauley &

Christiansen, 2019b) incorporated a slight change to the generaliza-
tion process: when the model has discovered five or more multi-
word chunks of the same size and which differ only by a single
word (in the same position), it creates a lexical frame with an empty
slot. For example, if the model learns the chunks on our own, on
your own, on their own, on his own, on its own, it automatically
generalizes over them to create the lexical frame on__own.2 These
lexical frames are stored in the model’s chunk inventory (or long-
term memory), where they can combine with other words and
chunks to produce novel utterances not encountered in the input
(e.g., on my own, on her own). The model thus demonstrates how
the combination of statistical learning and chunking mechanisms
can capture the generalization of nonadjacent structures. These sim-
ulations, along with the data presented here, suggest that chunks do
not only comprise contiguous units, but can also incorporate

nonadjacent lexical frames wherein other chunks can be placed,
thereby extending the results of prior memory models.

Importantly, these results show that chunk formation and statistical
dependency learning are part and parcel of the same learning process.
In Experiment 1, participants appear to form chunks of information
based on the different statistics present in the input (Perruchet & Pou-
lin-Charronnat, 2012; Slone & Johnson, 2015, 2018; Wang et al.,
2019), encoding specific trigrams from the input as well as nonadja-
cent dependencies. Experiment 2 provided further evidence of this
ability, by illustrating how participants encode nonadjacent chunks
beyond positional information, though they still encode adjacent in-
formation as well (exemplified by the fact that participants recall the
bigrams equally well in the target and phantom items). It may thus
be the case that theories of statistical learning need not rule out the
acquisition of transitional probabilities in favor of chunk information,
or vice-versa—rather, learners appear to utilize both. Indeed, compu-
tational models that involve both statistical computation and chunk
formation provide a stronger fit to statistical learning data than those
that exclusively rely on transitional probability calculation (French et
al., 2011; McCauley & Christiansen, 2019a, 2019b; Perruchet &
Vinter, 1998), and is consistent with theories that view statistical
learning as a suite of domain-general computations (Frost et al.,
2015, 2019). Although our data cannot determine whether chunk for-
mation and statistical computation occur in parallel (McCauley &
Christiansen, 2019a, 2019b), or if statistical sensitivity manifests due
to chunking (Perruchet & Vinter, 1998; Perruchet & Pacton, 2006;
Thiessen & Pavlik, 2013), they do suggest that both are required for
learning and generalization.

Our results also contribute further insights to the memory litera-
ture, and particularly to studies employing serial recall. Individuals
who have picked up on the statistical regularities of artificial lan-
guages show better recall of grammatical items, when controlling for
baseline phonological working memory (Conway et al., 2010; Isbilen
et al., 2020; Kidd et al., 2020). Similarly, memory for sequences of
high frequency words from natural language is superior to memory
for strings of low frequency words (Hulme et al., 1997), and long-
term lexical and phonological knowledge facilitates recall, when test
items are manipulated to leverage distributional regularities from an
artificial language that participants were exposed to (Majerus et al.,
2004). Other studies have shown that when individuals are trained to
associate pairs of words, these pairs are later treated as a single
chunked unit (Cowan, Chen, & Rouder, 2004), and classic memory
studies show that word predictability and frequency facilitate recall
(Baddeley, Conrad, & Hull, 1965). Although prior observations have
typically been limited to facilitation from adjacent statistical informa-
tion, we extend these findings here by showing comparable boosts to
memory performance from the statistical learning of nonadjacent
information.

The question of how nonadjacent information may be stored in
memory is a topic of some speculation. For example, in the visual
domain, some studies suggest that individuals utilize such structural
dependencies to simplify their mental representation of stimuli to

2 The CBLþLF model thus answers the call by Kol et al. (2014) for the kind
of psychologically plausible, yet computationally rigorous, approximation of the
Traceback method proposed by Lieven et al. (2003) to capture children’s item-
based language learning. The threshold of 5þ for creating a lexical frame was
chosen as a more conservative constraint than the 4þ used by Cameron-
Faulkner et al. (2003) in their hand-coded analysis of child-directed speech.
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allow their retention in memory. This is thought to take different
forms, with individuals encoding both detailed information about
specific items and the overall summary of a scene (Brady & Tenen-
baum, 2013; Hollingworth & Henderson, 2003; Oliva, 2005), or by
regularizing the features of a scene to facilitate compressibility and
reduce short-term memory (STM) load—though such compression
may also cause memory errors by oversimplifying the data (Lazar-
tigues et al., 2021). Yet other studies have challenged the notion of
chunking as a form of data compression that frees up working mem-
ory (Norris et al., 2020), and instead suggest that chunking may be
achieved by redintegration. In this account, chunked representations
only reside in long-term memory, enabling individuals to rebuild
whole representations from degraded traces in STM (but, see Brady
et al., 2009 and Thalmann et al., 2019 for evidence of compression
in memory). Although the current article was not designed to disen-
tangle the compression and redintegration accounts, our data do sug-
gest that nonadjacent statistical information appears to facilitate
memory in a similar fashion as adjacent information: by allowing the
cognitive system to build larger units of representation, and thereby
decreasing the number of items that need to be held in working mem-
ory. This is consistent with chunking models of serial recall (e.g.,
Cowan et al., 2012), which show that working memory limitations
interact with long term memory. Although this and other models
have primarily focused on items linked by adjacent probabilities,
their results may extend to items comprising nonadjacent regularities
as well.
Additionally, acquisition and generalization appear to occur in

parallel, rather than requiring mastery of the language before evi-
dence of generalization can be observed, as has been previously
suggested. However, although these two abilities appear to emerge
around the same time at test, we acknowledge the limitations of the
current study in providing online data that tracks the time course of
learning during training, or the specific mechanisms involved
therein. Just as decades of 2AFC results are taken to be indicative
of the calculation of transitional probabilities during statistical
learning, we predict that the evidence of chunk formation on SICR
may similarly indicate the involvement of chunking during learn-
ing, and the apparent concurrence of learning and generalization.
Furthermore, our data do not speak to how word learning and

generalization proceed in infants, nor its developmental trajectory
(Gómez & Maye, 2005). Evidence for how these abilities unfold
in infants is currently mixed. Indeed, it has previously been sug-
gested that generalization may only appear later in development—
and only then with the incorporation of additional acoustic cues
(Marchetto & Bonatti, 2013). Yet the opposite has been reported
for the acquisition of musical sequences (Dawson & Gerken,
2009), with 4-month-old infants successfully generalizing tone
and chord combinations that follow a regular pattern, but not 7-
month-old infants. By contrast, Frost et al. (2020) show that 17-
month-old children both segment and generalize structure after a
brief period of exposure to an artificial speech stream on the basis
of statistical cues alone. Similar results have also been observed
for visual statistical learning (Saffran et al., 2007). Although these
results make it difficult to untangle the precise developmental
timeline of generalization, collectively, they do suggest that it
occurs for both linguistic and nonlinguistic stimuli. As this ability
applies across domains, it thus may be underpinned by general
cognitive rather than language-specific mechanisms.

The processes involved in learning and generalization have long
been debated. Here, we suggest that the process characterized as sta-
tistical learning may involve a whole host of domain-general compu-
tations working in parallel (Frost et al., 2015, 2019), among which
chunking plays a central role. This view differs somewhat from other
accounts that propose multiple task-specific mechanisms (the “more
than one mechanism” (MOM) hypothesis; Endress & Bonatti, 2007,
2016), where statistical computations calculate transitional probabil-
ities among adjacent and nonadjacent information in speech, whereas
a secondary mechanism extracts rules. Instead, we suggest that statis-
tically facilitated chunking works in tandem with other domain-gen-
eral processes to enable the learning and generalization of structure in
memory, language, and other aspects of cognition.

Context of the Research

Although chunking models are powerful in capturing the learning
of temporally and spatially contiguous information across domains,
how such memory mechanisms might apply to remote dependencies
has remained a relative mystery. Research into this area provides fertile
ground for investigating the nature of exemplar-based learning and
how individuals form generalizations over items—the representational
foundations of vocabulary and grammar in the psychology of language
and in cognitive science at large. Prior evidence shows that SICR is a
highly sensitive tool for investigating learning and representation of ad-
jacent dependencies. The current study was motivated by the question
of whether SICR could be expanded to nonlocal dependencies, which
would allow for a broader notion of chunking. Our results thus unlock
a trove of possibilities for studying learning and generalization in a
range of participants and tasks. Fruitful future directions may include
investigating how representations change with age (e.g., are children
more flexible in their acquisition or generalization of structures than
adults?), how children with language disorders perform on tasks
involving the chunking of adjacent and nonadjacent structures, whether
skill in one statistical learning task correlates with skill in another,
whether the learning of artificial dependencies correlates with the kinds
of information individuals can learn in the real world, and how statisti-
cal learning relates to other aspects of cognition, such as auditory and
visual perception, and memory and attention systems. Such avenues
may in turn enable us to bridge statistically based chunking in lan-
guage to a host of broad phenomena in cognition.
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Appendix A

Input and Generalization Words for Experiments 1 and 2

Language 1 Language 2 Language 3 Language 4

Input words
Dufoki Befoki Dufoga Dufoki
Duliki Beliki Duliga Duliki
Duraki Beraki Duraga Duraki
Gafobe Dufopu Kifobe Pufobe
Galibe Dulipu Kilibe Pulibe
Garabe Durapu Kirabe Purabe
Tafopu Tafoga Pufota Tafoga
Talipu Taliga Pulita Taliga
Tarapu Taraga Purata Taraga

Generalization words
Duthiki Bethiki Duthiga Duthiki
Duveki Beveki Duvega Duveki
Duzoki Bezoki Duzoga Duzoki
Gathibe Duthipu Kithibe Puthibe
Gavebe Duvepu Kivebe Puvebe
Gazobe Duzopu Kizobe Puzobe
Tathipu Tathiga Puthita Tathiga
Tavepu Tavega Puveta Tavega
Tazopu Tazoga Puzota Tazoga

(Appendices continue)
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Appendix B

Test Items for Experiment 1

Table B1
SICR Items for Experiment 1

Input word (W)
or Generalization (G) item Target (T) or foil (F) Language 1 Language 2 Language 3 Language 4

W T Dulikitafopu Duliputafoga Pulitakifobe Pulibedufoki
W T Durakigafobe Durapubefoki Puratadufoga Purabetafoga
W T Talipugarabe Taligaberaki Kilibeduraga Dulikitaraga
W T Tarapugalibe Taragabeliki Kirabeduliga Durakitaliga
W T Tafopuduliki Tafogadulipu Kifobepulita Dufokipulibe
W T Galibeduraki Belikidurapu Duligapurata Taligapurabe
W T Garabedufoki Berakidufopu Duragapufota Taragapufobe
W T Gafobetalipu Befokitaliga Dufogakilibe Tafogaduliki
W F Gabepulirata Bekigalirata Dugabeliraki Tagakiliradu
W F Litapukidofu Litagapufodu Likibetafopu Lidukibefopu
W F Foraduputaki Foradugatapu Forapubekita Forapukidube
W F Kiberaligadu Pukiralibedu Tagaralidupu Begaralitapu
W F Pubelifogata Gakilifobeta Begalifoduki Kigalifotadu
G T Duvekitathipu Duveputathiga Puvetakithibe Puvebeduthiki
G T Duzokigavebe Duzopubeveki Puzotaduvega Puzobetavega
G T Duthikigazobe Duthipubezoki Puthitaduzoga Puthibetazoga
G T Tavepugathibe Tavegabethiki Kivebeduthiga Duvekitathiga
G T Tazopuduthiki Tazogaduthipu Kizobeputhita Duzokiputhibe
G T Tathipuduveki Tathigaduvepu Kithibepuveta duthikipuvebe
G T Gavebetazopu Bevekitazoga Duvegakizobe Tavegaduzoki
G T Gazobetavepu Bezokitavega Duzogakivebe Tazogaduveki
G T Gathibeduzoki Bethikiduzopu Duthigapuzota Tathigapuzobe
G F Kipuvethitadu Pugavethitadu Tabevethikipu Bekivethidupu
G F Bekithizoduga Kiputhizodube Gatathizopudu Gabethizoputa
G F Dubezovegaki Dukizovebepu Pugazoveduta Pugazovetabe
G F Vetabegapuzo Vetakibegazo Vekigadubezo Vedugatakizo

Table B2
2AFC Foil Items for Experiment 1

Input word (W) or
Generalization (G) foil Language 1 Language 2 Language 3 Language 4

W Bedufo Fokibe Bepura Bedura
W Fobega Gadura Fogadu Betafo
W Kigafo Kidufo Gapufo Fogata
W Kitara Ligabe Libedu Gapufo
W Libedu Likidu Ligapu Kipura
W Likita Liputa Litaki Libedu
W Lipuga Pubefo Rabepu Ligapu
W Pudura Putara Tadufo Likita
W Rapudu Ragadu Takira Rakipu
G Begave Fothibe Bekizo Beputhi
G Fothiga Gatazo Fothidu Fothita
G Kiduthi Kibeve Gaduve Gatave
G Liveta Liveta Liveki Kiduzo
G Putazo Puduthi Razopu Livedu
G Razodu Razodu Taputhi Razopu
G Thiputa Thigata Thibeki Thikidu
G Vekidu Vepudu Vetapu Vebepu
G Zobega Zokibe Zogadu Zogata

(Appendices continue)
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Appendix C

Test Items for Experiment 2
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Table C2
2AFC Phantom Word Foils Items for Experiment 2

Input word or
Generalization foil Language 1 Language 2 Language 3 Language 4

W Dulipu Duliga Pulibe Puliki
W Durabe Duraki Puraga Puraga
W Dufopu Dufoga Pufobe Pufoki
W Talibe Taliki Kiliga Duliga
W Taraki Tarapu Kirata Durabe
W Tafobe Tafoki Kifoga Dufoga
W Galiki Belipu Dulita Talibe
W Garapu Beraga Durabe Taraki
W Gafoki Befopu Dufota Tafobe
G Duvepu Duvega Puvebe Puveki
G Duzobe Duzoki Puzoga Puzoga
G Duthibe Duthiki Puthiga Puthiga
G Tavebe Taveki Kivega Duvega
G Tazoki Tazopu Kizota Duzobe
G Tathiki Tathipu Kithita Duthibe
G Gaveki Bevepu Duveta Tavebe
G Gazopu Bezoga Duzobe Tazoki
G Gathipu Bethiga Duthibe Tathiki

Table C1
SICR Items for Experiment 2

Input word or
Generalization item Target or foil Language 1 Language 2 Language 3 Language 4

W T Talipugarabe Taligaberaki Kilibeduraga Dulikitaraga
W T Gafobetalipu Befokitaliga Dufogakilibe Tafogaduliki
W T Tafopuduliki Tafogadulipu Kifobepulita Dufokipulibe
W T Garabedufoki Berakidufopu Duragapufota Taragapufobe
W T Tarapugalibe Taragabeliki Kirabeduliga Durakitaliga
W T Galibeduraki Belikidurapu Duligapurata Taligapurabe
W T Dulikitafopu Duliputafoga Pulitakifobe Pulibedufoki
W T Durakigafobe Durapubefoki Puratadufoga Purabetafoga
W F Talibegarapu Talikiberaga Kiligadurabe Duligataraki
W F Galikitafobe Beliputafoki Dulitakifoga Talibedufoga
W F Dulipugafoki Duligabefopu Pulibedufota Pulikitafobe
W F Dufoputaraki Dufogatarapu Pufobekirata Pufokidurabe
G T Duzokigavebe Duzopubeveki Puzotaduvega Puzobetavega
G T Gafibeduzoki Befikiduzopu Dufigapuzota Tafigapuzobe
G T Tazopudufiki Tazogadufipu Kizobepufita Duzokipufibe
G T Gazobetavepu Bezokitavega Duzogakivebe Tazogaduveki
G T Duvekitafipu Duveputafiga Puvetakifibe Puvebedufiki
G T Gavebetazopu Bevekitazoga Duvegakizobe Tavegaduzoki
G T Tafipuduveki Tafigaduvepu Kifibepuveta Dufikipuvebe
G T Dufikigazobe Dufipubezoki Pufitaduzoga Pufibetazoga
G F Tazokiduvepu Tazopuduvega Kizotapuvebe Duzobepuveki
G F Gazopudufibe Bezogadufiki Duzobepufiga Tazokipufiga
G F Tavebegafipu Tavekibefiga Kivegadufibe Duvegatafiki
G F Duzobetafiki Duzokitafipu Puzogakifita Puzogadufibe
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